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Abstract

The rapid advances in high-throughput technologies, such as microarrays have revolutionizing the knowledge
and understanding of biological systems and genetic signatures of human diseases. This has led to the generation
and accumulation of a large amount of genomic data that need to be adequately integrated to obtain more reliable
and valid results than those from individual experiments. Meta-analysis of microarray data is one of the most
common statistical techniques used for combining multiple data sets. Despite its remarkable successes in
discovering molecular subtypes, underlying pathways and biomarkers for the pathological process of interest, this
method possesses several limitations.

Here, we provided a briefly overview of current meta-analytic approaches together with the basic critical issues in
performing meta-analysis of genomic data, with the aim of helping researchers to evaluate the quality of existing,
published data and obtain more detailed information on what will be the best strategy to adopt to execute a good
meta-analysis.

Introduction
In the last decades, the rapid advances in high-throughput

technologies, including sequencing and microarray assay, have
transformed biomedical research by allowing comprehensive
monitoring and deciphering of biological systems and the genome-
wide discovery of diagnostic and prognostic gene signatures of human
diseases. This has led to the generation and accumulation of significant
amounts of high-throughput genomic data, many of which are
deposited in several large publically-available data repositories, such as
Gene Expression Omnibus (GEO) and Array Express [1,2].

The existence of such a large amount of existing genomic data has
required the development of more robust and efficient statistical and
computational resources and expertise than low-throughput
technologies, which allow to retrieve, filtering, integrate, and compare
this multitude of “-omics” data from different, independent studies
cohesively into a single analysis [3,4]. In this regard, meta-analysis of
microarray data represents one of the most common statistical
techniques used for combining multiple data sets, offering considerable
advantages in both overcoming individual study-specific biases and
increasing statistical power to obtain more reliable and more valid
results than those from individual experiments. Meta-analysis methods
have already demonstrated to be very useful tools in bio-medical
research, enabling researchers to discover disease subtypes, new
biomarkers and therapeutic targets and biological pathways associated
with the process of interest [5,6]. Despite those successes, current
approaches for meta-analysis possess several limitations.

In the present paper, we provided a brief overview of current meta-
analytic approaches and basic critical issues in performing meta-
analysis of microarray data, with the aim of helping researchers to
evaluate the quality of existing, published data and obtain more

detailed information on what will be the best strategy to adopt to
execute a good meta-analysis.

Overview of the main critical issues
The general workflow for the meta-analysis approach consists of

three main steps: data selection, data preparation, including the
processing of gene expression datasets and probe annotations, and data
analysis. The quality of meta-analysis depends upon the quality of each
individual microarray dataset as well as standardized procedures,
algorithms for cluster analysis and methods utilized for the analysis.
Considering that, the phase of microarray data processing provides for
the transformation of image data (i.e. spot brightness) to gene
expression values, it appears evident that one of the first problems
encountered in performing a meta-analysis is the presence of a strong
background and noise signal value (e.g., due to unspecific
hybridization or spatial artifacts) that may affect data quality leading to
a uncorrected and more random distribution of probe signals among
probe sets. The development of methods and procedures aimed to
quantify and improve the ‘signal-to-noise ratio’ are, therefore,
necessary for conducting a good meta-analysis.

In addition to technical issues, it should be considered that one of
the main goal in performing meta-analysis of microarray data is to
obtain a more or less restricted set of genes whose expression is
associated with the variable of interest, as in the case of pathological
versus healthy conditions. Many current meta-analytic approaches
select genes on the basis of univariate summary statistic parameters,
including P-value. Applying these methodologies would require that all
of the studies included in the analysis originate from relatively
homogeneous sources, test the same hypotheses and/or are carried out
under comparable conditions or treatments. However, biological,
experimental and technical variations that occur between different
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studies of the same phenotype/phenomena create substantial
differences in results, obstructing the achievement of a good accuracy
and reproducibility of the data derived from microarray experiments.
In addition to, it is also important to note that, in the majority of cases,
microarray data included in the meta-analysis are produced by using
different platforms (e.g., Agilent, Affymetrix, Illumina) and, therefore,
subjected to different processes of normalization and data analysis,
making more difficult interpreting results in the context of other
microarray experiments. For these reasons, in order to reduce the
variability due to different pre-processing algorithms, it is often
necessary to have access to the raw data of a gene expression
experiment during the phase of data selection of meta-analysis. Once
raw data have been obtained, in fact, they may be converted to
information by using homogeneous assembly and normalization
processes, allowing performing subsequent optimal downstream
statistical and bio-informatics analyses of genomic data.

Raw gene expression datasets are generally obtained both as
available data from different laboratories and/or from a systematic
search in the online databases, including Gene Expression Omnibus
(GEO) or Array Express. To uniform procedures of microarray raw
data and to obtain, description, submission and, consequently,
facilitate reproducible researches, guidelines have been established and
included in the Minimum Information about Microarray Experiment
(MIAME) standard functions from the MGED (Microarray Gene
Expression Data) Society [7]. Moreover, an additional extension of
MIAME concepts has been developed, The Standard Micro Array
Reporting Template (SMART), which allows a specific gene list to be
adequately recorded and described, making data accessible,
comparable, and dynamically updatable. Unfortunately, despite the
development and the adoption of these guidelines, the majority of
studies submitted in public repositories are not MIAME compliant and
the raw data are not always available, leading to insufficient
annotations of experimental and bio-informatics approaches that is the
main cause for the lack of reproducible research [8]. Therefore, the use
of corrected and standardized data format, storage and quality
remains, to date, a major challenge for the future of meta-analysis.

Independently of the biological, technical, and analytical
procedures, microarray studies cannot be effectively compared without
the use of opportune software that translates probe DNA sequences
into biological meaning. In fact, another important pre-processing step
in meta-analysis comparison is correlating probes to their
corresponding genes within and across the different microarray
platforms. This procedure allows often performing meta-analysis by
selecting and integrating only genes that are present across the
different platforms and removing those absent in one or more
platforms, decreasing the number of genes with a consequent loss of
information potentially important in the understanding of the
phenomenon under investigation.

Generally, the relationship between probes and genes is determined
by using the annotation information included in several public
repositories, such as Genbank, UniGene and Entrez Gene identifiers,
or other additional molecular biology databases. Although annotations
and biological information are stored in relational databases, they are
in many case distributed and shared as text files and included in the
flat file databases. This data organization does not allow seamlessly
integrating the heterogeneous sources of genomic data information,
hampering the development of a simple and robust solution for an
accurate and high-volume comparison of different gene expression
profiles. This ‘linguistic’ disparity is even more evident when a cross-

species comparative meta-analysis is performed. Besides to the cross-
platform mapping of probes, in this case there is also the difficulty of
comparing data between different organisms. Indeed, due to the
complexity of evolutionary changes, such as gene duplication, there is
not a correspondence across genes from different species, making
difficult the comparison between their expression profiles. This
comparison is often performed by using different databases including
cluster of genes homologous/orthologous, like Homologue, through
which it is possible to find homologous genes among those annotated
of several completely sequenced eukaryotic genomes. Although these
publicly available resources represent important tools to compare
microarray studies between different organisms, it should be kept in
mind that evolutionary orthology does not necessarily have a strong
correspondence to function similarity and, thus, genetic and genomic
alterations occurring in animal models of a particular human
condition, not necessarily will have a similar impact on gene
expression in humans.

New approaches and recent developments in meta-analysis
methods

Current methods for performing meta-analysis present several
limitations and the integration of microarray datasets from different
studies still represents a significant computation and technical
challenge. Collecting data from microarray repositories, identifying of
available studies with consistent information, raw data re-processing
and analysis and low-quality datasets represent, as previously said,
concrete issues reducing meta-analysis efficiency. To overcome these
limitations, new approaches have been proposed to conduct meta-
analysis of gene expression data.

The development, for example, of Microarray meta-analysis
database (M2DB) promises to improve the comparability between
human microarray data by using a uniformly raw pre-processing,
high-quality controlled data and microarray annotations manually
curated through controlled vocabularies, based on information derived
from scientific publications and online databases, like GEO and Array
Express. More uniform data preprocessing allows eliminating the
variance that occurs during microarray data transformation,
improving, among other things, background correction, probe-set
summarization and data normalization.

Among methods developed to increase the power of “ordinary”
meta-analysis, particular attentions should be given to the Bi-level
approach, the Elastic Net, SMA (Sequential Meta-analysis) and web-
based tool Network Analyst [9-12].

The Bi-level approach constitutes a novel method to performing
meta-analysis of gene expression data, analyzing these in a context of
known biological pathways [11]. This method permits to integrate
multiple independent studies for the same disease by performing an
analysis on two levels. In the “intra-experiment”, the analysis consists
in splitting dataset into m smaller datasets. To this end, the statistical
tests are performed independently and then p-values obtained are
combined each other. In second level, an “inter-experiment” analysis is
conducted, in which the algorithm conducts a statistical test for each
individual experiment and then combines processed p-values. P-value
calculation is done, for each of the m datasets, by using a pathway
analysis method for each one of k pathways included in existing
pathway databases. This technique has been demonstrated to improve
the power of meta-analysis thanks to the bi-level framework that
confer more robustness against bias, minor sensitive to outliers than
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other traditional methods, and greater sensitivity in detecting small
signal changes.

An additional methodological approach for conducting a powerful
meta-analysis uses the versatile method of the Elastic Net for
classification and regression. In statistics as well as in the fitting of
linear or logistic regression model, Elastic Net functions as a
regularized regression method that linearly combines the penalties
function of LASSO (least absolute shrinkage and selection operator)
and Ridge methods. In this framework [12] Elastic Net permits to
build a predictive model based on gene expression data and other
variables, such as patient characteristics. In particular, Elastic Net
analyzes the merged data into a single matrix deriving from a cross-
study normalization procedure of raw data and is able to handle both
continuous and categorical features. Moreover, through the application
of a predictive model and the quantitative and qualitative
determination of genes belonging to the ‘expression signature’ of the
conditions of interest, the Elastic Net function permits to incorporate
additional variables to the gene expression profiles, revealing the
correlation between gene expression and corresponding covariates and
is not strictly correlated with the biological phenomenon of interest.

The Sequential Meta-Analysis (SMA) is an approach aimed to find
significant gene expression signatures by merging multiple microarray
studies in chronological order, avoiding type I errors. Whit regard to
traditional meta-analysis methods, this approach could also represents
a useful tool to evaluate if a greater number of experiments is needed
to draw a conclusion. In fact, for each gene of interest, SMA assesses
whether collected samples already show sufficient evidences for a
certain effect size or if further experiments should be added [10].

Finally, the web-based tool Network Analyst has been developed to
perform common and complex meta-analysis, with both advanced
statistics and visualization strategies for allowing an efficient data
comparison [9]. In light of the growing amount of publicly available
gene expression data as well as the increasingly recourse to
comparative analysis among different microarray studies and
platforms, it appears evident the need to further develop new
methodologies and refine existing methods to improve data quality,

eliminate platform-specific bias and permit better cross-platform
normalization processes and statistical analyses.
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