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Abstract
The Buffer Allocation Problem is a well-known optimization problem aiming at determining the optimal buffer sizes in 
a manufacturing system composed by various machines decoupled by buffers. This problem still has scientific relevance 
because of problem complexity and trade-off between conflicting goals. Moreover, it assumes industrial relevance in recon-
figurable manufacturing lines, where buffer sizes can be easily adapted to the production scenario. This work proposes 
a novel algorithm integrating performance evaluation and optimization by means of throughput cuts based on a linear 
approximation. Numerical results show the validity of the proposed approach with respect to the traditional gradient-based 
method. Moreover, an industrial case study integrating the proposed approach into a decision-support system for the buffer 
allocation and reallocation is analyzed.

Keywords  Buffer allocation · Manufacturing systems · Optimization

1  Introduction

Buffer Allocation Problem (BAP) is a well-known opti-
mization problem in manufacturing systems design and 
operation, aiming at determining the optimal buffer sizes 
in a manufacturing system composed by various machines 
decoupled by buffers.

Typically, the BAP problem is addressed once most of the 
decisions involved in the design of production lines, includ-
ing the definition of the number of workstations and their 
efficiency (processing rates and reliability parameters), have 
already been taken. The BAP problem is relevant because 
buffers have a double effect on the performance of unreliable 
production lines: (i) increasing the throughput by decoupling 
machines in the line and reducing the propagation of disrup-
tions along the line in terms of starvation (no input available) 
and blocking (no space to move the output); (ii) increasing 
the total inventory and the average time parts spend inside 
the system [1, 2]. A larger buffer capacity helps to increase 

the effective production rate of the line, but buffers repre-
sent also an additional investment and operating cost, due 
to storage space and in-process inventory, respectively [3]. 
Therefore, the BAP deals with determining the right trade-
off between the positive contribution to production rate and 
additional investments and costs.

The optimal buffer allocation and reallocation becomes 
even more relevant in automated manufacturing lines that 
are characterized by high reconfigurability to cope with 
evolving demand [4] and disruptive production scenarios 
[5]. The workstations are usually placed along a linear rail 
serving as buffer throughout the line [6]. Hence, the buffer 
capacity is given by the distance between stations and it is 
proportional to the pallet length. Since production managers 
tend to reduce the buffer sizes, linear rails can be equipped 
with proximity sensors used as stoppers to limit the buffer 
capacity between two consecutive stations. Moving the prox-
imity sensors changes the buffer sizes according to the prod-
uct type and pallet used. At the same time, even workstations 
may be moved along the linear rail in order to change the 
distance between them.

Herein, the attention is focused on automated multi-stage 
assembly systems that are characterized by deterministic or 
quasi-deterministic processing times, caused by the high 
repeatability of operations ensured by automation, high 
efficiency of the single workstations, and asynchronization 
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of the operations [7]. These types of systems are employed 
in high-volume manufacturing sectors such as automotive, 
components for furniture, and electronics [8]. Technological 
advances enhanced automated multi-stage assembly systems 
with controllers and actuators that enable flexibility (i.e., 
reduced setups of the line to pass from one product type to 
another) together with frequent and fast reconfiguration [9].

In this work, a novel algorithm for optimally solving the 
BAP problem for unreliable asynchronous multi-stage serial 
lines is proposed. The algorithm integrates a stochastic per-
formance evaluation model in a linear programming (LP) 
problem, by means of a surrogate model for linearized per-
formance expressed as a combination of hyperplanes.

The work is organized as follows. Firstly, an overview of 
related literature is provided; secondly, the proposed meth-
odology is described with respect to its building blocks. 
Then, numerical results are provided and the proposed meth-
odology is applied in a real industrial case in the automotive 
sector. Finally, conclusions and future prospects close the 
work.

2 � Buffer Allocation Problem

BAP is a well-established topic in the state of the art, draw-
ing attention because of economic and strategical role of 
the required investment. Nevertheless, given technological 
and digital evolution for the modeling and optimization of 
manufacturing systems, contributions on this topic have 
been increasing lately.

Due to its relevance to real production systems, the buffer 
allocation problem has been studied for over 50  years, 
becoming one of the most popular research topics in indus-
trial engineering and operative research fields (see the com-
prehensive reviews in Papadopoulos et al. [10], Demir et al. 
[11], and Weiss et al. [3]. The complexity of the problem is 
due to two main reasons: (1) it is a NP-hard combinatorial 
optimization problem (MacGregor Smith and Cruz [12]), 
in case of integrity constraint, and (2) no-closed formulas 
are available in order to calculate the main performance 
measures of production lines with more than two machines 
[13]. Consequently, as the total number of feasible solutions 
increases exponentially with the buffer size and the number 
of machines in the line, the complete enumeration through 
the whole solution space is unaffordable due to computa-
tional difficulty and numerical solutions are needed even for 
small-sized problems [14].

The buffer allocation problem can be classified according 
to (1) formulation of the objective function, and (2) proce-
dure to solve BAPs, specifically the choice of the Evalua-
tive Method and Generative Method. In literature, the Buffer 
Allocation Problem has been formulated mainly in three 
forms [11] according to the objective function:

1.	 Maximization of the production rate for a given fixed 
total buffer sizes (primal problem).

2.	 Minimization of total buffer size which guarantee a 
minimum throughput rate (dual problem).

3.	 Minimization of the average work-in-process inventory 
respecting defined level of total buffer size and desired 
production rate.

Generally, the last two formulations are appropriate 
in cases of specified demand and high floor space costs, 
high inventory, and work-in-progress (WIP) holding costs, 
respectively. Regarding solution procedures, due to the 
abovementioned complexity of the problem, the procedure 
to solve BAP generally consists in an iterative approach that 
combines evaluative methods, used to obtain the value of the 
objective function depending on a number of parameters, 
and generative methods that search for the optimal solution.

In literature, several approaches which leverage differ-
ent evaluative and generative methods have been proposed. 
Evaluative methods exploit the characteristics and topolo-
gies of the production systems to estimate the system per-
formance which the objective function depends on. If serial 
lines are considered, as in this work, the main distinctions 
with respect to the evaluative method and the system charac-
teristics are the type of performance evaluation model (i.e., 
based on analytical or approximate analytical equations, or 
simulation as Discrete Event Simulation) and the line mod-
eling assumptions (i.e.. synchronous/asynchronous, and reli-
able/unreliable lines). The advantage of using simulation is 
the flexibility in the modeling assumptions, despite requiring 
higher computational efforts than analytical methods. On 
the other hand, analytical methods may have quite restricted 
assumptions, hence the application capabilities of the opti-
mization algorithm directly depend on the modeling tech-
nique. However, using analytical models allow evaluative 
methods to provide fast performance estimates, and to better 
exploit line properties. Indeed, when analytical methods are 
used, properties of the performance measures with respect to 
the buffer allocation are included in the optimization prob-
lem, according to the source of uncertainty characterizing 
the manufacturing line. For instance, in Shi and Gershwin 
[15], the manufacturing line is characterized by unreliable 
machines having the same deterministic processing rate 
(synchronous machines),hence, optimal buffer allocation 
solutions with respect to different reliability parameters are 
studied, according to varying cost functions for critical buff-
ers. Properties of the system performance may be exploited 
also to derive adaptive optimization search algorithms as 
in Demir et al. [16]. Similarly, when the line assumptions 
allow it, as in reliable and synchronous manufacturing lines 
[17], extremely long serial lines can be optimized thanks 
to the analysis of system properties. An effective approach 
may combine analytical models and simulation models to 

4406 The International Journal of Advanced Manufacturing Technology (2022) 122:4405–4419



1 3

enable multi-fidelity optimization approaches, as in Zhang 
et al. [18], by means of Mixed Integer Linear Programming 
(MILP). From the viewpoint of generative methods, sub-
optimal algorithms as genetic algorithms (GAs) are among 
the most used, to overcome limitations in non-linearity and 
solution space complexity [19, 20].

In general, thanks to more accurate analytical models 
for performance evaluation of serial lines [14, 21], recent 
works focus on efficient algorithms for optimal buffer allo-
cation based on the combination of analytical models and 
decomposition-based search algorithms. On the other hand, 
when more complex topologies or system characteristics 
are considered, simulation is generally used as evalua-
tive method. It is worth mentioning that BAP is part of a 
larger manufacturing problem, dealing with the selection of 
optimal configurations for manufacturing systems. Hence, 
works in this field include also extended optimization 
problems with respect to decision variables and objective 
function, such as joint selection of machine and buffers 
with productivity performance [22], energy-efficient per-
formance [23], transfer line [24, 25] and assembly line [26] 
balancing, CONWIP policies [27], and time buffers [28] 
for cost optimization. Since the proposed work deals with 
BAP in serial lines, a set of relevant works is classified in 
Table 1.

2.1 � Properties of the throughput function 

In a multi-stage manufacturing system with K machines 
and K-1 buffers with finite capacity, the throughput func-
tion E = f

(
N1,N2,Nk,… ,NK−1

)
 represents the response 

curve of the throughput with respect to capacity of buffers 
in the line. For instance, Fig. 1 shows the throughput func-
tion of a three-machine two-buffer line as a function of the 
capacity of each buffer, where each machine Mk, k = 1, 2, 3 
has parameters MeanTimetoFailure(MTTF) = 100[t.u.], 

MeanTimetoRepair(MTTR) = 10[t.u.],  and cycle time 
(CT) equal to CT1 = 1, 2[

parts

t.u.
] , CT1 = 1, 1[

parts

t.u.
] , and 

CT3 = 1[
parts

t.u.
].

The properties of the throughput function are fundamen-
tal for the implementation of the majority of methods used to 
solve the BAP, for both the evaluative and generative meth-
ods. An extensive study on the throughput function has been 
proposed in Gershwin and Schor [2]. The main properties 
that shall be exploited are the following ones:

1.	 Continuity. The throughput function can be consid-
ered a continuous differentiable function of buffer size 
Nk, k = 1,… ,K − 1 , as stated in [16]. Indeed, a small 
change in the buffer size causes a small change in the 
throughput.

2.	 Monotonicity. The throughput function of the system 
increases monotonically in each Nk, k = 1,… ,K − 1 . 
Hence, a small change in the buffer size causes a small 
positive change in the throughput, until the limit is 
reached.

Table 1   Classification of selected related works from the literature

Reference BAP Evaluative method Generative method Line features

Spinellis and Papadopoulos [17] Combination Decomposition Simulated annealing Synchronous reliable
Nahas et al. [29] Primal Simulation Degraded ceiling Unreliable
Dolgui et al. [19] Primal Simulation GA Reliable
Shi and Gershwin [15] Primal Analytical method Non-linear programming Synchronous unreliable
Demir et al. [16] Dual Analytical method Adaptive tabu-search Unreliable
Kose and Kilincci [20] Dual Simulation GA + simulated annealing Unreliable
Shi and Gershwin [15] Combination Analytical method Segmentation Synchronous unreliable
Li et al. [21] Primal Analytical method Decomposed enumeration Synchronous unreliable
Xi et al. [14] Combination Analytical method Decomposition-coordination Asynchronous unreliable
Kassoul et al. [30] Primal Simulation GA Asynchronous unreliable
Zhang et al. [18] Combination Analytical + simulation MILP with benders decomposition Asynchronous unreliable
This work Dual Analytical method MILP with throughput cuts Asynchronous unreliable

Fig. 1   Throughput function in a three-machine two-buffer line
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3.	 Concavity. The throughput function is concave with 
respect to all buffer sizes Nk, k = 1,… ,K − 1.

4.	 Limitation. The throughput function is upper limited 
by the minimum production rate in isolation among the 
machines of the line.

These throughput function properties are exploited also 
by proposed method presented in the following section.

3 � Method

The proposed method is an iterative algorithm that inte-
grates a stochastic analytical model for performance evalu-
ation of serial manufacturing lines (Sect. 3.1) into a linear 
programming problem by means of performance lineariza-
tion (Sect. 3.2). The reference manufacturing serial line of K 
machines and K − 1 buffers is shown in Fig. 2, based on the 
notation reported in Table 2.

Each machine Mk is modeled as a continuous-time discrete-
state Markov Chain, characterized by deterministic production 

rate mk , failure rate fk , and repair rate rk . For each machine Mk 
in the line, the efficiency in isolation ek is defined as:

The production rate in isolation �k can be derived as:

Hence, given the upper limitation on the throughput func-
tion, the maximum possible throughput that can be obtained 
in the line is given by:

The proposed algorithm (represented in Fig. 3 and listed 
in Table 3) starts with the initialization (step 0), i.e., set-
ting of the target throughput (th*), the maximum capacity 
of each buffer ( maxcapk ) according the physical constraints 
of the manufacturing line, and calculating the maximum 
possible throughput (thmax) based on Formula (2). If the 
problem is feasible, then the algorithm starts the iterative 

(1)ek =
rk

rk + fk

(2)�k =
rk

rk + fk
⋅ mk = ek ⋅ mk

(3)thmax = min
(
�1, �2,… , �K

)

Fig. 2   Graphical representation of the multi-stage manufacturing line, where squares represent machines and circles represent buffers

Table 2   Notation of the 
proposed algorithm

Notation

k production stage, with k ∈ {1,… ,K}

Mk machine of the manufacturing line in stage k , with k ∈ {1,… ,K}

Bk buffer of the manufacturing line after stage k , with k ∈ {1,… ,K − 1}

mk production rate of machine k , equal to 1∕ctk
rk repair rate of machine k , equal to 1∕MTTRk

fk failure rate of machine k , equal to 1∕MTTFk

�k production rate in isolation of machine k
w system configuration (defined in terms of capacity for each buffer)
cbk cost of one slot for buffer k
maxcapk maximum capacity for buffer k
th∗ target throughput
thmax maximum throughput that can be obtained in the line
thapp throughput that can be obtained from the linear approximation 
thw throughput of configuration w
nk,w capacity of buffer k in configuration w
�th

�nk

||
|w

derivatives of throughput w.r.t. capacity of buffer k in configuration w

� algorithm convergence tolerance
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loop that consists of solving an optimization model to obtain 
a candidate system configuration (step 1). The optimization 
model includes an estimate of the throughput thanks to an 
approximation based on linear constraints. The candidate 
system configuration obtained as result of the optimization 
model is given as input to the performance evaluation model 
for an accurate estimation of the throughput (step 2). The 
algorithm proceeds iteratively until convergence, i.e., when 
the throughput estimated by the performance evaluation is 
greater or equal to the target throughput, while considering 
a tolerance (ε). If convergence is not reached, then first-order 
derivatives are extracted from the performance evaluation 
model and used to generate a constraint (throughput cut) 
linearizing the performance that is added to the optimiza-
tion model (step 3). The idea is to exploit the properties of 
the throughput function and iteratively calculate hyperplanes 
approximating the throughput function.

In the following subsections, the evaluative method 
(Sect. 3.1) and generative method (Sect. 3.2) used in this 
approach to solve the BAP are presented. The tangent hyper-
plane formalization is included in an optimization problem 
to find the optimal buffer capacity allocation for a multi-
stage serial production line.

3.1 � Evaluative method: approximate analytical 
model

The stochastic analytical model for the performance evalu-
ation of serial lines decoupled by finite-capacity buffers 
has been introduced in Magnanini et al. [6]. Decomposi-
tion equations based on the system dynamics model the 
propagation of effect, i.e., blocking and starvation, along 
the stages. A linear system of differential equations is 
solved by a numerical algorithm in order to evaluate the 
system performance in terms of throughput, average buffer 
level, and steady-state probabilities.

The advantage of using an analytical model is that the 
explicit relation between input parameters and output per-
formance can be obtained. Based on this model, the first 
derivatives of the system throughput can be derived. The 
derivatives are then used to write the first-order approxi-
mation of the throughput with respect to the system 
parameters. In fact, as explained in the previous section, 
performance measures such as system throughput do not 
depend linearly on the system parameters. For instance, 
let us consider the throughput variation with respect to the 
buffer capacity N1 and N2 in a three-machine two-buffer 
line. If the first derivative of the throughput with respect to 
buffer capacity is known in a certain point corresponding 
to system configuration w (thw, nw

1
, nw

2
) , the tangent hyper-

plane to a given point can be written as:

Fig. 3   Graphical representation of the algorithm

Table 3   Pseudo code of the 
algorithm

Algorithm: Optimization algorithm for hyperplane-based BAP

% Step 0—initialization
   w = 0;
   production rate in isolation �k is computed, ∀k;thmax is set to min

(
�k
)
 ; maxcapk is set

   Feasibility of the problem is checked
Do while (th∗ − thw) > 𝜀

   w = w + 1
   % Step 1—solve optimization model
      The optimization model is solved and system configuration w is stored
   % Step 2—performance evaluation
      System configuration w is evaluated and thw is computed
   % Step 3—linear approximation
      A throughput cut is generated and added as a constraint to the optimization model

end

4409The International Journal of Advanced Manufacturing Technology (2022) 122:4405–4419
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More in general, in a serial line composed of K 
machines decoupled by K − 1 buffers, the tangent hyper-
plane of system configuration w (thw, nw

1
, nw

k
,… nw

K−1
) is 

defined as:

Moreover, considering the properties of the throughput 
function, it is possible to notice that the tangent hyperplanes 
are always over the given throughput function; hence:

As a consequence, if multiple hyperplanes are built based 
on an unknown throughput function, the accuracy of the linear 
approximation of the throughput function increases as addi-
tional hyperplanes are added to the envelope of already existing 
ones, as it is shown in Fig. 4 for the one-dimension case [6].

3.2 � Generative method: linear programming 
problem

The optimization model is formulated as a MILP that 
includes the decision variables defined in Table 4. The 

(4)

thhyp
(
n1, n2

)
= thw +

�th

�n1

|
|
|
|w

⋅

(
n1 − nw

1

)
+

�th

�n2

|
|
|
|w

⋅

(
n2 − nw

2

)

(5)thhyp
�
n1, nk,… , nK−1

�
= thw +

∑K−1

k=1

�th

�nk

�
�
�
�w

⋅

�
nk − nw

k

�

(6)
Δth = thhyp

(
n1, nk,… , nK−1

)
− th

(
n1, nk,… , nK−1

)
≥ 0

optimization model returns the system configuration in terms 
of buffer capacities (nk) while considering the linear approxi-
mation of the throughput (thapp). The goal is to minimize 
the overall cost (7) given by the purchase of buffer capacity, 
while satisfying the target throughput (8 ). An upper bound 
for the throughput (9) can be calculated thanks to a prelimi-
nary analysis of the problem and exploiting the properties of 
the throughput function. Then, each buffer capacity cannot 
exceed a maximum value (10). Finally, constraint (11) rep-
resents the throughput cut that is added after each iteration 
based on the linearization of the throughput by means of 
hyperplanes (4).

Fig. 4   Throughput as a function 
of buffer capacity with first-
order linearization [6]
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Table 4   Formalization of the optimization model

   Decision variables

nk ∈ ℕ                   capacity of buffer k
thapp ∈ ℝ

+           approximation of throughput
   Objective function:

       min
�∑

kck ⋅ nk
�

(7)
   Subject to:

       thapp ≥ th∗ (8)
       thapp ≤ thmax (9)
       nk ≤ maxcapk∀k (10)

       
thapp ≤ thw +

∑K−1

k=1

�th

�nk

��
�w

⋅

�
nk − nw

k

�
∀w

  
(11)
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4 � Numerical results

In this section, the proposed approach (from now on named 
hyperplane-based BAP, h-BAP) is validated against exten-
sive research and analyzed with respect to the characteristics 
of various manufacturing systems. Then, the h-BAP is com-
pared with the gradient-based BAP (g-BAP).

4.1 � Experimental setting

The experimental results have been computed on small- 
and medium-sized multi-stage manufacturing systems, as 
defined in Demir et al. [16]. In particular, four-machine 
three-buffer (4M3B) and nine-machine eight-buffer (9M8B) 
systems have been analyzed with respect to varying experi-
mental conditions.

For each manufacturing system size, four different system 
settings are considered:

1.	 Asynchronous homogeneous unreliable lines with iden-
tical machines, for which efficiency in isolation ek = e 
and production rate in isolation �k = �,∀k = 1,… ,K.

2.	 Asynchronous homogeneous unreliable lines with 
machines characterized by decreasing efficiency in iso-
lation e1 > e2 > ek > eK and identical production rate in 
isolation �k = �,∀k = 1,… ,K.

3.	 Asynchronous non-homogeneous unreliable lines 
with machines characterized by random efficiency in 
isolation eK and U-type production rate in isolation 
𝜌1 > 𝜌2 > 𝜌min

k
< 𝜌K−1 < 𝜌K.

4.	 Asynchronous non-homogeneous unreliable lines 
with machines characterized by random efficiency in 
isolation eK and ∩ -type production rate in isolation 
𝜌1 < 𝜌2 < 𝜌max

k
> 𝜌K−1 > 𝜌K.

Then, each system setting is further decomposed into two 
cases:

(a)	 Low variability: in this case, each machine Mk is char-
acterized by frequent failures and fast repairs. Consid-
ering that failure rate and repair rate are exponentially 
distributed, this means that if their mean is small, also 
their variance is small. Therefore, the failures can be 
considered micro-stoppages along the line, with fast 
reaction to the stoppage hence low effect on blocking 
and starvation. In particular, for this case, the ratio 
between processing rate and repair rate is always 
included in the interval mk

rk
∈ [6, 12].

(b)	 High variability: in this case, one machine Mk is char-
acterized by rare failures and long repairs. Hence, this 
means that also the variance is large. As a consequence, 
failures even if rare have serious effect when propagat-

ing along the line. The parameters for this set of exper-
iments are obtained by scaling of a factor 10 the repair 
rate and failure rate parameters of case a). In particular, 
for this case, the ratio between processing rate and 
repair rate is always included in the interval 
mk

rk
∈ [60, 120].

As a consequence, experiments with the same system set-
ting 1–4 but in different case (a)-(b) have the same efficiency 
in isolation and production rate in isolation. This guarantees 
that results can be pairwise compared to highlight the effect 
of variability in the availability parameters for machines 
characterized by similar performance in isolation.

For each experimental condition defined above, the dual 
problem, i.e., the minimization of allocated buffer spaces 
to reach a certain target throughput, is solved. Hence, the 
results are discussed according to the total buffer sizes iden-
tified by the algorithm, the actual throughput with respect 
to the target one (difference due to the integer constraint on 
the buffer capacity), and the number of iterations used for 
the optimal solution.

4.2 � Results and discussion

Numerical results are presented according to various com-
ments and analysis. First, an overview of the validation and 
results according to the defined experimental setting is pro-
vided. Then, the detailed analysis of iterations and explora-
tive strategy used by the proposed algorithm is provided. 
Finally, some general considerations are derived according 
to the proposed experimental setting, with respect to the 
manufacturing system characteristics.

4.2.1 � Overview of the results and validation

The proposed hyperplane-based approach has been validated 
with extensive search of the tested cases. In particular, for 
each experimental setting, the parameters have been ran-
domly selected from the intervals defined in Table 5. Then, 

Table 5   Overview of the tested cases and optimal results

Size Setting Parameters Target TH∗ Test %optimality

Small 1 th∗ = 0.75 ⋅ �min 16 100

2 e ∈ [0.80, 0.95] 16 100
3 � ∈ [0.90, 1.4] 16 100
4 m ∈ [0.95, 1.5] 16 100

Medium 1 f ∈ [0.001, 0.02] th∗ = 0.90 ⋅ �min 16 100
2 r ∈ [0.01, 0.25] 16 100
3 16 99
4 16 99

4411The International Journal of Advanced Manufacturing Technology (2022) 122:4405–4419
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the optimality index has been computed as the percentage 
of the optimal solutions found by the algorithm with respect 
to the extensive search. Results are summarized in Table 5, 
showing a good efficacy of the proposed approach. When the 
optimal solution is not found, the difference with the optimal 
one is generally less than two buffer spaces, and may be due 
to calculation approximation.

4.2.2 � Analysis of iterations

This paragraph shows the analysis of the iterations for the 
proposed algorithm. In particular, the experimental con-
dition 1a (i.e., experimental setting n.1 and case a) with 
medium-size manufacturing system (9M8B) is considered 
( m = 1, f = 0.011, r = 0.125 ). The target throughput th∗ has 
been set to 90% of the production rate in isolation of the line 
� = 0.9191 , hence th∗ = 0.8276.

For each iteration, the allocated capacity per buffer 
nk, k = 1,… ,K − 1 , the total buffer capacity NTOT , and the 
real throughput thw of the evaluated configuration w are 
shown in Figs. 5 and 6 respectively. The optimal solution 

nOPT = [8, 16, 22, 19, 18, 19, 17, 9] is found in 52 iterations, 
hence by evaluating 52 different configurations.

As it can be noticed in Fig. 5, the algorithm tests quite 
different configurations at the beginning, while refining the 
solution later. Indeed, until iteration 17, there are peaks in 
the allocated buffer capacity since the algorithm tends to 
increase quickly the total amount of allocated buffer sizes, 
which can be noticed also in Fig. 6. At this point, the linear 
approximation obtained by the envelope of hyperplanes 
provides an accurate representation of the throughput func-
tion; hence, the algorithm moves carefully to identify the 
optimal configuration. After iteration 30, the total buffer 
capacity NTOT remains almost constant, while the algo-
rithm makes small changes in the capacity of each buffer 
to identify the correct buffer allocation guaranteeing the 
target throughput.

Hence, the algorithm tends to use the initial iterations 
to cut out areas of the throughput function which do not 
represent interesting solutions, either because unfeasible or 
because too expensive. Then, each throughput cut which 
is added iteratively refines the solution space in promising 
areas until the target throughput is found.
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Fig. 5   Overview of the allocated buffer capacity in each iteration for 9M8B, case 1a
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4.2.3 � Effect of variability on BAP

In this paragraph, one detailed example from the medium-
size manufacturing system (9M8B) is analyzed and com-
mented, for each combination of setting (from 1 to 4) and 
case (a and b). For all the selected manufacturing sys-
tems, �min = 0.9191 , and the BAP with target throughput 
th∗ = 0.75 ⋅ �min = 0.6893 is solved for the eight cases.

Figure 7 shows the optimal buffer allocation for the 
homogeneous lines (setting 1 and 2). When all machines are 
identical (case 1a), it is worth increasing the buffer capac-
ity after the central machine, i.e., M5 , since it is the most 
affected by propagation of blocking and starvation phenom-
ena descending from the downstream and upstream part of 
the line. This is a known result when dealing with buffer 
allocation in homogeneous lines. A similar reasoning can 
be found when one machine has a higher variability with 
respect to the other machines in the line: in case 1b, machine 
M1 is characterized by the same performance in isolation 
than the corresponding machine M1 in case 1a; however, 

the failure is rare and the repair rate is low, as defined pre-
viously. As a consequence, the optimal buffer allocation 
should increase the total number of buffer spaces, in order 
to mitigate the effect of propagating limitations from the 
upstream part of the line. However, given that the machines 
are still characterized by the same performance in isolation, 
i.e., a clear bottleneck cannot be identified, the largest buffer 
capacity still remains in the middle.

Setting 2 is characterized by decreasing efficiency in iso-
lation within the line and same production rate in isolation 
among machines. Thus, faster but more unreliable machines 
are placed at the end of the line. Hence, more buffer capacity 
is allocated in this area, to cope with the effect of micro-
stoppages within the line (case 2a) or is furtherly increased 
to mitigate the effect of rare, long, and also highly variable 
failures in machine M1 (case 2b).

Figure 8 shows the optimal buffer allocation for the 
non-homogeneous lines (settings 3 and 4). In this case, the 
machines characterized by rare, long, and highly variable 
failures are the fastest ones, hence machine M1 in case 3b 
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Fig. 7   Optimal buffer allocation for homogeneous lines (settings 1–2)
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and machine M5 in case 4b. The goal of this analysis is to 
show that variability in the availability parameters can be 
only partially compensated by the production rate. It is 
interesting to notice that when rare and long failures occur, 
the buffer allocation strategy may change completely with 
respect to the same line having only micro-stoppages (cases 
4a and 4b). This highlights the importance of such optimiza-
tion problem in the design and operation of manufacturing 
systems, taking into account also its characteristics.

4.3 � Comparison with gradient‑based method

In this section, the proposed hyperplane-based method is 
compared with a gradient-based method. The gradient-based 
method defines the optimal direction to move given a starting 
configuration point, by iteratively selecting the buffer that pro-
vides a maximal increment in the production rate of the line. 
The gradient g can be calculated either via finite difference or 
by analytically calculating the first-order derivatives. In the 

case of finite differences, Formula (11) is used, where gi are 
the K − 1 components of the gradient vector g.

Once the gradient has been determined, the step of the 
increment is estimated. Only the buffer Bk with the maxi-
mal component of the gradient gk = gmax is incremented. 
Therefore, a new configuration point with buffer capacities (
n1 + Δn1, nk + Δnk, nK−1 + ΔnK−1

)
 is determined and the 

performance of the line can be evaluated with the analyti-
cal method. If the throughput is higher than the throughput 
requirement, then the optimal configuration has been found; 
if not, the incumbent configuration point becomes the new 
starting point for the iterative algorithm.

The comparison between the proposed hyperplane-
based approach ( h − BAP ) and the gradient-based approach 

(12)

gk =
th
(
n1,… , nk + Δnk,… , nK−1

)
− th

(
n1,… , nk,… , nK−1

)

Δnk
,

∀k = 1,… ,K − 1

Fig. 8   Optimal buffer allocation for non-homogeneous lines (settings 3–4)
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( g − BAP ) is illustrated in Table 6, with respect to the number 
of iterations needed to find the optimum solution. For each 
manufacturing system size and experimental settings, the 
minimum and maximum numbers of iterations are provided. 
Moreover, the last column shows the mean difference in solu-
tion between the two approaches computed as follows, where 
m is the number of testes cases for each experimental set:

This indicator points out if the optimal solution found by 
the two algorithms differs. If the difference is positive, it means 
that the h-BAP method found an optimal solution with a higher 
number of allocated buffer spaces, hence having a higher cost 
than the optimal solution found by the g-BAP.

Results shown in Table 6 highlights the efficiency of the pro-
posed algorithm with respect to the gradient-based approach. 
Indeed, the number of iterations to reach the optimum is always 
lower in the h-BAP, for each experimental set. The difference in 
the number of iterations, hence in the algorithm efficiency, can 
be especially appreciated in those problems involving medium-
sized manufacturing systems. The two methods find on aver-
age similar solutions (the indicator ΔN

TOT
 is relatively small). 

Moreover, the ΔN
TOT

 is always negative, thus indicating that 
the solutions found by the h − BAP method imply a smaller 
number of total buffer spaces, hence a lower cost. This differ-
ence, however, occurs quite rarely, in 4% of the cases.

Apparently, both the g-BAP method and the h-BAP 
method exploit the properties and characteristics of the 
throughput function. Moreover, the solution reached by the 
methods is in most of the cases similar. However, the itera-
tion path is very different between the two methods. Figure 9 
shows how the configurations tested in each iteration by the 
two methods perform in terms of throughput, represented by 
means of iso-throughput areas, in a small-scale problem with 
three machines and two buffers (3M2B). Parameters and the 
optimal solution for this example are provided in Table 7.

It can be noticed that the gradient-based method pushes 
the algorithm in testing configurations on the gradient, as 
expected (blue line). On the other hand, the hyperplane-
based method selects configurations which may seem ran-
dom, with respect to the selected parameters, but in fact they 
incrementally increase the accuracy of the linear approxima-
tion of the throughput function (red line). As a consequence, 
the hyperplane-based algorithm tests configurations very 

(13)ΔN
TOT

=

∑
m

�
NTOT
h−BAP

(m) − NTOT
g−BAP

(m)
�

m

far between each other, enhancing the linear approxima-
tion of the throughput function in areas which guarantee a 
fair accuracy. In the end, the hyperplane-based algorithm 
guarantees a lower number of iterations with respect to 
the gradient-based method, thus ensuring higher computa-
tional efficiency. In addition, it must be stressed that the 
hyperplane-based algorithm offers a more flexible approach 
because the optimization model can be further complicated 
to take into account different types of decisions and planning 
horizons, while exploiting the linear approximation of the 
throughput function.

5 � Industrial application

The proposed approach has been applied within a real indus-
trial case, in the automotive sector. The company produces 
micro gear pumps with metallic bodies (Fig. 10a). The 
production is done based on lots according to the different 
product types.

5.1 � Description of the manufacturing system

The assembly line is composed by seven production areas, 
decoupled by linear rails serving as buffers, as in Fig. 10b, 

Table 6   Comparison between 
h-BAP and g-BAP

Size Scenario h-BAP g-BAP
ΔN

TOT

itermin itermax itermin itermax

Small 1–4 8 12 19 45  −0.24
Medium 1–4 13 65 31 120  −0.15

Fig. 9   Comparison in the iterations between the gradient-based 
method and the hyperplane-based method
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where arrows indicate the direction of the production flow. 
The first area (area 100 in Fig. 10b) loads and assembles the 
central body and driving gears, then other components such 
as bushings, magnets, and cups are assembled, as well as the 
front, rear body, and O-rings (toric joints) in area 200. Then 
the third area (area 300) is dedicated to the crimping process 
and test. The second part of the line is dedicated to testing 
and final operations, such as hydraulic test, pallet cleaning, 
laser marking, and finally unloading finished pumps (areas 
400, 500, and 700). According to the pump variety, addi-
tional testing can be performed in the last area (area 600).

Due to many reconfigurations of the line within the years, 
linear rails are longer than needed; hence, proximity sensors 
(see Fig. 11) are used as stopper to limit the buffer capacity 
between stations thus limiting the work-in-progress (WIP) 
and reducing the lead time. Production planning is done 
weekly according to lots with varying lot sizes. According 
to setup time, planned maintenance within the week and 
other planned stoppages, as well as specific operations on 
the different product types, and availability of production 
time may vary; hence, the throughput required for alterna-
tive product types may differ. This results in the need of 
understanding the planned maximum production capacity 
for the given buffer configuration, or to modify it by means 
of the proximity sensors, in order to be able to achieve the 
required productivity.

5.2 � Optimization problem and solution

The proposed algorithm for the BAP has been integrated 
in an automatic Decision Support System (DSS), internally 
developed by the research team, to help the company in 

identifying the correct positioning of the proximity sensors 
according to the target throughput.

Following the architecture proposed in Magnanini and 
Tolio [31], the h-BAP is used as plug-in module for the con-
trol and operations of the described manufacturing system. 
The modified architecture which has been used in the ana-
lyzed industrial case study is represented in Fig. 12. In par-
ticular, the performance evaluation model is parametrically 
implemented on the real multi-stage manufacturing system, 
and the configuration parameters are estimated from the real 
data gathered by means of the MES and the data analyt-
ics layer, to maintain the coherence between the evaluation 
model and the real system. According to the specific produc-
tion plan, the target throughput th∗ is derived and provided as 
input to the DSS for h-BAP. This module corresponds to the 
proposed optimization algorithm for buffer allocation based 
on the linear approximation of the system performance by 
means of hyperplanes. Hence, the DSS uses the Performance 
Evaluation Model as evaluative model for the linearized per-
formance to be included in the optimization problem.

Once the solution is found, the DSS for h-BAP returns 
the optimal configuration in terms of allocated buffer spaces 

Table 7   Parameters of the 3M2B example

f r m e[%] �

M1 0.04 0.5 1.65 92.59 1.52
M2 0.02 0.3 1.5 93.75 1.41
M3 0.03 0.65 1.7 95.59 1.62

th∗ = 1.4;nOPT = [16, 8]

Fig. 10   Product (a) assembled 
in the manufacturing line (b)

Fig. 11   Proximity sensor used as a stopper to limit buffer capacity on 
the linear rails
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within the line and the actuation system of the proximity 
sensors acts on their position as indicated.

The advantages of the proposed approach are repre-
sented by the integration of an advanced and optimal solu-
tion method for the BAP within an operating manufacturing 
system, to support its responsive reconfiguration in different 
production scenarios. As it can be noticed in Table 8, the 
optimal buffer configurations may be quite different, leading 
to a difference of 40% in the total allocated buffer sizes to 
achieve the desired performance, and a difference of 25% in 
the circulating WIP. Moreover, the linear approximation of 
system performance increases the knowledge of the system 
with respect to the configuration parameters as the buffer 
capacities, thus allowing prompt reconfiguration actions 
when needed. The effectiveness of the optimized solu-
tion is ensured by the alignment between the performance 

evaluation model and the real system. Finally, the proposed 
architecture for the Decision Support in the operation of 
multi-stage asynchronous manufacturing systems can be eas-
ily extended to include more complex optimization problems 
related also to other configuration parameters.

6 � Conclusion

Buffer Allocation Problem still represents an interesting 
research problem with respect to existing methodologies. 
In this work, BAP is solved for asynchronous unreliable 
multi-stage serial lines, by means of a novel algorithm 
based on the integration of linearized performance within a 
MILP. Linearized performances are obtained grounding on 
a stochastic approximate analytical model where the first-
order derivative of the throughput with respect to the buffer 
capacities are used to define hyperplanes. These hyperplanes 
are then iteratively integrated as throughput cuts in the lin-
ear programming problem, to minimize the total costs while 
guaranteeing the target throughput.

The results show that the proposed methodology leads to 
optimal results in a limited number of iterations, thus guar-
anteeing a fair efficiency of the algorithm. Insights on opti-
mal buffer allocation solutions are provided according to 

Fig. 12   Architecture of the DSS 
for h-BAP in the industrial case
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Table 8   Optimal buffer capacity and related performance for alterna-
tive production plans

Product type th∗ nOPT WIP

A 280 [5,3,3,9,5,9] 14.5
310 [15,18,10,12,7,11] 19.5

B 250 [5,3,3,2,2] 11.25
300 [12,20,10,9,6] 18.5
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the variability affecting the manufacturing systems. Moreo-
ver, the proposed methodology is compared with a similar 
one in terms of evaluative and generative methods, i.e., 
the gradient-based approach. This comparison shows that 
the proposed hyperplane-based methodology outperforms 
in terms of efficiency of the gradient-based method, while 
also guaranteeing more flexibility in the overall approach.

Indeed, further developments are represented by the 
extension of the proposed methodology to large manufac-
turing systems, as well as the joint optimization of machine 
parameters together with buffer capacity. Challenging 
research developments are represented by the application 
of the proposed hyperplane-based approach to more com-
plex system topologies as split and merge, parallel machine 
configurations, closed-loop networks. In these topologies, 
the throughput function may have different properties with 
respect to monotonicity and convexity; hence, the through-
put cut based on the linearized performance should be 
adapted as a consequence. Moreover, the proposed approach 
can be further extended to consider multi-period decision 
problems, by means of stochastic programming, in which at 
the first stage the maximum buffer capacity is found, while 
at the second stage the actual buffer capacity for the specific 
demand scenario is obtained.
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