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In Green’s function theory, the total energy of an interacting many-electron system can be expressed in a
variational form using the Klein or Luttinger-Ward functionals. Green’s function theory also naturally addresses
the case where the interacting system is embedded into a bath. The latter can then act as a dynamical (i.e.,
frequency-dependent) potential, providing a more general framework than that of conventional static external
potentials. Notably, the Klein functional includes a term of the form Trωln{G−1

0 G}, where Trω is the integration
in frequency of the trace operator. Here, we show that using a sum-over-poles representation for the Green’s func-
tions and the algorithmic-inversion method one can obtain, in full generality, an explicit analytical expression for
Trωln{G−1

0 G}. Further, this allows us (1) to recover an explicit expression for the random phase approximation
correlation energy in the framework of the optimized effective potential and (2) to derive a variational expression
for the Klein functional valid in the presence of an embedding bath.
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I. INTRODUCTION

Electronic-structure simulations based on density-
functional theory (DFT) [1] are today widely exploited
[2] in condensed-matter physics, quantum chemistry, and
materials simulations [3]. Even if DFT can, in principle,
be used to access any observable of an interacting system
as a functional of the density [3–5], currently available
functionals and approximations are mostly limited to the
ground-state total energy (and, in turn, to its derivatives with
respect to external parameters) and to observables connected
to the charge density. Instead, electronic excitations can
be addressed by extensions of the basic theory, such as
time-dependent (TD) DFT [6–8] and ensemble DFT [9–11].
All these approaches are equipped with a variational principle
which allows one to determine the basic quantity of the theory
(e.g., the density in DFT or its time-dependent version in
TD-DFT [12]) for the systems studied.

Conversely, Green’s function (GF) methods [5,13] such as
the GW approximation and its combination with the Bethe-
Salpeter equation [14–17] are commonly used to address
charged and neutral excitations. Nevertheless, the one-particle
GF can also be used to access the ground-state total energy
[5,18] (e.g., via the Galitskii-Migdal expression). A varia-
tional formulation with respect to the one-particle Green’s
function can be recovered by using the Luttinger-Ward and
Klein energy functionals [19–22], which become stationary
when evaluated at the interacting Green’s function of the sys-
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tem. Applications have covered atoms and molecules [23–26],
Hubbard chains [27,28], and the homogeneous electron gas
[29–31]. When the Klein functional is combined with an
optimized effective potential approach [32,33], one obtains
the linearized Sham-Schlüter equation [34,35], which can be
used to derive advanced Kohn-Sham DFT functionals from
diagrammatic approximations, such as the exact exchange
plus RPA exchange-correlation functional [5,13,18,22,36–
39]. Notably, the Klein functional features a term of the form∫

dω
2π i Tr ln{G−1

0 G} (see Sec. II for more details), which is
cumbersome to evaluate numerically and requires dedicated
treatment [26,27]. The Luttinger-Ward functional displays
similar issues. In passing, we also note that besides DFT-
based and GF methods, other orbital-dependent or dynamical
approaches [3] addressing excitations are available; these
include dynamical mean-field theory (DMFT) [40], spec-
tral potentials [41,42], and Koopmans-compliant functionals
[42–45].

Importantly, dynamical potentials naturally emerge in the
description of embedding, where a system of interest is placed
in contact with an external bath. In these cases, for nonin-
teracting systems, the embedded GF can be calculated by
adding an embedding self-energy [5,13], which has the form
of a nonlocal and dynamical potential, to the pristine Hamil-
tonian. This approach has been successfully exploited, e.g.,
in the description of semi-infinite systems (surface Green’s
function) and applied to simulations of quantum transport
through nanojunctions [46–50]. When electron-electron inter-
actions are considered, the situation becomes more complex,
but the assumption of dealing with a noninteracting bath [46]
allows one to treat the problem similarly to the noninteracting
case. Approaches such as DMFT [40], which is a dynamical
method targeting both total energies and spectral properties,
exploit the embedding of an interacting impurity model to de-
scribe the electron-electron self-energy of strongly interacting
systems.

2469-9950/2024/110(4)/045149(11) 045149-1 Published by the American Physical Society

https://orcid.org/0000-0003-0855-2590
https://orcid.org/0000-0003-1572-4987
https://orcid.org/0000-0002-9764-0199
https://ror.org/0042e5975
https://ror.org/02s376052
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.110.045149&domain=pdf&date_stamp=2024-07-29
https://doi.org/10.1103/PhysRevB.110.045149
https://creativecommons.org/licenses/by/4.0/


FERRETTI, CHIAROTTI, AND MARZARI PHYSICAL REVIEW B 110, 045149 (2024)

In general, the use of dynamical potentials (e.g., originat-
ing from many-body perturbation theory [5,13], embedding,
or spectral potentials [3,41,42]) in electronic-structure meth-
ods is a challenge by itself. Indeed, the frequency represen-
tation of propagators (or dynamical potentials) is nontrivial
[31,51,52], with viable approaches ranging from discretized
frequency grids (on either the real or imaginary axis) to the
use of meromorphic functions and Padé approximants [53,54]
or imaginary-time treatments [54]. Moreover, the solution of
the resulting Dyson equation (which can be cast in the form of
a nonlinear eigenvalue problem [55]) adds further numerical
and conceptual complexity (including multiple solutions and
nonorthonormality of the eigenvectors [5,16,55]). In order to
address this problem, we recently combined a sum-over-poles
(SOP) representation of the propagators with the algorithmic-
inversion method (AIM) [31,51,52] to exactly solve the Dyson
equation in the presence of dynamical potentials. In the con-
text of GW calculations, a SOP formulation has also been
used recently in the multipole approximation (MPA) method
[56,57] to represent the frequency dependence of the response
function in order to go beyond the plasmon-pole approach.

In this work, by taking advantage of the AIM-SOP formu-
lation [31,51,52], we first derive an analytical expression for
terms of the form Trω{G−1

0 G}, appearing, e.g., in the Klein
functional, which is valid in the general case of interacting
propagators. Next, we exploit this result (1) to recover an
exact expression [36] for the random phase approximation
(RPA) correlation energy [22,38,39] and (2) to obtain a Klein
functional valid in the case of embedding where the system
of interest is coupled to a noninteracting bath. Furthermore,
in Appendix A 1 we also derive a dynamical noninteracting
v-representability condition for the Green’s function of the
system.

This paper is organized as follows. In Sec. II we present
the theoretical framework used throughout the work. Next,
in Sec. III we derive an analytical expression for Trω{G−1

0 G}.
Finally, in Sec. IV we apply the result derived to evaluate the
RPA correlation energy first, and then to obtain the embed-
ding of the Klein functional. Complementary details about
Green’s function embedding and Trln terms are provided in
Appendixes A and B, respectively.

II. THEORETICAL FRAMEWORK

In this section we present the theoretical framework under-
pinning the use of Green’s function methods to describe an
interacting system in the presence of a noninteracting bath;
additional details are provided in Appendix A. We consider
a closed quantum system C that is partitioned into two sub-
systems, the interacting system S and the bath B, such that, in
terms of degrees of freedom, we have C = S ∪ B. Particle in-
teractions are present but limited to only subsystem S, leaving
subsystem B as a noninteracting bath. All single-particle oper-
ators, including Hamiltonians, self-energies, and the Green’s
function, become 2 × 2 block matrices, indexed according to
the S and B subsystems. As detailed in Fig. 1, h0 represents the
noninteracting Hamiltonian of the two systems without cou-
pling, while H0 is the noninteracting Hamiltonian of C when
the coupling V is included. Eventually, self-energy terms ac-
counting for the particle-particle interaction are included. As

FIG. 1. Top: Partitioning of the closed system C into the subparts
S (interacting, as indicated by the wiggly line) and B (noninteract-
ing). The Hamiltonian and self-energy blocks and the coupling V
of the two subsystems are also indicated. Bottom: Sketch view of
the three different Hamiltonians and Green’s functions involved in
the discussion of embedding. Left: S and B are noninteracting and
uncoupled. Middle: S and B are noninteracting but coupled. Right: S
is interacting and coupled to the noninteracting B.

discussed in Appendix A, since interactions are present only
within S, one can show that the corresponding self-energy is
limited to the same subsystem. Moreover, since h0B is nonin-
teracting, without loss of generality we may take it diagonal
on the chosen basis, such that h0B = diag(�1, . . . , �n, . . . ).

Within the above definitions and following Fig. 1, we can
define the Green’s functions for the whole system C at dif-
ferent levels of description (noninteracting and uncoupled,
noninteracting and coupled, interacting in S and coupled)
according to

g0(ω) = [ωI − diag(h0S, h0B)]−1 = [ωI − h0]−1,

G0(ω) = [ωI − H0]−1,

G(ω) = [ωI − H0 − �(ω)]−1 (1)

(time-ordered offsets from the real axis are left implicit). We
note that when G is the physical GF, then � = �Hxc is the
interaction self-energy (accounting for Hartree, exchange, and
correlation terms). Nevertheless, in the following we will also
consider cases where G is a trial GF, as discussed, e.g., in
Sec. III B. In these cases, � = �̃ just collects a set of degrees
of freedom useful to represent G via the Dyson equation:

G = G0 + G0�̃G. (2)

Within this construction, the self-energy �̃ is also constrained
to have nonzero matrix elements only within subsystem S
(which can be seen as a domain definition for the set of trial
G′s).

By focusing on the subsystem S and making reference to
the theory of Green’s function embedding [5,13], the S blocks
of the above GFs are obtained as

g0S (ω) = [ωIS − h0S]−1,

G0S (ω) = [ωIS − h0S − �vS (ω)]−1,

GS (ω) = [ωIS − h0S − �vS (ω) − �(ω)]−1, (3)
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where �vS is an embedding self-energy due to the bath B
[5,13,47,48,50]:

�vS (ω) = V g0B(ω)V † =
∑

n

Rn

ω − �n ± i0+ , (4)

which acts as a correction to the external potential of S.
The total energy of the closed system C can be obtained

variationally, e.g., via the Klein functional [20,22], reading

EK [G] = Trωln
{
G−1

0 G
} + Trω

{
H0G0

}
+ Trω

{
I − G−1

0 G
} + �Hxc[G], (5)

where we have defined Trω{· · · } = ∫
dω
2π i e

iω0+
Tr{· · · } and

�Hxc[G] is a functional [19–21] to be approximated that is
related to the interaction self-energy as

δ�Hxc[G]

δG
= 1

2π i
�Hxc[G]. (6)

With the above definitions, one can show [5,13] that the gra-
dient of the Klein functional is zero for the GF G that satisfies
the self-consistent Dyson equation

G = G0 + G0�Hxc[G]G. (7)

A. Sum over poles and algorithmic inversion

In the following, we make use of the concept of sum
over poles (SOP) [27,28,31,51–53] to represent propagators,
combined with the AIM [31,51,52] to solve Dyson-like equa-
tions. In practice, this amounts to writing propagators and
self-energies using discrete poles and residues (meromorphic
representations [27]) as

G0(ω) =
∑

n

A0
n

ω − ε0
n ± i0+ , (8)

G(ω) =
∑

s

As

ω − εs ± i0+ , (9)

�(ω) = �0 +
∑

n


n

ω − ωn ± i0+ , (10)

which could also be seen as discrete Lehmann representa-
tions [53]. This is physically meaningful before taking the
thermodynamic limit and represents a mild assumption in
dealing with propagators. Recently, SOPs were also used to
represent the screened Coulomb interaction in the context of
GW, leading to the multi-pole approximation (MPA) [56,57].

In Eqs. (8)–(10), G0 is a noninteracting GF obtained from
the single-particle Hamiltonian h0,

h0

∣∣φ0
n

〉 = ε0
n

∣∣φ0
n

〉
, A0

n = ∣∣φ0
n

〉〈
φ0

n

∣∣, (11)

while G is an interacting or embedded GF, obtained from
G0 by a Dyson equation involving �, i.e., G = [ωI − h0 −
�(ω)]−1. Conversely, if G and G0 are given, the self-energy
connecting them can be determined by inverting the Dyson
equation as � = G−1

0 − G−1. By assuming discrete and real
poles for � and G0, as well as Hermitian �0 and positive
semidefinite (PSD) residues 
n, we find [51,52,55] (see also
Appendix A 1) that G also has real discrete poles and that its
residues and poles satisfy

[h0 + �(εs)]| fs〉 = εs| fs〉, As = | fs〉〈 fs|. (12)

The normalization of | fs〉 is given by [58]

〈 fs| fs〉 = Zs = 1 + 〈 fs|�̇(εs)| fs〉 � 1, (13)∑
s

| fs〉〈 fs| = I, (14)

where �̇(ω) = ∂�(ω)/∂ω. From Eq. (14), the | fs〉 orbitals
are complete, although not linearly independent or orthonor-
malized (see also Ref. [52]). In the expressions above, the
Dyson equation is mapped to a nonlinear eigenvalue problem,
Eq. (12), involving rational functions [51,52,55]. In passing
we note that the positive semidefiniteness of the residues of G
and � are closely related to each other when the two quantities
are connected by a Dyson equation. In fact, given

A(ω) = 1

2π i
[G(ω) − G†(ω)]sgn(μ − ω),


(ω) = 1

2π i
[�(ω) − �†(ω)]sgn(μ − ω), (15)

A(ω) = G(ω)
(ω)G†(ω) (16)

(the last identity comes from the Dyson equation), the positive
semidefiniteness of A is equivalent [13,59] (i.e., if and only if)
to that of 
. In Appendix A 1 we provide a stronger result,
valid for SOP propagators, connecting the well-behavedness
of G to that of �.

Next, given G0 and � represented as SOPs, it is possible to
explicitly compute the coefficients of the Green’s function G
by solving the related Dyson equation. This can be achieved
by mapping the nonlinear eigenvalue problem of Eq. (12) into
a linear eigenproblem in a larger space. This approach, termed
the algorithmic-inversion method (AIM), was introduced and
detailed in Refs. [31,51,52]. Algebraically, the AIM-SOP
method stems from identifying the interaction self-energy as
an embedding self-energy [see Eqs. (28) and (29)] and then
solving the Hamiltonian problem in the larger subspace. This
is always possible within the conditions mentioned above
(self-energy featuring real poles, Hermitian �0, and positive
semi-definite residues); see Appendix A 1 for a detailed dis-
cussion. Note, however, that the AIM-SOP technique is more
general and can deal with self-energies not strictly fulfill-
ing all requirements, according to Appendix A 1, of physical
embedding (details are provided in Refs. [51,52]). We also
note that similar techniques have been used in the context
of dynamical mean-field theory [60–62], lattice Hamiltonians
[27], and, more recently, GW and the Bethe-Salpeter equation
formalism [63,64].

III. ANALYTICAL EVALUATION OF Trln TERMS

As a technical prerequisite for this work and as a relevant
result in itself, in this section we focus on integrals of the form

�EK = Trωln
{
G−1

0 G
}

=
∫

dω

2π i
eiω0+

Trln
{
G−1

0 (ω)G(ω)
}
. (17)

By representing the Green’s functions G0 and G in the above
equation as SOPs according to Eqs. (8) and (9), we can derive
a general analytical expression for �EK of Eq. (17), as shown
below. In order to do this, we make use of some common
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operator and matrix identities, which we report here for com-
pleteness. For instance, we use the following identity:

Trln(A) = ln det(A). (18)

Bearing Eq. (18) in mind, by using the identity det(AB) =
det(A) det(B), the following relation also holds:

Trln(AB) = Trln(A) + Trln(B). (19)

Moreover, given a matrix A represented in the block form

A =
[

S V1

V †
2 B

]
, (20)

if B is invertible, the determinant of A can be expressed as [65]

det(A) = det(B) det(S − V1B−1V †
2 ), (21)

which is a result reminiscent of techniques used in GF embed-
ding, presented in Sec. II.

A. Special case: Noninteracting G

As a first step, we consider the case where both G0 and G in
Eq. (17) are noninteracting GFs corresponding to mean-field
Hamiltonians h0 and h1, defined as

hi =
∑

m

∣∣φi
m

〉
εi

m

〈
φi

m

∣∣. (22)

This means that both G0 and G are diagonal on single-particle
orthonormal basis sets (|φ0

m〉 and |φ1
m〉), which can be used to

evaluate the traces. Importantly, we assume that the number of
occupied electrons is the same for G0 and G. By considering
Eq. (19) and taking A = G−1

0 and B = G, we can write the
�EK integral as

�EK =
∫

dω

2π i
eiω0+

[−TrlnG0 + TrlnG], (23)

=
∫

dω

2π i
eiω0+

[
ln

all
m

(
ω − ε0

m ± i0+)
all

m

(
ω − ε1

m ± i0+)]
. (24)

The label “all” in the product means that both occupied and
empty poles are considered. In order to evaluate the integral
using residues, the contour needs to be closed in the upper half
plane, the enclosed poles corresponding to occupied states of
both G0 and G. Since the number of occupied poles of both
systems is the same, the integral �EK can be rewritten as

�EK =
occ∑
m

∮

m

dz

2π i
ln

z − ε0
m − i0+

z − ε1
m − i0+ , (25)

with an example of a 
m contour represented in Fig. 3 in
Appendix B 1. The analytical expression for contour integrals
such as those appearing in Eq. (25) is provided in Eq. (B1).
Taking advantage of that expression, we recover the well-
known result [5,13,25,36]

�EK =
occ∑
m

[
n1

mε1
m − n0

mε0
m

]
, (26)

where we have made the eigenvalue multiplicities ni
m explicit

and limited the sum to distinct multiplets.

B. General case: Interacting G

Next, in this section we consider the case of Eq. (17) with
a fully interacting G. Without loss of generality, we can define
a self-energy connecting G and G0 by a Dyson equation by
writing

�(ω) = G−1
0 − G−1. (27)

It is important to note that such self-energy is not necessarily
physical (i.e., it may not originate from perturbation theory
or from a functional formulation), but rather an auxiliary
mathematical object. Since G0, G, and � are connected by a
Dyson equation and with the assumption of discrete poles for
both G0 and G (which then result in meromorphic functions
of the frequency), � also has discrete poles. We are there-
fore in the position to use the SOP representations given in
Eqs. (8)–(10). In what follows we represent single-particle
operators on a truncated basis set, thereby mapping them to
finite-dimensional matrices.

According to the definitions and results in Appendix. A 1
and to the discussion in Sec. II A, G being well-behaved (real
poles, positive semidefinite and complete residues) implies
that � is also well-behaved (real poles, positive semidefinite
residues, Hermitian asymptotic value). Therefore, since the
residues 
n of � are PSD, following Refs. [31,51,52], we can
introduce Vn such that


n = VnV
†

n . (28)

In doing so, Vn can be taken, e.g., to be the square root of 
n or
to be a lower-rank rectangular matrix (when represented on a
basis) if 
n is low rank. As a result, G can be seen as the GF of
an embedded system (index 0, below) coupled to an external
bath. Indeed, by defining the inverse resolvent (ωI − H) of
the whole auxiliary system as

ωI − H =

⎡⎢⎢⎢⎣
ωI − h0 V1 V2 . . .

V †
1 (ω − ω1)I

V †
2 (ω − ω2)I
...

. . .

⎤⎥⎥⎥⎦,

=
[

S V
V † B

]
, (29)

we can immediately verify that the self-energy in Eq. (10) is
the embedding self-energy for the zeroth-block subsystem S
(in the following, calligraphic operators such as H refer to
the enlarged auxiliary space). This construction is the same
as that used in the framework of the algorithmic-inversion
method [31,51], used to solve Dyson equations involving
propagators represented as SOP, and presented in Sec. II A.
As discussed in Appendix A 2, if the input G is well-behaved,
the above embedding construction is always possible and
leads to a Hermitian Hamiltonian H. Overall, with H being
noninteracting, Theorem 1 in Appendix A 1 de facto provides
a dynamical (in the embedding sense presented above) nonin-
teracting v-representability condition for G (in the embedding
sense presented above), which is a general and relevant result
per se.

We can now apply the identity in Eq. (21) to the matrix in
Eq. (29), obtaining

det(ωI − H) = det(B) det(S − V B−1V †)

=
∏

n

(ω − ωn)rn det(ωI − h0 − �), (30)
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where rn is the rank of the 
n matrix. The above equation can
be recast in the following form:

det G(ω) =
∏

n

(ω − ωn)rn det(ωI − H)−1 (31)

=
∏all

n (ω − ωn)rn∏all
s (ω − εs)ns

, (32)

where we have exploited the fact that the poles of G are
also eigenvalues of H for the whole system and made the
multiplicities ns explicit.

Combining Eq. (23) with Eq. (18), we obtain

�EK =
∫

dω

2π i
eiω0+

[ln det G − ln det G0],

=
∫

dω

2π i
eiω0+

ln

⎡⎣∏all
n (ω − ωn)rn

∏all
m

(
ω − ε0

m

)n0
m∏all

s (ω − εs)ns

⎤⎦.

(33)

=
∫

dω

2π i
eiω0+

Trln
{
G−1

0 (ω)G(ω)
}
. (34)

In the last equation, G and G0 are the GFs of the auxiliary
system obtained with and without including the coupling
matrices V in H, respectively. A counting of the degrees of
freedom shows that the cardinality of {εs} is equal to that of
{ε0

m} ∪ {ωn}, as also shown by the embedding construction in
Eq. (29). Nevertheless, only occupied poles (i.e., poles above
the real axis) count in the integral.

If the numbers of such poles in the numerator and in the
denominator are the same, by exploiting Eq. (25) we obtain
the final result:

�EK =
occ∑
s

nsεs −
[

occ∑
m

n0
mε0

m +
occ∑
n

rnωn

]
. (35)

This expression is the first key result of the present work. The
condition of having the same number of occupied states in the
numerator and denominator in the second line of Eq. (33) is
equivalent to having the same number of occupied states be-
fore and after the introduction of the coupling matrix elements
V . This condition, therefore, encodes charge conservation
within the closed system C = S ∪ B. In Appendix B 3 we also
provide a generalization of Eq. (35) in which both propagators
in the Trln term are interacting (or embedded).

At this point it is worth discussing alternative approaches
in the literature aimed at evaluating terms of the form
Trω ln{G−1

0 G1}. For instance, in a series of papers, Dahlen
and coworkers [24–26] first rewrote the Trln term of the
Luttinger-Ward functional by factorizing the static part of
the self-energy �x and then recasting [26] the integral for
numerical integration over the imaginary axis. Along the same
lines, in Appendix B 2 we provide a scheme for numeri-
cal integration of the Trln terms that we use in the present
work to numerically validate analytical expressions such as
Eq. (35). In Ref. [27], Friesen and coworkers (who also
adopted a meromorphic, i.e., SOP in our terminology, rep-
resentation for the propagators) first handled the �x term as
in Refs. [24–26] and then numerically evaluated the residual
contribution to the integral using a coupling-constant integra-

tion. In Ref. [36], Ismail-Beigi discussed the RPA correlation
energy in the context of Green’s function theory and, exploit-
ing algebraic techniques similar to those employed in this
work, provided an analytical expression involving the poles
of the independent-particle and RPA response functions. We
discuss the RPA correlation energy in Sec. IV A, where we
rederive Ismail-Beigi’s expression by means of the present
formalism. Additionally, Aryasetiawan et al. [66] wrote the
RPA correlation energy in a form similar to that of Ref. [26]
and Appendix B 2 for numerical evaluation along the imagi-
nary axis.

IV. APPLICATIONS

Having derived an analytical expression for the Trln terms
defined by Eq. (17), a result already relevant per se (notably
allowing one to easily evaluate the Klein functional within
the SOP formulation), in this section we present two further
applications of Eq. (35). First, we focus on the calculation
of the RPA correlation energy, providing a rederivation of a
result already known in the literature [36], and then we apply
the formalism to analyze and partition the Klein functional in
the presence of embedding.

A. RPA correlation energy

In the context of Green’s function methods, the RPA corre-
lation energy (Fig. 2) is written as [5,13,18,22,36–39]

P(x1, x2, ω) =
∫

dω′

2π i
G(x1, x2, ω + ω′)G(x2, x1, ω

′),

�RPA
c [P] = −1

2
Trω

{ ∞∑
n=2

1

n
[vP(ω)]n

}
(36)

= +1

2
Trωln{I − vP(ω)} + 1

2
Trω{vP}

= ��RPA
1 + ��RPA

2 , (37)

where the irreducible polarizability P can be evaluated e.g.
using the Kohn-Sham Green’s function Gs as in the optimized-
effective-potential method [32] or by an interacting Green’s
function (e.g., at the level of self-consistent GW, when making
the Klein or Luttinger-Ward functional stationary [5,13,19–
21]). By considering the Dyson equation

χ (ω) = P(ω) + χ (ω)vP(ω), (38)

connecting the irreducible and reducible polarizabilities (P
and χ , respectively), we obtain

I − vP = ε = χ−1P, (39)

which can be used in the first term, ��RPA
1 , of Eq. (37),

leading to

�RPA
c [P] = − 1

2 Trωln{P−1χ} + 1
2 Trω{vP}. (40)

By considering χ and P to be two interacting single-particle
propagators, we can apply Eqs. (B10) and (B11) with �21 = v

in view of Eq. (38). This means that the poles of the two self-
energies need to cancel out identically and therefore do not
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FIG. 2. Exchange (first term) plus RPA correlation energy represented by means of Feynman diagrams.

contribute to the evaluation of the Trln term. In turn, we obtain

��RPA
1 = −1

2

�(0)
p <0∑
p

[
np�p − n0

p�
0
p

]

= 1

2

�(0)
p >0∑
p

[
np�p − n0

p�
0
p

]
, (41)

where �p and �0
p are the poles of χ and P, respectively, and

we have considered that each time-ordered polarizability has
poles at ±|�(0)

p |, with the negative ones being those above the
real axis and contributing to the integral. Degeneracies of the
poles (np and n0

p) have been marked explicitly.
We now turn to the evaluation of the second term, ��RPA

2 ,
in Eq. (37). The irreducible polarizability P can be represented
as a sum over poles according to

P(ω) =
�0

p>0∑
p

[
|tp〉〈tp|

ω − �0
p + i0+ − |tp〉〈tp|

ω + �0
p − i0+

]
, (42)

where 〈x|t〉 = φc(x)φ∗
v (x), with c and v referring to conduc-

tion and valence single-particle orbitals, respectively. With the
above definitions, we obtain

��RPA
2 = −1

2

�0
p>0∑
p

〈tp|v|tp〉, (43)

which completes the evaluation of the RPA correlation energy,
consistent with the existing literature. In particular, we have
recovered Eq. (23) of Ref. [36].

B. Embedding of the Klein functional

The main goal of the present section is to study the Klein
functional in the presence of an embedding scheme such as the
one described in Sec. II and Appendix A in order to derive, as
demonstrated below, a variational partition of the total energy.
In order to do so we begin by partitioning each term appearing
in the Klein functional given by Eq. (5). Notably, the func-
tional depends on a trial Green’s function G that, according to
Eq. (2), we represent by means of a self-energy �̃ constrained
to be localized on the subsystem S. As discussed in Sec. II,
this represents a definition of the domain of the trial GF G.

With regard to �Hxc, the partition is already in place since
the particle-particle interaction is present only in S. Therefore,
we have

�Hxc[G] = �Hxc[GS]. (44)

This can be understood, e.g., diagrammatically since the bare
interaction lines connect only points in the S subsystem, caus-
ing each vertex to be located in S. This is further discussed in
Appendix A. Next, we consider the TrωH0G0 term, which is
the noninteracting energy of the closed C = S ∪ B system and
can be partitioned as

Trω{H0G0} = TrS
ω{(h0S + �vS )G0S}

+ TrB
ω{(h0B + �vB)G0B} (45)

=
occ∑
s

ε0
s , (46)

where ε0
s are the eigenvalues of the noninteracting problem for

C, H0|φs〉 = ε0
s |φs〉.

Coming to the next term, the following chain of identities
also holds:

Trω
{
I − G−1

0 G
} = −Trω{�̃G}

= −TrS
ω{�̃SGS}

= TrS
ω

{
IS − G−1

0S GS
}
, (47)

where we have represented the trial G according to Eq. (2)
and limited �̃ to have nonzero matrix elements only in S and
to have a regular propagatorlike analytical structure featuring
time-ordering and simple (first-order) poles. Indeed, the last
step is valid because of the following equation:

GS = G0S + G0S�̃SGS. (48)

Finally, the first term in Eq. (5), TrωlnG−1
0 G, can be evalu-

ated using Eq. (35):

Trωln
{
G−1

0 G
} =

occ∑
s

εs −
occ∑
n

ε0
n −

occ∑
n

poles(�̃)

= TrS
ωln

{
G−1

0S GS
}
, (49)

where we have used the fact that
∑

s εs = ∑
poles(GS ) and∑

n ε0
n = ∑

poles(G0S ). Using the notation introduced in
Eqs. (3) and (4), where �n are the poles of the embedding self-
energy, we can show that the term

∑
n �n = ∑

poles(�vS )
does not explicitly appear because the embedding self-energy
is used in the evaluation of both the G0S and GS Green’s
functions. Multiplicities have been kept implicit in the sums
over eigenvalues.

Alternatively, the same result can be obtained directly from
the use of Eq. (18) and the identity concerning the determinant
of block matrices, Eq. (21). In particular, from

G−1(ω) =
[
ωIS − h0S − �̃ −V

−V † ωIB − h0B

]
, (50)
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we get

det G−1 = det g−1
0B det G−1

S , (51)

det G−1
0 = det g−1

0B det G−1
0S , (52)

which give

Trωln
{
G−1

0 G
} = −ln det g−1

0B − ln det G−1
S

+ ln det g−1
0B + ln det G−1

0S

= ln det G−1
0S GS; (53)

The last line is equivalent to the result to be proven.
We are now in the position to put all terms together to

obtain

EK [G] = TrS
ωln

{
GSG−1

0S

} +
occ∑
s

ε0
s

+ TrS
ω

{
IS − G−1

0S GS
} + �Hxc[GS]. (54)

Next, the first term on the right-hand side can be further
rewritten using

TrS
ωln

{
GSG−1

0S

} = TrS
ωln

{
GSg−1

0S g0SG−1
0S

}
= TrS

ωln
{
GSg−1

0S

}
− TrS

ωln
{
G0Sg−1

0S

}
, (55)

TrS
ωln

{
G0Sg−1

0S

} =
occ∑
s

ε0
s −

occ∑
s

ε̄0
s −

occ∑
n

�n (56)

=
occ∑
s

ε0
s − TrS

ω{h0Sg0S}

−TrB
ω{h0Bg0B}, (57)

where the eigenvalues ε̄0
s refer to subsystem S in the absence

of coupling to B.
Eventually, this leads to the final result for the partitioning

of the Klein energy functional:

EK [G] = ES
K [GS] + TrB

ω{h0Bg0B}, (58)

ES
K [GS] = TrS

ωln
{
GSg−1

0S

} + TrS
ω{h0Sg0S}

+ TrS
ω

{
IS − g−1

0S GS
} + TrS

ω{�vSGS} + �Hxc[GS].

(59)

This is the second key result of the present paper, implying
that ES

K [GS] is stationary for the GS that solve the embedding
Dyson equation, namely,

2π i
δES

K [GS]

δGS
= G−1

S − g−1
0S + �vS + �Hxc[GS] = 0, (60)

showing that the partition of the Klein energy is exact and also
variational with respect to subsystem S.

Interestingly, we note that an equation formally equivalent
to Eq. (59) was used by Savrasov and Kotliar [40,67] to ex-
press the grand potential of a quantum system in the presence
of an external local and dynamical potential coupled to the lo-
cal Green’s function. In the present context, that term is played
by �vS , here originating from an embedding procedure. In-
terestingly, the embedding construction allows us to further

inspect the physical nature of the energy terms in Eqs. (58)
and (59). In particular, the complement energy TrB

ω{h0Bg0B}
(i.e., the energy that needs to be summed to ES

K [GS] to give
the total energy of the closed system C, EK [G]) is that of
the noninteracting and uncoupled bath. This means that all
effects of the coupling V need to be absorbed in ES

K [GS] to
allow for variationality. This is at variance with other possible
partitions of the C total energy (such as those suggested by the
Galitskii-Migdal expression).

V. CONCLUSIONS

In this work, within the framework of Green’s function
methods, we addressed the use of the Klein functional when
embedding an interacting system S into a noninteracting bath
B. Exploiting a meromorphic (sum-over-poles) representation
for the propagators and taking advantage of the algorithmic
inversion method introduced to solve Dyson-like equations in-
volving SOP propagators [31,51,52], we first derived an
exact analytical expression to evaluate terms of the form
Trωln{G−1

0 G}. Notably, such terms appear in the Klein and
Luttinger-Ward functionals [5,13,19–21] as well as in other
common many-body terms such as the RPA correlation energy
[5,13,18,22,36–39]. In this respect, the analytical expression
obtained represents the first key result of the present paper.

Next, we used the above analytical result to partition the
Klein functional of an embedded system into two contribu-
tions, one associated with the subsystem S and one associated
with the noninteracting bath B. Importantly, the energy associ-
ated with S is also variational as a functional of the S Green’s
function GS , with the functional gradient becoming zero for
the physical embedded Gs. This is the second main result of
the work. Last, we also exploited the analytical result for the
Trln terms to recover an exact analytical expression for the
RPA correlation energy known in the literature [36].

In perspective, the analytical expression obtained for the
Trln term, Eq. (35), complements the set of analytical results
stemming from the use of the SOP representation of prop-
agators, notably including the algorithmic-inversion method
(which is further developed in Appendix A 1 to compute G−1,
together with the definition of a dynamical noninteracting v-
representability condition for G.) In turn, the SOP formulation
has the potential to further support the use of dynamical ap-
proaches (i.e., exploiting dynamical potentials, possibly made
variational using the Klein or Luttinger-Ward functional, now
written explicitly in terms of poles and residues of the GF)
in electronic-structure theory and calculations. An example of
such a formulation can be found in Refs. [51,52]. Moreover,
the exact embedding partition obtained for the Klein func-
tional allows for a variational formulation of the embedding
process and for a better physical understanding of the whole
formulation. In turn, this may be relevant to a number of
theoretical frameworks exploiting embedding techniques.
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APPENDIX A: COMPLEMENTARY DETAILS OF GREEN’S
FUNCTION EMBEDDING

1. Well-behavedness of SOP propagators

In this section we discuss the conditions to be fulfilled in
order to obtain propagators that are well-behaved. We do this
for propagators expressed in SOP form by introducing the
following definitions.

Definition 1. A Green’s function G in SOP form according
to Eq. (9) is said to be well-behaved (wb) if it has real poles
and Hermitian and positive semidefinite residues, which also
satisfy the completeness relation

∑
s As = I .

Definition 2. Similarly, a self-energy � in the form of
Eq. (10) is said to be well-behaved (wb) if it has real poles,
Hermitian and positive semidefinite residues, and a Hermitian
asymptotic limit �0.

As an example, noninteracting Green’s functions are well-
behaved, and the property remains valid also when the GF
is projected on a subspace of the initial domain. Choosing a
reference noninteracting G0(z) = [zI − h0]−1 and considering
all propagators expressed in SOP form with discrete poles, it
is then possible to make the following statement.

Theorem 1. Given G and � connected by a Dyson equation
G = G0 + G0�G, G is well-behaved if and only if � is well-
behaved.

Proof. The implication � wb ⇒ G wb can be immediately
demonstrated by using the AIM-SOP technique according to
Eqs. (28) and (29), where an auxiliary noninteracting Hamil-
tonian H in a larger space is devised and used to build the
Green’s function G. As also discussed in Refs. [31,51,52],
when � is wb, the Hamiltonian H becomes Hermitian, which
implies the thesis. Next, we focus on the inverse implication,
G wb ⇒ � wb. By inverting the Dyson equation we have
�(z) = G0(z) − G−1(z), so we aim at building a variant of
the AIM-SOP technique to compute G−1. In order to do so,
we write

�(z) = zI − h0 − (z2 − �2)F (z),

F (z) = [(z2 − �2)G(z)]−1, (A1)

where � is chosen such that �2 > max (ε2
s , |�m|2), where

εs and �m are the poles and zeros of G [68], respectively,
here assumed to be bound. We note that the introduction of
the � term, while not strictly needed, is done for convenience
and the final result does not depend on it. With the above
definitions we have

F−1(z) = zI −
∑

s

(−εsAs) −
∑

s

As

z − εs

(
�2 − ε2

s

)
. (A2)

Since εs are real by hypothesis, the second term on the right-
hand side is Hermitian, and the residues of the poles in the
third term are positive semidefinite (besides the global minus
sign); the last two terms can be thought of as a wb self-energy,

so the propagator F (z) is also wb and can be written as

F (z) =
∑

m

Bm

z − �m
+ B+

z − �
+ B−

z + �
. (A3)

In writing the above expression we have made use of the fact
that, according to Eq. (A1), ±� are, by construction, poles
of F and its remaining poles are the zeros of G. As stated,
we also have �2 > �2

m. Next, we use Eq. (A1) to evaluate the
self-energy and compute

(z2 − �2)F (z) = zI +
[∑

m

�mBm + �B+ − �B−
]

+
∑

m

Bm

z − �m

(
�2

m − �2
)
. (A4)

The expression above has a Hermitian constant term and neg-
ative semidefinite residues, which used together with Eq. (A1)
show that � is well-behaved. This completes the proof. �

In passing, we note that the modified AIM-SOP for G−1

presented above is relevant per se and further complements
the list of operations that can be performed within the SOP
formalism.

2. Feasibility of the embedding construction for G

In this section we discuss the conditions to be fulfilled in
order to establish the embedding construction of Sec. III B
once an input G is provided. Building on the results in the
previous section, we can follow the logical steps in the for-
mulation of the embedding construction. (1) Given G and
choosing a reference noninteracting G0, we can always com-
pute a self-energy connecting the two propagators as �(ω) =
G−1

0 − G−1. (2) Within the overall hypothesis of discrete poles
and states, if G is well-behaved, the self-energy is also well-
behaved (see Theorem 1 in Appendix A 1). (3) In turn, this
allows one to build the embedding construction involving the
closed system C = S ∪ B according to Eqs. (28) and (29), with
an overall Hamiltonian matrix that is Hermitian (resulting
from the self-energy poles being real and the residues being
positive definite). (4) As discussed in Refs. [31,51,52], the
embedding construction can also be made under more general
conditions (complex poles, non-Hermitian residues), leading,
in general, to non-Hermitian Hamiltonians for system C.
Overall, the formal result in Appendix A 1 and the discussion
above provide noninteracting v-representability conditions for
a given Green’s function G. Indeed, a well-behaved G can
always be obtained from the embedding of a noninteracting
system.

3. Green’s function embedding and perturbation theory

In this section we discuss the formulation of many-body
perturbation theory to include particle interaction effects in
the Green’s function in the presence of embedding. We
consider the case of fermions at T = 0 for simplicity. As men-
tioned in Sec. II and sketched in Fig. 1, we consider a closed
quantum system C partitioned into two subunits, C = S ∪ B,
interacting via a coupling potential V , with particle interac-
tions confined to the S region, with B being a noninteracting
bath. The particle-particle interaction Vee (not to be confused

045149-8



GREEN’S FUNCTION EMBEDDING USING … PHYSICAL REVIEW B 110, 045149 (2024)

with the one-body coupling V ) can be written in the usual
form of a two-body potential:

Vee = 1

2

∫
dxdx′ ψ̂†(x)ψ̂†(x′) vint(x, x′) ψ̂ (x′)ψ̂ (x),

vint(x, x′) 	= 0 x, x′ ∈ S, (A5)

where the constraint on vint(x, x′) expresses the fact that the
interaction is present only in the S region.

Within the above definitions, the perturbation expansion
for the Green’s function of the closed system C leads to
[5,13,18]

iG(x, t ; x′, t ′) =
∞∑

n=0

(−i)n

n!

∫ +∞

−∞
dt1 · · · dtn

× 〈�0|T [V̂ee(t1) · · · V̂ee(tn) ψ̂ (x, t )ψ̂†(x′, t ′)]|�0〉
〈�0|Ŝ|�0〉

, (A6)

〈�0|Ŝ|�0〉 =
∞∑

n=0

(−i)n

n!

∫ +∞

−∞
dt1 · · · dtn

× 〈�0|T [V̂ee(t1) · · · V̂ee(tn) ]|�0〉. (A7)

First, we focus on GS , i.e., on the case when x and x′ are
located in S. Since V̂ee contains only field operators related to
subspace S, all self-energy diagrams resulting from Eq. (A6)
have only vertexes within subsystem S. Similarly, if we con-
sider G in the general case (end points in either B or S), B
points will be present only in disconnected diagrams (to be
dropped) or at the external ends of the connected diagrams,
which do not show in the proper self-energy. Therefore, the
interaction self-energy is zero for matrix elements out of the
S block, as shown in Fig. 1.

So far, perturbation theory in terms of the bare Green’s
function G0 has been addressed, with �S[G0] = �S[G0S].
Nevertheless, we can perform the usual steps [5,13,18] in
passing from bare diagrams involving G0 to skeleton diagrams
involving G, leading to

�S[G] = �S[GS], (A8)

where we can substitute GS with G because of the localization
of the bare interaction, Eq. (A5). A similar reasoning can be
applied to the � functional to obtain �Hxc[G] = �Hxc[GS].
In summary, within the noninteracting bath condition, the
interaction self-energy �S has a perturbation expansion struc-
turally identical to the one usually developed for closed
systems [5,13,18] and does not make any reference to the B
unit; i.e., all diagrams develop within S, as if S were discon-
nected from B. Of course, GS is then calculated in the presence
of the bath, i.e., including embedding self-energies. Notably,
the Anderson impurity model [5,40,69] can be seen as a
special case of the above setting. Indeed, the exact electron-
electron self-energy of the model is localized on the impurity
[69] (S in our notation) and can be computed, e.g., using bare
perturbation theory [40,70–72] involving G0S .

As a relevant point for the present discussion, the use
of the skeleton perturbation theory and the Luttinger-Ward
functional was recently questioned [73–78], leading to a dis-
cussion about the domain of the trial G and the rise of multiple
solutions of the nonlinear Dyson equation involving �[G]
(see, e.g., Ref. [78] for additional details). For the sake of

the present work, we assume we are in the situation where
perturbation theory does not pose convergence problems and
one is able to discriminate between physical and unphysical
solutions when needed.

APPENDIX B: COMPLEMENTARY DETAILS ON THE
TrLn TERMS

1. Notable integrals

In this section we provide a detailed derivation of the
expression

I =
∮




dz

2π i
ln

z − a

z − b
= b − a, (B1)

where both a and b are assumed to be real numbers. Making
reference to Fig. 3, the contour integral can be split into four
contributions, labeled 
1–
4, such that I = I1 + I2 + I3 + I4,
with Ii = ∫


i
[· · · ].

Let us first consider I1, where we assume that 
1 corre-
sponds to the pole in a. Using the parametrization z = Reiθ ,
we have

I1 =
∫


1

dz

2π i
ln

z − a

z − b

= −R
∫ 2π

0

dθ

2π
eiθ ln

[
1 + a − b

Reiθ

]
, (B2)

which goes to zero in the limit R → 0, e.g., in view of
Rln(1/R) → 0. A similar argument holds for I3, so that we
have I1,3 → 0 when R → 0. Coming to the remaining paths,
we have

I2+4 = 1

2π i

[
−

∫ b−R

a+R
dz+ +

∫ b−R

a+R
dz−

]
ln

z − a

z − b
, (B3)

where dz+ and dz− refer to the upper (
4) and lower (
2)
branches, respectively. Given the primitive∫

dz ln(z − a) = (z − a)ln(z − a) − z + c,

we find that the real part of the logarithm does not contribute
to I2+4 (the two branches cancel out), while the imaginary
part does. Indeed, choosing the branch cut of the complex log
going from 0 to +∞, we obtain

I2+4 = 1

2π
(π − 0 + 2π − π )(b − a) = b − a, (B4)

which completes the derivation of Eq. (B1).

FIG. 3. Illustration of the contour used in Eq. (B1) and its de-
composition in simple paths, 
1–
4.
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2. Computational evaluation of Trln terms

In order to develop a form of Eq. (17) suitable for nu-
merical evaluation, which we have used, e.g., to make a
comparison with the analytical results of this work, we follow
some of the ideas from Appendix B of Ref. [26]. We start
by rewriting Eq. (33) by rotating the integration over the
imaginary axis:

�EK =
∫ −i∞

+i∞

dz

2π i
ln

[
det G(z)

det G0(z)

]
(B5)

=
∫ +∞

−∞

dx

2π
ln

[
det G(ix)

det G0(ix)

]
=

∫ +∞

0

dx

2π

[
ln det G(ix) + ln det∗G(ix)

− ln det G0(ix) − ln det∗ G0(ix)
]

=
∫ +∞

0

dx

2π

[
ln|det G(ix)|2 − ln|det G0(ix)|2]. (B6)

In deriving these equations we have made use of the relations
G(−ix) = G(ix)† and det M† = (det M )∗. The last expression
is suited for numerical evaluation, which we performed using
a tangent grid on the imaginary axis.

3. Trln term with two interacting Green’s functions

As anticipated in Sec. III B, Eq. (35) can be further gener-
alized to the case of Trln computed for two interacting GFs,
G1 and G2. As a first step we make reference to an arbitrary
noninteracting G0 by exploiting the identity in Eq. (19),

Trωln
{
G−1

1 G2
} = Trωln

{
G−1

0 G2
}

− Trωln
{
G−1

0 G1
}
. (B7)

Next, we can connect G1,2 to G0 via Dyson-like equations by
writing

G1 = G0 + G0(�1 − v0)G1, (B8)

G2 = G0 + G0(�2 − v0)G2, (B9)

where �i are suitable self-energy operators. Upon defining
�21 = �2 − �1, the above equations give

G2 = G1 + G1�21G2. (B10)

We can now evaluate Eq. (B7) by means of Eq. (35), obtaining

�EK =
[

occ∑
s

n(2)
s ε (2)

s −
occ∑

poles(�2)

]

−
[

occ∑
s

n(1)
s ε (1)

s −
occ∑

poles(�1)

]
. (B11)
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