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Abstract

Hyperspectral data were exploited to test their effectiveness as a tool for archaeological prospection, envisaging their potential for detecting
spectral anomalies related to buried archaeological structures. For this purpose the airborne Multispectral Infrared and Visible Imaging
Spectrometer images were analysed. Each single band of the entire data set and different processing technique products were interpreted to
identify any tonal anomalies. Since every analysed image exhibited marks different in terms of size and intensity, two indexes were defined
for assessing the potential of anomalies detection of each image. Such parameters were: the Detection Index, used for counting the number
of pixels related in each image to marks, and the Separability Index, applied for measuring the tonal difference of the marks with respect to
the background. These indexes were tested on two areas within the Selinunte Archaeological Park where the presence of remains, not yet
excavated, was supposed by archaeologists. For the test sites any extracted anomalies were evaluated by an expert in order to determine their
archaeological relevance. The comparison among the index values, derived from each single band of the spectrometer and from different image
processing by-products, allowed to determine which spectral range and which processing method are the most valuable to quickly highlight the
anomalies. The analysis pointed out that, where vegetation cover is dominant, the Visible near infrared is the spectral region more sensitive to
variations of spectral properties related to buried structures, while, where soil cover becomes relevant, the Short-wave infrared and the Thermal-
infrared regions resulted more sensitive. As far as the applied processing methods are concerned, the Spectral Angle Mapper classifier and,
secondly, the Minimum Distance algorithm stressed the highest archaeological information content. The results of this work showed that the
archaeological information content derived by analysing the outputs of the applied image processing techniques is more significant than the
information obtained by interpreting each single band and the available historical aerial photos. As a final remark, the data processing flow chart,
applied to the entire remote hyperspectral data set over Selinunte Archaeological Park, appeared encouraging for detection of anomalies related
to the presence of the buried archaeological structures.
� 2007 Elsevier Masson SAS. All rights reserved.
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1. Research aims

Few applications of Remote Sensing (R.S.) have been, up
to the present, carried out for detecting buried structures as
a new tool of archaeological prospection to be combined
with the usual geophysical investigations [1e11].

Optical multispectral sensors, such as Landsat TM and
MSS, SPOT XI, and Terra ASTER, have been exploited within
d.
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different archaeological contexts to highlight buried structures
of historical significance in many environments [1e11]. In
particular, Fowler [5] reports some applications of satellite
images for archaeological prospection in the USA and the
UK, speculating about their additional value compared to con-
ventional aerial photographs. Fowler [5] and Aminzadeh and
Samani [12], however, stress the lack of details in terms of
archaeological results, due to insufficient spatial and spectral
satellite resolutions. In addition, some archaeological applica-
tions of airborne multispectral R.S. data [13] indicate that, in
general, Red, Near-infrared (N.I.R.), Short-wave infrared
(S.W.I.R.) and Thermal-infrared (T.I.R.) regions can be ex-
ploited for buried structure detection. Following the hints of
the above-mentioned works, it appears clear that remote,
medium- or high-resolution spectral data can have new per-
spectives of application in archaeology or for the evaluation
of environmental hazards.

The major drawback of insufficient spatial and spectral
resolutions of R.S. data was overcome over the past decade
with the advent of the high-resolution hyperspectral imaging
scanners that can sample the electromagnetic spectrum with
narrow consecutive spectral bands. Among the sensors oper-
ated on aerial platforms, noteworthy are the AHS, AHI,
AVIRIS, CASI, and HYMAP. A few imaging spectrometer
applications in cultural heritage frameworks are mentioned
in the literature. In particular, Buck et al. [14] present the
results of the sub-pixel capability of detecting obsidian and
pottery artefacts scattered on the bare soil surface of a site
in Western USA; visible and spectral bands were used. In con-
trast, Barnes [15] demonstrates the benefits of the combined
use of LIDAR sensor and CASI images for identifying archae-
ological earthworks in southern England.

It appears evident, therefore, that it is of extreme interest to
study the application of such new technologies in the frame-
work of archaeological investigation. This is because the syn-
optic by-products of the hyperspectral image processing can
be extremely effective when applied to those areas where large
cultural heritage assets from ancient communities were to be
discovered, surveyed, safeguarded from grave-robbers and
protected from environmental degradation, mostly related to
unchecked urban development. In this respect, the Italian pen-
insula contains a large number of ancient buried ruins consist-
ing of either large centres (including entire urban structures) or
buildings and town-walls which have to be still fully studied
and excavated.

Within this context, this paper presents the results of the
analysis of R.S. data collected over the Archaeological Park
of Selinunte (SW Sicily, Italy) with the airborne Multispectral
Infrared and Visible Imaging Spectrometer (M.I.V.I.S., Daeda-
lus AA5000 [16]).

The paper addresses in Section 2 the issue of exploiting
airborne hyperspectral imagery as a tool for archaeological
prospection by defining two parameters which assess the
hyperspectral R.S. aptitude to detecting anomalies related to
buried structures. Section 3 describes the test area of Seli-
nunte’s Archaeological Park, while Section 4 deals with the
M.I.V.I.S. hyperspectral data set and how the images were
calibrated and corrected. The introduced indexes were applied
(Section 5) to every M.I.V.I.S. single channel, to the outputs of
selected processing methods (i.e. Principal Component Analy-
sis and Apparent Thermal Inertial calculation) and to the
by-products of supervised classification procedures (i.e. Spec-
tral Angle Mapper and Minimum Distance). Moreover, in
Section 5 the indexes are analysed with scatterplots. Section
6 presents the discussion of the obtained results, while the
conclusions and implications are reported in Section 7.

2. Anomaly evaluation criteria

The identification of relevant archaeological marks, i.e.
the tonal anomalies on the images, is mainly the result of
the subjective experience of the photo-interpreter and of the
knowledge of the context to which the images refer. For this
reason, the use of R.S. in archaeology is still considered to
be simply a descriptive discipline not supported by the analy-
sis of statistical variables or quantitative indexes. In the
attempt of recovering this gap, two parameters were defined
to combine the subjective experience of the photo-interpreter
with physical variables related to the spectral properties of
the surface materials. The parameters show the potential of
mark detection on the images, marks that give a hint of the
presence of buried objects with an archaeological meaning:
they take into account the amount of pixels pertaining to the
corresponding anomalies and their brightness.

The first parameter, the Detection Index (D.I.), provides
a quantitative measure of photo-interpretation analysis done
on the images. D.I. is expressed by the following relation:

D:I:¼ Npixelarcha

Npixelt�archa

� 100 ð1Þ

where, for a given area, Npixelarcha is the number of pixels
belonging to the archaeological marks in the interpreted
image, while Npixelt-archa corresponds to the total number of
pixels recognized as archaeological marks in the whole set
of analysed images.

In contrast, the Separation Index (S.I.), gives an indication
of the tonal difference between archaeological marks and
background. The index is expressed as follows:
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where Darcha represents the frequency distribution of the
digital values of the pixels belonging to the archaeological
marks (Npixelarcha), while Dbck represents the frequency distri-
bution of the pixels selected as background. S.I. is, therefore,
an indicator of the overlapping area of the two frequency
distributions Darcha and Dbck.

Fig. 1 shows the sequence of operations leading to the
calculation of the S.I. value on a selected area. In particular,
Fig. 1a depicts one of the interpreted images, where tonal
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Fig. 1. (a) Subset of one interpreted M.I.V.I.S. image. (b) Archaeological sketch map [17]. (c) Arbitrarily stretched version of Fig. 1a with superimposed polygons

referring to background (filled with vertical lines) and to archaeological lineaments (grey-shaded). (d) Frequency distributions of the anomaly pixels (Darcha) and of

the background pixels (Dbck); the convolution product of the two distributions, represented by S.I., is shown with halftone grating.
lineaments are clearly visible and correspond to archaeologi-
cal features as portrayed in the sketched map (Fig. 1b), drawn
by archaeologists [17]. Fig. 1c shows the mask corresponding
to the pixels (grey shaded) used for determining Darcha and the
mask (black polygon with vertical lines in Fig. 1c) pointing the
background pixels describing Dbck. The plot of the two fre-
quency distributions of archaeological marks and background
pixels and their convolution product are reported in Fig. 1d.

As these indexes are normalized to the selected area, they
can be applied to R.S. data regardless of the land cover sce-
nario, the sensor data characteristics and the applied image
processing techniques; consequently, they can be analysed
and compared with one another. A significant test of the index
efficiency can be performed by using hyperspectral data,
because they can assume a wide dynamic range pointing out
trends useful to stress the image most valuable in terms of
anomaly detection. Since an image with the best possible
sub-superficial structure prediction (i.e. high number of reli-
able marks) would determine a cluster of values in the upper
right corner of the S.I. vs. D.I. space, this space can be used
to rank the image ability of detecting anomalies.
3. The test area

The archaeological Park of Selinunte, located along the SW
coast of Sicily (Fig. 2) and covering an area of about 2.5 km2,
is one of the outstanding cultural heritage sites of Southern
Italy. It is spread over three NeS elongated hills, which ex-
hibit the major axis orthogonal to the coastline: moving east-
wards, they are the Gaggera, Manuzza and Eastern hills.

The city was founded in the 7th century BC by colonizers
who came from Megara Hyblaea. The Acropolis (public and
religious centre of the ancient cities) was located on a hilly
area south of Manuzza Hill. During the two centuries that
followed, the city spread eastwards and westwards, along the
Cottone and Modione stream valleys, which stretch along
the borders of Manuzza Hill and create two natural harbours
at their confluence with the sea.

The ruins of the Acropolis area reveal a typical street
network (Fig. 3) represented by a primary road, Plateia, run-
ning along the major axis of the hill, and a series of parallel
secondary street axes termed Stenophoi, crossing the Plateia
regularly at right angles. The Plateiae are as wide as w6 m,
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Fig. 2. Topographic map of the Selinunte Archaeological Park. MH and WMHA point out the two test areas. The study area is indicated on the top right.
whereas Stenophoi are, at maximum, 3 m wide; both are usu-
ally situated at a depth of about 50 cm below the ground. On
the Gaggera and Eastern hills two religious areas were present,
that were connected to the Acropolis area by a Plateia crossing
the city area and passing through the urban defence walls.

Manuzza Hill exhibits a regular street pattern [18] tilted by
23� westwards with respect to that of the Acropolis area
(Fig. 3); this network was first identified on aerophotos by
Schmiedt [19] and partly confirmed by successive archaeolog-
ical investigations [20,21] and by geomagnetic and geoelectric
prospections [17]. Moreover, the town was surrounded by
a huge town-wall system, the traces of which were studied
by Mertens [17,22] and partially excavated.

The Selinunte area was selected for the present investiga-
tion because of the sharp geometry of the urban street network,
already identified by means of historical aerophotos, geophys-
ical surveys and excavation campaigns. Therefore, it repre-
sented an optimal test benchmark for studying the detection
potential offered by hyperspectral M.I.V.I.S. data.

The D.I. and S.I. values were calculated in the Selinunte
test area within two sectors, which exhibit uniform land covers
and lithological outcrops, and where a statistically significant
number of anomaly pixels were detected.

Such areas, shown in Figs. 2 and 3, correspond to:

� Manuzza Hill (hereafter referred to as M.H.);
� the western slope of Manuzza Hill and of the Acropolis

area (hereafter referred to as W.M.H.A.).
At the time of the M.I.V.I.S. flight, the terrain cover
consisted of spontaneous vegetation (grass and xerithic shrubs)
characterized by different spatial density. The soil on M.H.
was a weathering product of the underlying calcarenite forma-
tion covered by vegetation, while on W.M.H.A. the soil was
interbedded with a clayesilt mixture with scarce vegetation
cover.

3.1. Geology and land cover

During the Pliocene and Lower Pleistocene periods, the
Selinunte area underwent a subsidence process, followed by
extensional tectonics forming a graben, which determined
the present-day morphological setting with three hills ending
with small cliffs to the sea [23].

From a lithological point of view (see the description by
Amadori [23]), the tops of the hills exhibit a bio-calcarenitic
unit, cropping out with different levels of porosity and coher-
ence, at times weathered and fractured. Along the hill slopes,
a seldom cemented clayey sand occurs, with calcareous
concretions locally interbedded with poorly cemented ochre
calcarenitic lenses, while, moving downward, clays and clayey
marls are present, dating back to the Lower Pleistocene. The
valley bottoms are characterized by recent alluvial deposits,
often exploited for agricultural purposes. In addition, sand
dunes lie to the west of the Acropolis area and along its eastern
slope, while clayey-sand layers are observed in the archaeo-
logical area where the detritus cover is thinner.
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Fig. 3. The urban street pattern reconstruction performed by D. Mertens [17]. The two elliptical figures frame the two areas of investigation.
The land cover is composed mainly of natural vegetation,
such as Mediterranean maquis along the coast line and the
Modione creek valley, eucalyptus trees along the rural roads,
xerithic shrubs and meadows near the ruins. The agricultural
fields are characterized by olive-trees (mainly on the Eastern
Hill), vineyards (along the western slopes of Manuzza Hill)
and wheat in the north-eastern part of the study area.

4. M.I.V.I.S. sensor and data pre-processing

The M.I.V.I.S. spectrometer is an airborne passive remote
sensing scanner [16] which records with an Istantaneous Field
of View (I.F.O.V.) of 2 mrad the incoming radiation into four
optical ports (see Table 1) covering the Visible (VIS), N.I.R.,
S.W.I.R. and T.I.R. spectral regions with 102 channels.

The remote survey over the Selinunte Archaeological Park
was performed by the National Research Council, Airborne
Laboratory for Environmental Research (L.A.R.A.) on May
23, 1996, at 12.30 h local time with clear sky conditions,
from an altitude of 1500 m a.s.l. (3 m/pixel ground resolution).

The M.I.V.I.S. data were calibrated to instrument perceived
radiances, using the internal reference sources and the calibra-
tion data gathered from the test bench. To remove the solar
irradiance, atmospheric absorption and scattering effects that

Table 1

M.I.V.I.S. spectral characteristics

Spectrometer # Spectral

region

No. of

bands

Lower

edge

Upper

edge

Bandwidth

mm mm mm

1 VIS 20 0.43 0.83 0.020

2 NIR 8 1.15 1.55 0.050

3 SWIR 64 1.98 2.45 0.009

4 TIR 10 8.18 12.70 0.34 O 0.54
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can disturb (in terms of minor image contrast) the photo-
interpretation process of the images, the bands of the first three
spectrometers were converted to apparent reflectance by
applying the ATmosphere REMoval Program (AT. REM. [24])
customized for the M.I.V.I.S. sensor [25]. Reflectance data
were further cleaned of residual atmospheric effects by using
EFFORT polishing techniques, as implemented in the ENVI
software [26] by using also the spectra acquired on the field
with the ASD FieldSpec Pro FR (350 to 2500 nm spectral
range).

In contrast, the instrument perceived radiance values of the
T.I.R. M.I.V.I.S. port were processed for obtaining the upwell-
ing radiance at surface by tuning the M.I.V.I.S. thermal
response to the TIMSCAL2 routine, implemented in the
VICAR image processing software package, developed by
NASA-JPL (http://www.openchannelfoundation.org). The
kinetic temperature was then evaluated for all the T.I.R.
M.I.V.I.S. channels by assuming a constant spectral emissivity
value of 0.95.

5. Data analysis

In order to identify the spectral regions and processing
techniques providing comparatively more archaeological
information, hyperspectral M.I.V.I.S. data were analysed by
using two separate processing approaches.

The first approach took into account the analysis of single
channels, while a second one considered images resulting
from combination of groups of spectral bands (Principal
Components and Apparent Thermal Inertia) and of supervised
classification procedures, such as Spectral Angle Mapper
(S.A.M) and Minimum Distance (M.D.). The second approach
was based on the hypothesis that the application of image
analysis techniques to the entire M.I.V.I.S. data set could
enhance, in the resulting images, the potential of anomalies
detection with respect to each single band. Therefore, this
method, reducing the number of images to be visually
interpreted, could provide a comparatively more robust and
quicker prospecting technique to support archaeological
investigations.

In order to standardize the visual interpretation process,
each image was treated by applying no spatial filters and
contrast enhancement techniques. Moreover, a single operator
interpreted all the images for reducing the uncertainties
introduced by different photo-interpretation keys; furthermore,
any extracted anomalies were then evaluated by an expert in
order to determine their archaeological relevance.

5.1. Analysis of single images

All the 102 original M.I.V.I.S. bands were visually inter-
preted and the corresponding D.I. and S.I. values were calcu-
lated. The analysis of their respective scatterplot, as shown in
Fig. 4, pointed out that the M.H. and W.M.H.A. areas exhibit
different trends. In the W.M.H.A. area (bottom graph of Fig. 4)
the S.I. value distribution appears, indeed, comparatively more
spread than that of the M.H. area (see top of Fig. 4), which can
be correlated with the different characteristics of the land
cover and the different size of the buried structures.

In the M.H. area (top plot of Fig. 4) the highest values of
both indexes are relative to the bands pertinent to the Visible
Near Infrared (V.N.I.R.) region and, in particular, to the spec-
tral range between 0.720 and 0.820 mm. Since these spectral
bands are correlated with the peculiar spectral features of
vegetation, they stress that the buried structures have a relevant
effect on the V.N.I.R. spectral behaviour of the natural vegeta-
tion coverage.

In contrast, the bottom plot, concerned with the W.M.H.A.
area, displays the highest index values in correspondence of
the bands pertaining to the N.I.R., S.W.I.R. and T.I.R. regions:
among them, the spectrum ranges from 1.425 to 1.525 mm,
from 1.990 to 2.20 mm and from 8.785 to 9.600 mm appear
particularly archaeologically significant. This larger number
of noteworthy spectral regions, distributed along all of the
spectrum with respect to the one highlighted in the M.H.
zone, appears related to the major occurrence of soil coverage,
whose spectral signature does not exhibit features sensitive to
the presence of buried structures.

Fig. 4. The two scatterplots show the D.I. vs. S.I. computed from each single

M.I.V.I.S. band for the M.H., W.M.H.A. areas. Bands are shown with different

symbols and colour (see legend) according to their optical port (see Table 1).

The highest values of D.I., S.I. are highlighted with ellipses and with the

relative spectral ranges. The dashed line, drawn as reference, corresponds to

the best fit of all interpreted images.

http://www.openchannelfoundation.org
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5.2. Analysis of multi-band images

Different processing techniques were applied to the hyper-
spectral data set to envisage which methodology better
highlights anomalies generated by the change in the surface
spectral properties induced by presence of buried structures.
For this purpose, the results of the linear transformation of
the N-band space (Principal Component Analysis) and of the
combination of the thermal and visible part of the spectrum
(Apparent Thermal Inertia) were compared, in terms of
abundance and tonal intensity (i.e. D.I. and S.I. values) of
the archaeological marks, with the outputs of the supervised
classification procedures (Minimum Distance and Spectral
Angle Mapper). This analysis is focused on the identification
of a reduced number of output pictures which allows an easier
and quicker visual interpretation.

5.2.1. Principal Component Analysis
Principal Component Analysis (P.C.A.) was applied to the

M.I.V.I.S. data for generating uncorrelated output bands,
capable of better enhancing the tonal lineaments related to
archaeological features. P.C.A. involves that the largest pro-
portion of the data set variability, in the new orthogonal space,
is concentrated in a few bands, called principal components
(P.C.). The relative contribution of every original spectral
band to a P.C. is then represented by the band’s loading factor
in the corresponding eigenvector of the covariance matrix.

Four P.C.A. runs, based on the covariance matrix calcula-
tion, were performed on M.I.V.I.S. subsets partitioned accord-
ing to the four spectrometers wavelength ranges (see Table 1)
in order to preserve the spectrum continuity.

Following the aforementioned visual interpretation criteria,
the P.C. images were analysed in order to determine the corre-
sponding D.I. and S.I. values. Their distribution is depicted in
Fig. 5 for both the M.H. and W.M.H.A. areas, together with
the mean index values (�1s error bar) calculated over all
the single bands belonging to every spectrometer, as shown
in Fig. 4.

The relevance of the P.C. is mainly related to the remark-
able increase in brightness of the tonal anomalies (i.e. S.I.)
with respect to the analysis of the corresponding single image.
Therefore, fewer images (P.C. bands) can be interpreted to
obtain an amount of archaeological information (D.I.) which
is a little larger compared to that obtained by the single image
analysis. The higher S.I. values of the P.C. bands make the
detection of the archaeological features easier and less
affected by interpretation errors. Regarding the spectral ranges
showing the best potential of anomaly detection, the indexes
point out the same regions highlighted by analysing each
M.I.V.I.S. band.

With regard to the archaeological interpretation of the
structures detected by using the P.C.A. approach, the P.C.A.
permitted the recognition of 13 well-defined NNW-SSE
trending lines on the M.H. area and two others perpendicular
to them, while, in the area located north of M.H., a distinct
segment of the main street pattern and two orthogonal streets
were detected. On the W.M.H.A. area, 4 small segments of
linear features were discerned.

5.2.2. Apparent Thermal Inertia
Apparent Thermal Inertia (A.T.I.) is a parameter well

known by geologists and archaeologists [27,28] useful for
the sub-superficial soil prospection. A.T.I. is a physical quan-
tity related to thermal conductivity, density and thermal
capacity and, therefore, it is sensitive to change in porosity
and, subsequently, to the content of soil moisture [29]. A.T.I.
is defined as the ratio, within a given time range, between
the energy absorbed by surface materials and the correspond-
ing temperature changes. A.T.I. is computed according to the
following formula:

A:T:I:¼ ð1�AÞ=ðT1� T2Þ ð3Þ

where A is the mean albedo computed by averaging the
M.I.V.I.S. reflectance values from band 1 (0.44 mm) through
band 13 (0.68 mm), and T1 represents daytime temperature
derived by averaging the values of all M.I.V.I.S. thermal
bands. T2, which usually indicates night-time temperature,

Fig. 5. The two scatterplots show the D.I. vs. S.I. calculated for the PC images

(from 1st to 4th) and A.T.I. for the M.H., W.M.H.A. areas. The PC images are

drawn with different symbols and colours (see legend) according to the optical

port (see Table 1). The mean index values calculated over all the single bands

of each spectrometer is also shown with the �1s error bar. The ellipses and

the dash line (the best fit of all interpreted images), as drawn in Fig. 4, are

superimposed on the plots.
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due to the lack of a pre-dawn M.I.V.I.S. overpass, was
simulated by following the assumption described in Tonelli
[30] that defined T2 with the following formula:

T2¼ Tmin� 0:1ðT1� TminÞ ð4Þ

where Tmin represents the lowest temperature in the image.
This is surely a very robust assumption, but does not require
the co-registration of the daytime and night-time temperature
images with an accuracy at one-quarter of the pixel necessary
to assure the perfect overlapping of the images.

A.T.I. exhibits values for the indexes greater than the
corresponding values pertinent to the first P.C. calculated
from the T.I.R. region (see Fig. 5), but lower in S.I. values,
with respect to the corresponding values of the second PC
bands derived from the V.N.I.R. and N.I.R. regions. This
denotes that, with respect to the analysis of the T.I.R. single
images and of the relative PCs, the combination of VIS and
T.I.R. bands for calculating the ATI improves the D.I. (number
of detected archaeological structures) and slightly the bright-
ness contrast between anomalies and background (S.I.). This
scenario is more evident in the W.M.H.A. area where soil
cover is dominant.

The archaeological interpretation of ATI identified 9 of the
aforementioned NNWeSSE trending lines in the M.H. area
and 4 well-defined segments in the W.M.H.A. sector.

5.2.3. Supervised classification approach
Since the buried elements cannot be described by spectral

signatures identified through either spectral endmembers or
regions of interest (R.O.I.) on the image, it is not possible to
derive a thematic map where these elements are univocally
identified. Nevertheless, as the application of R.S. to archaeol-
ogy is based on the assumption that sub-superficial structures
generate slight differences in the spectral characteristics of the
overlying terrains, distance based classification algorithms can
be worthwhile for highlighting these spectral variations. This
was tested by using the Spectral Angle Mapper (S.A.M.)
[31,32] and the M.D. classification algorithms both based on
the ‘‘spectral distance’’ criterion. The output of both classifica-
tion methods was a thematic map and as many Rule Images
(R.I.) as the input spectral classes. The thematic map is a para-
metric image where each pixel is characterized by a code,
which is indicative of the class with the minimum distance
from the pixel itself. The R.I., instead, returns the spectral
distance value of the considered pixel with respect to each
spectral class. As a consequence, the R.I.s for each pixel
should be more sensitive to even small spectral variations
related to changes of the surface physical/chemical character-
istics than the output images of the aforementioned processing
techniques.

The classification procedures were applied to 83 M.I.V.I.S.
bands covering the first two and the third spectrometers up to
2.4 mm (thus encompassing the V.N.I.R. and S.W.I.R. spectral
regions). Ten R.O.I.s representative of the main land cover
units in the scene, were extracted directly on the screen by dis-
playing False Colour Composites of M.I.V.I.S. bands and
taking into account the information collected during the field
surveys carried out for land cover check. The R.O.I.s were
grouped into four main surface units:

� Archaeological remains, mainly consisting of calcarenite
stones lying within the temple areas in the Acropolis
area and on the Eastern hill (see Fig. 2);
� Lithological outcrops (partly mapped by Amadori [23],

and checked during the field surveys), such as calcarenite,
clay, sand, weathered calcarenite soil and calcarenite
gravel making up the countryside road pavement;
� Vegetation cover, such as photosynthetic vegetation, dry

shrubs, dry grass;
� Water bodies.

With regard to the Lithological Outcrops, the R.O.I.s were
also defined by applying the Purity Pixel procedure (as imple-
mented by ENVI software v4.0) for highlighting the purest
endmember. The thematic maps resulting from the S.A.M.
and M.D. classification techniques exhibit a good level of
accuracy in terms of spatial distribution of the surface units,
in agreement with the geologic map [23] and with field survey
results, thus validating the selection of the input spectral
classes as representative of the main land cover units.

5.2.3.1. S.A.M. classifier. According to the S.A.M. classifica-
tion procedure, the R.I. pixel values represent, within the band
space, the angular differences (expressed in radiance from 0 to
p/2) between the spectrum of every pixel and the spectrum of
one endmember. The algorithm determines the spectral simi-
larity on the basis of the spectral shape and, thus, it is not
sensitive to brightness differences. Therefore, the S.A.M.
does not discriminate among different moisture content within
the same terrain, which in the literature is reported as a primary
factor for identifying buried structures [33].

The indexes calculated in the M.H. and W.M.H.A. areas,
show (see Fig. 6) that the R.I.s of the S.A.M. exhibit the larg-
est number of archaeological marks (D.I.) identified with the
greatest brightness contrast between traces and background
(S.I.). In the S.I. vs. D.I. space these index values appear
clearly clustered in the upper right part of the scatterplots
(markedly parted from the more scattered values relative to
all the other methods), except for the indexes relative to the
R.I. of dry grass. This result stresses that independently of
the different soil coverage of the two test areas, the S.A.M.
algorithm leads to the most relevant results in terms of
archaeological detection performance.

The archaeological interpretation followed out in M.H. the
13 NNWeSSE trending segments of the ancient street
network of the town and one segment orthogonal to them,
stretching along the entire longitudinal axis of the hill. The
two longest lineaments, with NNWeSSE orientation, continue
as far as the Acropolis area, while in the W.M.H.A. area 5
linear structures were detected with EeW orientation.

5.2.3.2. M.D. classifier. As far as the M.D. classification
algorithm is concerned, the relative pixel values of the R.I.
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are the Euclidean distance calculated between the spectrum of
a pixel and the mean spectrum of every training spectral class.
The M.D. algorithm estimates the similarity between two
spectra in terms of intensity; for instance, spectra of the
same terrain are considered dissimilar if characterized by
different moisture content which controls the pixel brightness
[34].

In the S.I. vs. D.I. space the index values of the marks iden-
tified on the R.I.s within the M.H. area (see top plot of Fig. 6),
lie within the ranges defined by the single image analysis as
shown in Fig. 4 and with values lower than the indexes ob-
tained by the P.C. and A.T.I. analysis. The indexes computed
for W.M.H.A., instead, are noticeably higher than the corre-
sponding indexes obtained by the analysis of single images,
A.T.I. and P.C.s, and they are closer to the values obtained
with the S.A.M. Such evidence was checked by calculating
the distance between the barycentre of the cloud of the
S.A.M. and the M.D. index values: for M.H., the distance
between the two barycentres is 33 while for W.M.H.A. it is
25. Concerning the archaeological relevance of the spectral
classes, the primary contribution to archaeological prospection
in both areas (pointed by high values of both indexes) was
related to the class of weathered calcarenite (see Fig. 6).

Fig. 6. The two scatterplots show the D.I. vs. S.I. values computed from the

outputs of the processing method (P.C., A.T.I.) and the supervised classifica-

tion (M.D., S.A.M.) for the M.H., W.M.H.A. areas. The P.C. bands are de-

picted with symbols and colours relative to M.I.V.I.S spectrometers (see

legend). The dashed line corresponds to the best fit of these images.
The archaeological interpretation of all the R.I.s of the
M.D. classification recognized 9 lineaments of the street net-
work with NNWeSSE orientation. and one axis orthogonal
to them in M.H, while only 5 linear structures with EeW
orientation were detected in W.M.H.A.

6. Discussion

The distribution of S.I. vs. D.I. (Figs. 4e6) points out that
the ‘band combination analyses’ reveal a higher tonal contrast
with respect to the ‘single image analysis’. The advantage of
using ‘band combination analyses’ is mainly based on the
possibility to gather the archaeological information content
of the entire hyperspectral data set in a reduced number of
images as a function of the soil cover typology (different
behaviour for M.H. and W.M.H.A.).

The linear combination of the N-band spectral space in the
P.C. transformation and in the A.T.I. product does not produce
images with a noteworthy increase of the archaeological infor-
mation content. This is expressed in terms of a similar number
of marks (D.I.), even though it determines a slight increment
of their contrast (S.I.), thus helping the interpreter’s work in
drawing the marks. The plots of the single images (Fig. 4),
the P.C. and the A.T.I. images reveal that their archaeological
information content is comparable and it is related to the
different land cover characteristics. These methods point out
a similar spectral range as the most relevant in terms of
archaeological information.

V.N.I.R. and specifically the 0.68e0.82 mm spectral range
appears noteworthy where the natural vegetation is related to
the absorption peak of red and the infrared plateau of vegeta-
tion. On the contrary, the N.I.R. (bands between 1.42 and
1.52 mm), S.W.I.R. (bands between 1.99 and 2.2 mm) and
T.I.R. (channels between 8.785 and 9.60 mm) spectral ranges
appear the most useful in terms of archaeological information
where bare soil coverage becomes relevant. Spectrum of
Selinunte bare soil, in fact, does not exhibit any peculiar peaks
that change with the presence or absence of the buried
structures.

An important increment in the ability of detecting marks
(Fig. 6), instead, is attained by the application of image
processing techniques such as the classification algorithms
that improve the potential of anomaly detection related to
man-made structures according to the goodness of the training
class selection.

The plot of the index values (Fig. 6), calculated from all the
band combination images (S.A.M., M.D., A.T.I., P.C.s), shows
a clear direct linear correlation between the two indexes
(R2 ¼ 0.676 for M.H. and R2 ¼ 0.722 for W.M.H.A.); this
stresses that in those areas characterized by higher tonal differ-
ences it is possible to count more archaeological marks and
vice versa. Since the regression line built for the W.M.H.A.
area intersects the S.I. axis, this points out that in this area
there is a threshold limit for the detection of the anomalies.
This threshold, which is not present in the M.H. area, could
be related to the different widths of the street axes buried in
the two areas: M.H. exhibits both Plateiae, as wide as
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w6 m, and Stenophoi, as wide as 3 m, whereas W.M.H.A.
exhibits only Stenophoi. As a consequence, it can be derived
that a different tonal intensity of the archaeological marks is
required for detecting a comparable number of anomalies.

To assign an archaeological value to the marks detected on
the hyperspectral data set, the tonal anomalies were evaluated
by experts to verify their consistency with the state-of-art of
archaeological information about the ancient Selinunte site.
This analysis identified (Fig. 7) in M.H. 13 NNWeSSE trend-
ing street axes of the ancient town and two streets orthogonal
to them. The longest among the 13 lineaments was associated
to the Plateia 0 by Di Vita [18], and its parallel street to the
West was identified as Stenophòs I West by Di Vita [18,21],
the traces of which can be followed as far as the southern
boundary of the hill. Curvilinear traces found along the north-
ern slope of M.H. seem to correspond to town-wall remains.
The same area shows one NNWeSSE trending lineament
and 2 orthogonal traces that could testify a northward exten-
sion of the main street system of the city. This archaeological
outcome was hypothesized by Zoppi [35] and confirmed by
Mertens [17] on the basis of geophysical surveys. In the
Cottone creek valley, to the east of the Acropolis area, two
EeW trending lineaments were checked in 2003 by field
geophysical surveys. Along the left bank of the Modione creek
(W.M.H.A. area), some segments of 9 linear structures with
EeW orientation were detected. This pattern, confirmed by
excavation test sites [36e40]and by geophysical surveys
[21], represents the extension of the Acropolis street system.

In order to evaluate how better these results are than those
derivable by investigating historical aerophotos, a similar
procedure was applied to the available frames. Such pictures
were collected in 1968 on 1:13,500 scale, in 1971 on 1:4000
and 1:8000 scales, in 1973 on 1:5000 and 1:10,000 scales,
in 1975 and in 1987 on 1:10,000 scale as colour prints, and
in 1993 on 1:8000 scale. The aerial photos, taken in 1971,
1975 and 1993, identify traces that are mostly located in the
M.H. area and correspond to the main street axes with
NNWeSSE orientation. Among the analysed frames, the
1975 pictures proved to be helpful for detecting the street ma-
jor axis Plateia 0 [18] on M.H., the anomalies on the Eastern
hill, probably related to a Roman villa, and some irregularly
shaped traces along the northern slopes of M.H., also visible
on the 1971 photos. As a whole, the analysed historical frames
made it possible to depict in M.H. the main NNWeSSE trend-
ing street network, while the aerophotos interpreted by
Schmiedt [19] allowed the identification of traces of the
main network and two lineaments orthogonal to it.

This analysis has stressed that single M.I.V.I.S. bands carry
archaeological information comparable to that derived by
interpreting the available aerophotos, while best results, in
terms of number of identified structures and anomaly tonal
intensity, are obtained by analysing the output of M.I.V.I.S.
data processing (Fig. 7).

These differences highlight the greater detection efficiency
of a single hyperspectral survey, with respect to aerial photo-
graphs acquired in different years and under various environ-
mental conditions (as was also surmised by Fowler [5]).

7. Concluding remarks

The proposed study has shown that airborne hyperspectral
R.S. is a powerful prospection tool for identifying marks
related to sub-superficial archaelogical structures. These
structures yield variations in the spectral properties of terrain
surfaces clearly perceptible on the hyperspectral images as
tonal anomalies.
Fig. 7. The left picture shows the ensemble of the archaeological anomalies highlighted by all by-products of M.I.V.I.S. data; the right picture shows the street

network highlighted by the geophysical surveys [17].
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The image processing techniques applied to M.I.V.I.S. data
provided the highest archaeological content and allowed to
concentrate this content in a few images, making the image
interpretation procedure quick and efficient in terms of archae-
ological detection. Moreover, the wide spectral range sampled
by the hyperspectral scanner allowed determination of which
spectral range is the most valuable to highlight anomalies.

The archaeological detection relevance of the airborne
remotely sensed hyperspectral data was evaluated by introduc-
ing two new indexes, the Detection Index and Separability In-
dex, which respectively describe the archaeological detection
potential of an image in terms of amount and tonal intensity
of the marks. The comparative analysis of the index values
in the S.I. vs. D.I. space allowed ranking of the archaeological
information content gathered by the interpreted images.

It was established that, where land cover is mainly charac-
terized by spontaneous vegetation (i.e. grass and xeritic
shrubs), the VIS-N.I.R. ranges appear the most significant
spectral regions for the archaeological detection. Conversely,
where the vegetation cover is sparse, tonal changes related
to buried remains can also be perceived in the S.W.I.R. region,
according to the soil local spectral characteristics, and in the
T.I.R. region of the spectrum.

It was verified that the best performing processing method
is the S.A.M. algorithm, based on the angular distance
parameter, whose index values appear the most clustered in
the S.I.eD.I. space and invariant with respect to the land
cover. In particular, the S.A.M. algorithm is performing quite
well in terrains with a large presence of vegetation because it
allows measurement of the slight changes in vegetation status
induced by sub-superficial structures, while it is not sensitive
to the soil brightness variations. Similarly, in terrains with
a larger occurrence of soil components, the M.D. algorithm,
based on the Euclidean distance parameter, is sensitive to
the soil brightness variations that can be correlated to changes
in moisture content induced by buried structures.

Regarding the archaeological structures identified by analy-
sing the M.I.V.I.S. data over the Selinunte test site, the results
appear to match those of an extensive geophysical survey
carried out throughout the area of the ancient city [17]. In
particular, the presence of segments of town-walls and traces
of the urban street network to the north of Manuzza Hill
near Casa Paola was confirmed.

As final remark, the archaeological results gathered from
the data processing flow chart applied to the M.I.V.I.S. data
over Selinunte appear to be encouraging for prospecting
archaeological structures. Therefore, such analysis is suitable
for future applications in other areas with different land cover
and anomaly characteristics, in order thus to confirm the apti-
tude of the hyperspectral data as a new complementary tool for
archaeological prospection.

8. List of acronyms and abbreviations

A.T.I. apparent thermal inertia
AT. REM. ATmosphere REMoval
D.I. detection index
I.F.O.V. istantaneous field of view
L.A.R.A. Airborne Laboratory for Environmental Research
M.D. minimum distance algorithm
M.H. Manuzza Hill
M.I.V.I.S. multispectral infrared and visible imaging
spectrometer
N.I.R. near infrared
P.C. principal components
P.C.A. principal component analysis
R.I. rule image
R.O.I. region of interest
R.S. remote sensing
S.A.M. spectral angle mapper algorithm
S.I. separability index
S.W.I.R. short wave infrared
T.I.R. thermal infrared
VIS visible
V.N.I.R. visible near infrared
W.M.H.A. western slope of Manuzza Hill and of the
Acropolis
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