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A B S T R A C T

Cell heterogeneity studies using single-cell sequencing are gaining great significance in the era of personalized
medicine. In particular, characterization of tumor heterogeneity is an emergent issue to improve clinical on-
cology, since both inter- and intra-tumor level heterogeneity influence the utility and application of molecular
classifications through specific biomarkers. Majority of studies have exploited gene expression to discriminate
cell types. However, to provide a more nuanced view of the underlying differences, isoform expression and
alternative splicing events have to be analyzed in detail.

In this study, we utilize publicly available single cell and bulk RNA sequencing datasets of breast cancer cells
from primary tumors and immortalized cell lines. Breast cancer is very heterogeneous with well defined mo-
lecular subtypes and was therefore chosen for this study. RNA-seq data were explored in terms of genes, isoforms
abundance and splicing events. The study was conducted from an average based approach (gene level expres-
sion) to detailed and deeper ones (isoforms abundance/splicing events) to perform a comparative analysis, and,
thus, highlight the importance of the splicing machinery in defining the tumor heterogeneity. Moreover, here we
demonstrate how the investigation of gene isoforms expression can help to identify the appropriate in vitro
models. We furthermore extracted marker isoforms, and alternatively spliced genes between and within the
different single cell populations to improve the classification of the breast cancer subtypes.

1. Introduction

1.1. Opportunities from new technologies

The emergence of new sequencing methods and analysis approaches
allows deepening of the study into nucleic acids, concerning sequence,
interaction, and abundance. In the era of personalized medicine, the
primary purpose of research is the possibility to investigate and char-
acterize biological phenomena, taking into account the heterogeneity
among and within individuals, both in health and disease conditions.
The need for such detailed information is particularly urgent in the case
of highly heterogeneous diseases, such as cancer. Tumor heterogeneity
can be classified as inter-tumor (tumor by tumor) and intra-tumor
(within a tumor) heterogeneity. Tumor heterogeneity is the major
contributing factor for the refractory nature of many cancers (Dagogo-
Jack and Shaw, 2018). Traditional approaches applied to the study of
the transcriptome can be considered as average-based methods and can
lead to the loss of significant information. Specifically, bulk level mo-
lecular phenotyping represents the outcome phenotyping of a large

number of cells and does not take into account factors such as clonal
evolution, tissue hierarchies, rare cells and dynamic cell states. As op-
posed to this, single-cell RNA sequencing (scRNA-Seq) allows us to
analyze gene expression variability at the single-cell level (Deng et al.,
2014; Wang and Navin, 2015) and thus also to investigate the hetero-
geneity among cells. ScRNA-Seq is becoming more popular year after
year in spite of the higher cost and has been exploited in a wide range of
research topics, including studies of circulating tumor cells (Ramskö
et al., 2012; Deng et al., 2014), breast cancer (Nguyen et al., 2018;
Chung et al., 2017; Savas et al., 2018), prostate cancer (Horning et al.,
2017), transcriptional dynamics (Trapnell et al., 2014), cell cycle
(Kowalczyk et al., 2015), tissue heterogeneity (Achim et al., 2015) and
many others. Algorithms, pipelines, and methods for analyzing data
coming from single-cell sequencing represent an exciting and challen-
ging issue for bioinformatics. Gene-level abundance estimation can also
be considered as an average-based method of investigating the reg-
ulation of transcription machinery since gene expression is the result of
different isoform contributions. Alternative splicing (AS) considerably
expands the functional repertoire of eukaryotic genomes.
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Transcriptional isoforms are mRNA molecules originating from the
same locus but having different length and exon composition, and, as a
consequence, they give rise to multiple forms of the corresponding
protein. This diversity can derive from different transcriptional starting
or polyadenylation sites, or mostly from alternative splicing mechan-
isms (Black, 2003; Matlin et al., 2005). There are numerous studies of
alternative splicing using bulk-cell RNA-Seq, but, to date, there are
relatively few studies that are focused on characterization of isoforms
expression at the single-cell level (Song et al., 2017; Vu et al., 2018;
Faigenbloom et al., 2015). The characterization of transcriptional het-
erogeneity at the single cell level is a powerful resource to fulfill dif-
ferent tasks and in the current study, we address some of them.

1.2. Primary vs immortalized cell lines

Despite rapid scientific progress, cell line-based assays still re-
present an essential tool for pharmaceutical, chemical, medical and
cosmetic industries. The lower costs, easiness of handling of culture
methods, and high reproducibility ensure their extensive use. However,
the relevance of cell lines as tumor models strongly depends on the type
of experimental approach and on how close their molecular landscape
is to that of tumor tissue (Gillet et al., 2013). Thus, the investigation
and the definition of this closeness is a critical issue and might lead to
better use of the in vitro models. Many works have highlighted a weak
correlation between cell lines and tumors in terms of CNV, mutation,
gene, and protein expression (Jiang et al., 2016; Vincent et al., 2015;
Ahmed et al., 2013; Ince et al., 2015; Qiu et al., 2016). To the best of
our knowledge, there are no studies which have considered transcrip-
tional isoforms to compare immortalized and primary cell lines. We
addressed this issue in previous work and highlighted the presence of
alternative splicing events and possible causative nucleotide variants
which likely determine the distance between hepatocellular carcinoma
cells and HepG2 cell line (Tripathi et al., 2017). Nonetheless, in our
opinion, increasing the resolution of the analysis can help identify the
right model for the specific condition, rather than weaken the possi-
bility to use such widespread models. Breast cancer is one of the most
heterogeneous tumors and greatly differs among patients (inter-tumor
heterogeneity) and even within each tumor (intra-tumor heterogeneity)
(Badve, 2016).

1.3. Tumor heterogeneity

Characterization of molecular signatures is an indicator of genetic
tumor heterogeneity, which can lead to improved stratification for
personalized therapy. The intra-tumor heterogeneity occurs at the
morphologic, genomic, transcriptomic, and proteomic levels, thus de-
termining new diagnostic and therapeutic challenges. Understanding
the players and mechanisms underlying tumor heterogeneity has be-
come crucial. The overall knowledge of tumor heterogeneity has dras-
tically increased, and theories based on cancer stem cells have become
very popular (Batlle and Clevers, 2017), but, still, there are only limited
advancements in diagnostic, prognostic, or predictive strategies for
breast cancer. Discovery and validation of biomarkers aim to maximize
patient eligibility for targeted therapy, but the intra-tumor hetero-
geneity is rarely considered in these cases. Molecular classification of
breast cancer is not implemented in routine clinical practice. New in-
depth analyses are required to manage and get insight from the vast
amount of data continuously produced. Genetic expression patterns
divide breast cancer into four major molecular subtypes with prognostic
and therapeutic implications: Luminal A (lum A), Luminal B (lum B),
HER2-enriched (HER2+), and basal-like (Dai et al., 2015). The lum A
and lum B subtypes have better survival than HER2+ and Basal-like
subtypes. Each of the four subtypes is nicely mapped to an im-
munohistochemical-defined subtype. Both luminal subtypes express ER,
but the lum B tumors are characterized by increased expression of
proliferation-associated genes and have a worse prognosis than lum A

tumors. The HER2+ subtype is characterized by increased expression
of HER2 and proliferation genes and includes ER−/PR−/HER2+ and
ER+/PR+/HER2+ tumors. The basal-like subtype is enriched for
genes expressed in basal epithelial cells, of which 70% are triple-ne-
gative (TN) with ER−/PR−/HER2− profile. Several studies have been
aimed at identifying gene expression signatures of these subtypes with
various numbers of genes included. For instance, Hu et al. (2006) found
a 306 genes signature that can distinguish these subtypes with sig-
nificant differences observed on relapse-free and overall survival.
Parker et al. reported a 50-gene classifier (PAM50) which contains
mostly hormone receptor and proliferation-related genes, and genes
exhibiting myoepithelial and basal features. The subtypes can be as-
sessed using a multiplexed gene-expression profiling technology (Na-
noString Technologies; Seattle, WA, USA) which has significant prog-
nostic and predictive values on breast tumors and can be widely applied
in the clinical setting (Parker et al., 2009). Although containing dif-
ferent genes, the signatures identified by different studies should belong
to the same pathways, thus not generating a divergent classification of
samples. Unfortunately, this is still not possible due to the lack of
stringent standardization of the methodology and breast cancer in-
trinsic subtype definition. Immunohistochemical panels are often used
to improve the accuracy of PAM50 array based classification (Allott
et al., 2018). Misclassification can be due to the presence of normal
breast tissue or stroma contamination into the samples (Elloumi et al.,
2011). From this perspective, the use of single-cell sequencing comes to
aid, since the discrimination of single cells allows to remove the non-
tumor cells from the downstream analyses. It is our opinion that, also, a
different regulation of the splicing machinery can strongly be im-
plicated in heterogeneity mechanisms. Here we present a comparative
study to highlight the importance and the influence of splicing variants
in defining the intra- and inter-tumor heterogeneity, and how they can
help in improving the accuracy of subtypes classification.

2. Materials and methods

2.1. Data and sequencing files pre-processing

RNA sequencing data of single cells were obtained from publicly
available datasets. Since our study was focused on isoforms and splicing
event analysis, we searched for all available single cell datasets ob-
tained from full length sequencing protocols as UMI based data is not
suitable for such studies. The first single cell public dataset was ob-
tained from patients with different subtypes of breast cancer: Lum A
(BC01, BC02), Lum B (BC03), HER2+ (BC04–BC06) and TN
(BC07–BC11). Single cells from metastatic lymph nodes were also ob-
tained from two patients BC03LN and BC07LN. 317 single cells which
were identified as epithelial breast cancer cells after performing tumor
purity estimation by Chung et al were downloaded from the Gene
Expression Omnibus (GEO) portal (GSE75688). Out of these samples 75
single cells from patient BC05 were excluded as this patient had un-
dergone neoadjuvant chemotherapy and Herceptin treatment, while the
other patients had not undertaken treatment prior to mastectomy.

Sequencing data of 96 single cells of MDA-MB-231 and T47D cell
lines were obtained from the NCBI Sequence Read Archive:
PRJNA419090, while data of 68 cells from MCF7 and SKBR3 were
downloaded from the EBI European Nucleotide Archive (ERP022266).
Bulk sequencing data were obtained from the GEO portal: primary
samples (GSE71651), MCF7 (GSE80537), MDA-MB-468 (GSE90519)
and BT549 (GSE112365) and EBI ENA: SKBR3 (ERP022266). FastQC
(Andrews et al., 2010) was used for quality control of reads and Trim
Galore (Krueger and Galore, 2015) was used for trimming reads and
library adapters.

2.2. Genes and isoforms abundance estimation

Reads from both bulk and single cell samples were aligned to the
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hg38v27 human reference genome using STAR (Dobin et al., 2013) in
the two-pass mode. TPM normalized gene and isoform counts were
obtained using RSEM (v1.3.0) (Li and Dewey, 2011). Single cells with a
mapping rate ≥60% and ≥1 million reads were retained. Cells were
filtered based on the total number of reads, the number of genes de-
tected and the percentage of mitochondrial genes. Finally, 351 single
cells passed the QC criteria and were used for downstream analyses.
Genes/isoforms expressed in ≤8 cells were removed and TPM expres-
sion values ≤5 were replaced with zero. Seurat (Macosko et al., 2015)
R package was used to log normalize single cell expression data and for
the detection of highly variable genes/isoforms. We also used Seurat to
identify the presence of batch effects by regressing out the different
experimental batches. On visualization with Principal component ana-
lysis (PCA), we identified no effects of batch and proceeded without any
correction. TPM counts of bulk samples were log normalized and highly
variable genes were detected using the genefilter R package (Gentleman
et al., 2018).

PCA and t-Distributed Stochastic Neighbor Embedding (t-SNE) were
used for gene/isoform expression visualization of bulk and single cell
samples, as well as primary tumors and cell lines. To study the clus-
tering pattern of single cells belonging to primary tumors and cell lines,
clustering based on isoforms expression was performed using Seurat.
Seurat performs clustering by constructing a Shared Nearest Neighbor
(SNN) graph and then optimizing the modularity function (Waltman
and Van Eck, 2013). We set different resolution parameters ranging
from 0.5 to 2 to assess optimal cell clustering.

Differential isoforms expression analysis of primary tumor subtypes
was performed using the Wilcoxon rank-sum test available in Seurat.
131 marker isoforms with an adjusted p-value ≤0.05 and ≥2 average
fold change were detected and gene set enrichment analysis was per-
formed using the Molecular Signature Database (MSigDB)
(Subramanian et al., 2005; Liberzon et al., 2011, 2015).

2.3. Alternative splicing events detection

Alternative splicing analysis of single cells was performed using
BRIE, the Bayesian Regression for Isoform Estimation tool (Huang and

Sanguinetti, 2017). Brie outputs two different outputs: (1) table of the
genes with alternative splicing events and the associated FPKM values
per each sample; (2) a list of differentially spliced events ranked by the
number of cell pairs in which the splicing events are detected. We used
both the output files for two different purposes: (1) to detect the inter-
tumor heterogeneity we extracted FPKM normalized isoform estimates
from the BRIE output for different tumor subtypes. We then applied the
Wilcoxon rank-sum test in Seurat and identified 95 alternatively spliced
genes (adjusted p-value ≤0.05 and ≥2 average fold change); (2) to
investigate the differential splicing within groups. We chose a threshold
of events detected in at least in ≥30% of total cells. This translates to a
cell pair threshold of ≥30% of possible pairwise cell comparisons given
by nCr where n is the number of cells and r is equal to 2.

2.4. Subtypes classification

Classification was performed using the sequential minimal optimi-
zation (SMO) (Platt, 1999) algorithm, an implementation of support
vector machine (SVM) classification available in WEKA (Hall et al.,
2009). We used three lists of genes/isoforms for comparison of subtype
classification. (A) Top 50 expressed marker isoforms; (B) top 50 alter-
natively spliced marker genes; and (C) the Pam50 gene set. We used the
Poly kernel followed by a ten-fold cross-validation to assess the accu-
racy of the three models in classifying cells into the four different tumor
subtypes. The number of correct and incorrect predictions is summar-
ized with count values in the confusion matrix.

3. Results and discussion

3.1. Isoform-level abundance of single cells better discriminates breast
cancer subtypes

Both single cell and bulk sequencing data were subjected to di-
mensionality reduction techniques to investigate the similarity among
the groups under study. Principal component analysis (PCA) was ap-
plied to bulk data, while t-distributed Stochastic Neighbor Embedding
(t-SNE) was used for single cell since it can capture complex non-linear

Fig. 1. PCA of bulk sequencing data. PCA was performed on gene-level (A) and isoform-level (B) expression of primary tumor samples, as well as on gene-level (C)
and isoform-level (D) expression of immortalized cell lines, models for the subtypes indicated in the relative legend.
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structures better than PCA and it is suitable to find cell-types. Gene and
isoform level abundances were used separately to perform the analysis
and to compare the discriminative power of the two approaches. As
shown in Fig. 1A and B, the bulk sequencing of primary cells does not
show any difference between the gene and isoform expression, indeed,
in both cases, the samples belonging to the same subtype showed dis-
homogeneity. Even for the immortalized cell lines, gene and isoform
abundance provided the same visualization but with an expected higher
homogeneity (Fig. 1C and D).

Single cell data allowed us to go into details of the inter-tumor and
intra-tumor heterogeneity. As shown in Fig. 2A and B, there was a good
separation of the different samples. The overall distribution highlights
some differences between the gene- (A) and isoform (B) level, sug-
gesting that the isoform expression, rather than genes, contributes to
the intra-tumor heterogeneity. TN cells presented more spread at iso-
form-level and there is more closeness with lum A BC01 and lum B
BC03 along the t-SNE 1. The Lum A patients BC01 and BC02 were close
at gene-level but the isoforms determined their separation along both t-
SNE 1 and t-SNE 2. The HER2+ patient BC06 showed in both cases a
great similarity with TN cells rather than with the patient of the same
subtype BC04. The gene expression placed close the patients having
lymph node metastasis, BC03/BC03LN and BC07/BC07LN, even if they

belonged to Lum B and TN respectively. This closeness was instead not
present in the case of the isoform expression. It is also worthy of notice
that the metastatic site cells showed the same signature of the primary
tumor. Moreover, the sample BC07, which is classified as TN, was
distant from the samples belonging to the same subtype, likely due to
the presence of metastasis, but at isoform-level, some of its cells were
closer to the other TN samples, suggesting an intra-tumor heterogeneity
made of primary cells and cells with metastatic potential, which was
not recognizable at gene-level. Lum A BC01 and Lum B BC03 patients
showed isoform level similarity and gene level divergences. Regarding
the cell lines, no differences were evaluable between gene and isoform
level expression and the group of cells were well defined and homo-
geneous in both cases (Fig. 2C and D).

3.2. Clustering based on isoforms expression reveals the inter- and intra-
tumor heterogeneity

Unsupervised clustering was performed on isoforms expression of
samples to investigate the tumor heterogeneity and the different cell
types. The clusters were then plotted in the space of the t-SNE for vi-
sualization. Clustering of all primary cells (Fig. 3) highlighted that the
two Lum A patients showed such a different pattern of expression to fall

Fig. 2. t-SNE of single-cell sequencing data. t-SNE was performed on gene-level (A) and isoform-level (B) expression of primary tumor samples, as well as on gene-
level (C) and isoform-level (D) expression of immortalized cell lines, models for the subtypes indicated in the relative legend.
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into two different clusters. One of them, BC01, was closer to Lum B
patient BC03. At the same cluster belonged the HER2+ sample BC06 as
well, which seemed to be divided between this cluster and the one
containing the vast majority of TN samples, but distant from the cluster
containing the other HER2+ sample, BC04, which instead formed one
cluster alone. TN samples, as already seen by previous analysis, were
divided into metastatic and not metastatic tumor, even though the
metastatic tumor patient, BC07, had some cells belonging to the cluster
of non-metastatic samples.

In order to better interpret the unexpected localization of some
cells, we plotted the expression of HER2 expression at gene and isoform
level (Fig. 4).

The most predominant isoforms were ENST00000541774.5 (pro-
tein-coding) and ENST00000583038.5 (no protein due to retained in-
tron). The protein-coding isoform was highly expressed in most of the
cells of HER2+ sample BC04, less in BC06, where some cells showed
low or no expression of this isoform and higher expression of the no-
protein isoform. The other HER2 enriched subtype, Lum B, showed
higher expression of HER2 in lymph node metastasis than in the pri-
mary tumor. The rest of the samples had predominantly the no-protein
isoform. The gene-level, as expected, showed an average expression of
the two isoforms. This result confirms that the molecular subtype dis-
tinction, based essentially on the expression of ER, PgR and HER2, is
not valid for all the cells of one tumor tissue. Cluster analysis was also

Fig. 3. Clustering of primary cells (A) plotted into the space of t-SNE (B).

Fig. 4. HER2 gene-level and isoform-level expression in the single cells of patients under study.
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Fig. 5. Clustering of Lum A primary cells and its specific in vitro models (A) plotted into the space of t-SNE (B).

Fig. 6. Clustering of TN primary cells and its specific in vitro models (A) plotted into the space of t-SNE (B).

Fig. 7. Sashimi plot of alternative splicing of IP6K2 depicting
the skipping of exon 3 in BC02 cells. BC01 presents some cells
having predominantly the isoform with the exon included
(top) and some having both the isoforms (middle), high-
lighting the intra-tumor heterogeneity related to this gene.
The left panel shows the sashimi plot of the read density and
the number of junction reads. The right panel shows the prior
distribution (blue curve) and the histogram of the posterior
distribution, learned by BRIE. The red line in the histogram
represents the mean. (For interpretation of the references to
color in this figure legend, the reader is referred to the web
version of this article.)
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performed to verify the closeness of the primary to the in vitro model
subtypes. We collected data of two in vitro models of Lum A subtype,
namely MCF7 and T47D. The literature recognizes T47D as one of the
cell lines mostly similar to primary tumors (Jiang et al., 2016). Our
analysis partially confirmed this assumption, since MCF7 appears to be
distant from both the patients, while T47D represent a good model for
BC01 belonging to the same cluster. Our analysis suggests that the
choice of the right model should contemplate a deeper evaluation of
tumor heterogeneity. Indeed, the plot shows that BC02 is not well re-
presented by none of the two models, but only two cells clustered with
T47D (Fig. 5).

The same was done for TN cells. We could analyze only one im-
mortalized cell line model, MDA-MB-231, and it resulted to be a bad
model of study for all the patients of the dataset (Fig. 6).

3.3. Isoforms’ markers are involved in immune system response

131 significant (Bonferroni adjusted p-value ≤0.05) isoforms’
markers were detected through Wilcoxon rank-sum test. The Gene Set
Enrichment Analysis (GSEA) based on Gene Ontology Biological
Process (GO-BP) returned 10 significant overlapping terms, all re-
garding immune system response, response to external stimuli and
defense response (Supplementary File 1). Particularly, interferon in-
volvement came out from the hallmark genes enrichment. It has been
demonstrated that the immune system plays a dual role in tumor in-
itiation and progression, capable of both inhibiting and promoting
tumor expansion. It is also considered for further classification of TN
breast cancer, based on whether the immune system is im-
munosuppressed or activated with a different prognostic indication
(Nagarajan and McArdle, 2018). The immune system response, coming
from the interaction between cancer and infiltrating immune cells,
should therefore always be considered for a better understanding of
subtypes and their prognosis.

3.4. Alternative splicing events contribute to the inter- and intra-tumor
heterogeneity

Splicing events detection is generally limited to bulk data, and as
discussed previously, the variability between single cells is often pur-
sued at the gene level. Methods to analyze splicing in single cells are
still in development, but it is well known that algorithms suitable for
bulk data are not easily adaptable to single-cells for several reasons,
such as minute amounts of starting material, low cDNA conversion ef-
ficiency, low coverage, and high technical noise. Due to this, we used an
ad hoc tool named BRIE (Huang and Sanguinetti, 2017) which is re-
ported to be strongly outperforming compared to other methods, as
RSEM (Li and Dewey, 2011), Cufflinks (Trapnell et al., 2010), Kallisto
(Bray et al., 2016), rMATS (Shen et al., 2014), etc. The output of BRIE is
the estimation of an approximate posterior distribution on the values
(exon inclusion ratio) as well as the learned regression weights. For
each isoform (exon inclusion and exclusion) the number of cell pairs in
which it is alternatively spliced is reported. For each comparison we
made, we considered a different threshold of cell pairs based on the
total number of cells contributing to the comparison. We kept an event
if it was present in at least 30% of the cells. The lists of the filtered
events are reported in Supplementary File 2. Most of the alternatively
spliced genes are involved in splicing regulation, indicating a different
regulation of the splicing machinery that contributes to the overall
heterogeneity. Among all, it is worth noticing the presence of the het-
erogeneous nuclear ribonucleoprotein (HNRNP) family genes, in Lum
A, TN, and HER2+ subtypes. Particularly, HNRNP C seems to regulate
the stability and/or translation of the proteins BRCA1/2 (Anantha et al.,
2013). Furthermore, it has been shown that HNRNP C presence influ-
ences the activation of interferon response (Wu et al., 2018). This result

Fig. 8. Sashimi plot of alternative splicing of KLF6 depicting
the skipping of exon 3 in BC07 LN cells (bottom). The left
panel shows the sashimi plot of the read density and the
number of junction reads. The right panel shows the prior
distribution (blue curve) and the histogram of the posterior
distribution, learned by BRIE. The red line in the histogram
represents the mean. (For interpretation of the references to
color in this figure legend, the reader is referred to the web
version of this article.)

Table 1
Confusion Matrices for Best Accuracy Results on Breast cancer subtypes by
PAM50, isoform markers (this study) and alternatively spliced genes (this
study) signatures. The confusion matrix has been obtained by 10-fold cross
validation of the best classification accuracies. The value of the classification
accuracy obtained using the different gene lists is shown at the top of the tables.
The number of correct and incorrect predictions is summarized with count
values. The values having the same label on rows and columns represents the
number of corrected prediction for that particular class, the others are the
counts of incorrected predictions.

PAM50 – accuracy 91.63%

Lum A HER2+ Lum B TN

71 0 0 1 Lum A
0 34 0 8 HER2+
1 0 24 0 Lum B
3 6 0 79 TN

Isoforms’ markers (Seurat) – accuracy 98.24%

Lum A HER2+ Lum B TN

71 0 0 1 Lum A
0 41 0 1 HER2+
0 0 25 0 Lum B
0 2 0 86 TN

Alternatively spliced genes (BRIE) – accuracy 98.68%

Lum A HER2+ Lum B TN

71 0 0 1 Lum A
0 41 0 1 HER2+
0 0 25 0 Lum B
0 1 0 87 TN
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was in agreement with what we got from the enrichment of markers,
indicating a possible connection among splicing events, isoform ex-
pression regulation, and tumoral heterogeneity. The role of HNRNP
family members in cancer progression and metastasis has been in-
vestigated in several studies (Geuens et al., 2016; Han et al., 2013;
Gallardo et al., 2016; Zhou et al., 2013; Capaia et al., 2018; Ferrari
et al., 2017). As a confirmation of the prognostic differences found
within the subtypes, it is worth noticing that among the alternatively
spliced genes in Lum A patients BC01 and BC02 we found IP6K2, which
is a well known factor involved in risk, survival, and prognosis of
several types of cancer (Tan et al., 2015; Rao et al., 2015), as also re-
ported by Kaplan–Meier plots deposited in Human Protein Atlas data-
base (Uhlen et al., 2010). The sashimi plots (Fig. 7) show the presence
of two different IP6K2 isoforms in the two Lum A patients and in BC02
an exon skipping event has been detected.

Among the alternatively spliced genes found within the TN cells,
Kruppel-like factor 6 (KLF6) showed an exon skipping event (Fig. 8) in
lymph node metastasis of BC07 patient. The resulting isoform is already
known as SV3 variant. This gene is a transcriptional activator, and
functions as a tumor suppressor. The SV3 variant localizes into the
nucleus as the full-length isoform but functional studies have not been
performed, although all the splicing variants have been found increased
in malignant tissues (Chiam et al., 2013; Narla et al., 2005).

Wilcoxon rank-sum test was performed on the alternatively spliced
genes and 95 significant markers were obtained (Supplementary File 2).

3.5. Alternatively spliced genes improve the molecular classification
accuracy of breast cancer subtypes

In order to demonstrate the importance of our findings, we used the
isoforms and the alternatively spliced genes to classify the BC subtypes
and compared the accuracy of classification with the reference sig-
nature PAM50. Ranking our markers’ lists by the highest average fold
change we selected the first 50 to compare the same number of features.
The results of the classification, in terms of accuracy and confusion
matrices, using the three lists are shown in Table 1. The isoforms and
the genes undergoing differential splicing events were capable of dis-
criminating the subtypes better than PAM50. Indeed, by the PAM50
confusion matrix, we can see that 8 cells of the HER2+ subtype were
classified as TN and that 9 cells of TN were misclassified, due to the
intra-tumor heterogeneity we detected by clustering analysis. Taking
into account the expression of genes alternatively spliced among sub-
types, as well as the isoforms, which likely contribute to the hetero-
geneity, the classification accuracy was better (98.68% and 98.24%
respectively). This result indicates that the splicing machinery is in-
volved in differentiating the subtypes and that the differential

expression of genes is not representative of all the cells in light of the
strong heterogeneity among them.

In order to further show the discrimination power expressed by
PAM50, isoform markers and alternatively spliced genes signatures, we
performed a PCA on primary cells using the above cited gene lists. Fig. 9
shows a clear better separation of groups obtained with isoform mar-
kers (A) and even more with alternatively spliced genes (B) compared
to PAM50 signature (C).

4. Conclusions

Our results emphasize the involvement of transcriptional regulation
by the splicing machinery in determining tumor heterogeneity. Despite
the emergence of single-cell sequencing and the well known role of
splicing, many studies still rely on average-based methods to study
highly heterogeneous tissues. We have demonstrated that the isoforms
expression, as well as the prediction of splicing events, at the single-cell
level, provide useful insights to better discriminate the tumor subtypes,
commonly done through gene expression signatures. Our approach al-
lowed us to identify potential markers capable of discriminating the
nature of cancer cells and to ensure the success of precision medicine.
Using the results of our investigation, in terms of isoforms and genes
undergoing exon skipping events, we obtained a more accurate classi-
fication of breast cancer subtypes compared to the widely used PAM50
signature. Single cell investigation is furthermore a powerful source to
identify the right in vitro model of study at sample level, thus to revalue
use of cell lines, which present several advantages but have been de-
monstrated to be too divergent from primary cells. To the best of our
knowledge, this is the first work which analyzes breast cancer hetero-
geneity with such detail using single cell data and investigating the
alternative splicing events among single cells. We believe that our ap-
proach represents an evidence in support of the trend from patient-level
to cell-level precision medicine.

Supplementary files

1. Supplementary File 1: Differentially expressed isoform markers –
Sheet 1 contains the 131 differentially expressed markers of the four
tumor subtypes identified by the Wilcoxon rank-sum test in Seurat.
Sheets 2 and 3 contain the terms from the GO biological processes
and the hallmark gene sets enriched by GSEA.

2. Supplementary File 2: Differentially spliced events within and be-
tween tumor subtypes – Sheet 1 contains the 95 differentially
spliced events of the tumor subtypes detected as markers by per-
forming the Wilcoxon rank-sum test on the BRIE isoforms estimate
output. Sheet 2 contains the alternatively spliced events for Lum A,

Fig. 9. t-SNE on single primary cells performed using the isoform markers (A), the alternatively spliced genes (B) and the PAM50 (C) signatures. A clear better
separation of cancer subtypes is obtained by the first two lists, especially by alternatively spliced genes.
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HER2+, TN and Lum B breast tumors after applying a threshold on
the percentage of cells involved in the pairwise comparisons
(≥30%). The coordinates of skipped (exonAS) and flanking (exonC)
exons are also reported.
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