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Motivated by the collective behavior of biological swarms, we study the critical dynamics of field theories
with coupling between order parameter and conjugate momentum in the presence of dissipation. Under a fixed-
network approximation, we perform a dynamical renormalization group calculation at one loop in the near-
critical disordered region, and we show that the violation of momentum conservation generates a crossover
between an unstable fixed point, characterized by a dynamic critical exponent z = d /2, and a stable fixed point
with z = 2. Interestingly, the two fixed points have different upper critical dimensions. The interplay between
these two fixed points gives rise to a crossover in the critical dynamics of the system, characterized by a crossover
exponent k = 4/d. The crossover is regulated by a conservation length scale R, given by the ratio between the
transport coefficient and the effective friction, which is larger as the dissipation is smaller: Beyond R, the
stable fixed point dominates, while at shorter distances dynamics is ruled by the unstable fixed point and critical
exponent, a behavior which is all the more relevant in finite-size systems with weak dissipation. We run numerical
simulations in three dimensions and find a crossover between the exponents z = 3/2 and z = 2 in the critical
slowdown of the system, confirming the renormalization group results. From the biophysical point of view,
our calculation indicates that in finite-size biological groups mode coupling terms in the equation of motion
can significantly change the dynamical critical exponents even in the presence of dissipation, a step toward
reconciling theory with experiments in natural swarms. Moreover, our result provides the scale within which
fully conservative Bose-Einstein condensation is a good approximation in systems with weak symmetry-breaking
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terms violating number conservation, as quantum magnets or photon gases.
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I. INTRODUCTION

The success of the theory of critical phenomena is based
upon a simple observation: Systems with very different mi-
croscopic details behave in strikingly similar ways when
correlations are sufficiently strong. This experimental fact
eventually crossed over into theory with the formulation of
the phenomenological scaling laws [1-4], whose key idea
is that the only relevant scale ruling the spatiotemporal be-
havior of a system near its critical point is the correlation
length. Eventually, the great conceptual edifice of the renor-
malization group (RG) tied everything together, explaining
why microscopically different systems shared so much at
the macroscopic level, giving a demonstration of universality
through the concept of attractive fixed points, and providing a
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method to calculate experimentally accessible quantities, most
conspicuously the critical exponents [5-8].

Employing the same set of conceptual tools in collective
biological systems could prove very helpful, given the recent
massive flow of hugely diverse empirical data that theory has
to make sense of. In support of this strategy, there is first an
empirical observation regarding collective biological systems,
namely systems in which a large numbers of units (cells,
bacteria, insects, birds, mammals) interact locally in space
and time giving rise to macroscopic patterns [9,10]: These
systems often exhibit unusually strong correlations whose
spatial range is significantly larger than the microscopic scales
[11-15]. Besides, recent experiments on natural swarms found
evidence of dynamical scaling, a core mechanism of statisti-
cal physics linking spatial correlation to temporal relaxation
[3,16], whose validity in a biological context can hardly be
considered a coincidence. Hence, despite the temptation, in
front of the arresting complexity of biology, to confine our-
selves to describing the specifics, we believe that exploring the
path correlation-scaling RG is a reasonable course of action
[17,18]. The hydrodynamic theory of flocking of Toner and
Tu has led the way: It applied field-theoretical methods and

Published by the American Physical Society


https://orcid.org/0000-0003-1127-6400
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.100.062130&domain=pdf&date_stamp=2019-12-23
https://doi.org/10.1103/PhysRevE.100.062130
https://creativecommons.org/licenses/by/4.0/

ANDREA CAVAGNA et al.

PHYSICAL REVIEW E 100, 062130 (2019)

the RG to bird flocks, namely collective biological systems
in their strongly ordered phase [19-21]. Here, we use the RG
approach to study the other side of collective behavior, namely
the near-critical disordered phase of natural swarms.

In the biophysics of collective behavior, a prominent role
is played by a class of ferromagnetic theories with continuous
symmetries, both in their symmetry-broken phase (flocks) and
in the near-critical disordered phase (swarms) [19,22]. When
dynamics is taken into consideration, though, this universality
class breaks down into smaller subclasses, as there are dif-
ferent ways to implement the dynamics given the same static
probability distribution of the system [23,24]. Dynamical di-
versity is regulated essentially by two distinct, though related,
factors, namely conservation laws and symmetries. On the
one hand, we have dynamical theories lacking symmetries
and conservation laws (as in the classic Heisenberg model,
or model A of Ref. [23]), or in which conservation is imposed
despite the absence of an explicit symmetry (as in phase sep-
aration, or model B of Ref. [23]). On the other hand, we have
theories ruled by symmetry and conservation laws, whose
dynamics is characterized by the coupling between two fields,
namely the order parameter and the conserved generator of
the symmetry, i.e., the conjugate momentum. This second
type of theories therefore has nondissipative mode-coupling
terms in the equations of motion and was originally introduced
to describe systems displaying Bose-Einstein condensation
(BEC), as superfluid helium, superconductivity, and quantum
magnets (models E, F, and G of Ref. [23]). Bizarre as it may
seem, recent experiments suggest that some collective biolog-
ical systems, as bird flocks [25] and insect swarms [22], also
have nondissipative mode-coupling terms in their dynamical
equations and are thus akin to this second class of theories.
The connection between BEC systems and flying animals
reflects the great generality of the mathematical structure of
collective dynamics governed by symmetry and conservation
laws, whether the order parameter is the quantum phase of a
condensate or the direction of motion of a flock.

Here, we will focus on this second class of theories, with
the aim of studying the critical dynamics of swarms. To make
this introductory discussion more concrete, let us anticipate
the actual dynamical field equations we are going to derive
and analyze in detail in this work
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In the biological context, the vector order parameter ¥ (X, t)
represents the velocity field, but it has different interpretations
in BEC systems (for example, in liquid helium ¥ is the
expectation value of the Bose field). In all cases, though, the
order parameter is coupled to its conjugate momentum, which
we call spin, s(x, t), since it is the generator of rotations of

¥, given the rotational symmetry of #.! The distinctive trait
of this class of models is the presence of mode-coupling cross
terms, 0,% ~ 8H and 0,5 ~ 84 H, which generate a nondis-
sipative dynamics with the classic coordinate-momentum
Hamiltonian structure; were it only for these terms, dynamics
would be completely deterministic. On the other hand, the
diagonal terms, d;¥ ~ §yH and d;s ~ &H, give rise to the
diffusion and transport phenomenology typical of stochastic
statistical systems and are thus complemented by the white
Gaussian noises @ and ¢, whose variance is proportional to the
kinetic coefficients, 2Ty and 2(—AoV? + 1) [see Eq. (17)].

The crucial feature of this theory is that, in absence of
dissipation, namely when the effective friction 7 is zero, the
total integral of the spin is conserved: The cross term in (2)
gives rise to a continuity equation for the symmetry generator,
s(x, t), prescribed by Noether’s theorem, while the stochastic
transport term in (2), Ao V3s, is still the divergence of a cur-
rent, leaving the continuity equation intact. This structure—
symmetry and conservation—is a very profound feature of
this class of models, as it leads to the existence of propagating
hydrodynamic modes in the ordered phase, called spin waves:
This mechanism gives rise to “second sound” in liquid helium
[23], is responsible for linear information propagation in bird
flocks [27], and explains spin-wave remnants in the near-
critical phase of insect swarms [22].

Why then to introduce in Eq. (2) a dissipative term, 1y,
which destroys spin conservation? In the context of biological
systems, the answer is quite simple: The symmetry generator,
or spin, is conjugated to the velocity field; hence, by rotating
the velocity, the spin is what actually makes an animal turn.
Indeed, kinematically one can prove that the spin is related
to the radius of curvature of the individual trajectories [28].
Hence, at the individual level, it is clear that there must be
some dissipation relaxing the spin, thus making a trajectory
straight in the absence of external perturbations or interaction
with the neighbors. On the other hand, in systems like super-
fluids or superconductors, the conservation law generated by
the continuous symmetry of the quantum phase corresponds
to number conservation and it cannot be violated. In other
BEC systems, though, like quantum magnets [29], exciton
condensates [30], and photon gases [31], the Hamiltonian
can contain terms that weakly violate the symmetry, hence
dissipating the density in the continuity equation of the mo-
mentum. The effect of weak dissipation in the ordered phase
is simply to generate a damping length scale on propagating
spin waves. However, in the near-critical phase, the situation
is more complicated: Dissipative and nondissipative models
are known to have completely different critical exponents,
and hence the effect of dissipation in this case is unclear.
This question is particularly relevant for biological swarms, as
experiments found a dynamical critical exponent that cannot

"More precisely, the field canonically conjugate to s is the phase ¢
of the order parameter ¥, not ¥ itself; for example, in the planar case
the order parameter is a complex field and ¥ = . This is why cross
products enter the dynamical equations; the relationship among order
parameter, phase, and spin is similar to that among position, angle,
and angular momentum in standard rotational motion—see Ref. [26]
for a discussion of this point.
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be reconciled with the prediction of purely dissipative theories
[22].

Here, by using a dynamical renormalization group ap-
proach, we study the effect of dissipation on the critical dy-
namics of a system with mode coupling terms. Our calculation
shows that the dissipative term 7 gives rise to an interesting
crossover characterized by nontrivial critical exponents. At
the critical point, where the correlation length is infinite, the
RG transformation must leave the system exactly the same, so
that the RG fixed points provide the important information on
the large-scale properties. In this case, we find two fixed points
relevant to the description of the dynamics. The crossover
between the two is ruled by the competition between con-
servative transport, AoV3s, and dissipative friction, —nos.
This generates a novel conservation length scale, Ry, beyond
which the dynamics is ruled by a purely dissipative RG fixed
point, so that the whole conservative (and propagating) nature
of the theory is lost. On the other hand, for distances smaller
than R, the conservative RG fixed point governs the dynam-
ics, giving rise to the classic spin-wave phenomenology. We
calculate the value of the dynamical critical exponents in these
two regimes and of the crossover exponent, and we confirm
our results through numerical simulations.

As we shall see, the conservation scale Ry is larger as
the dissipation is smaller. The implications of this fact are
very important in the biophysical context. The presence of
dissipation in the dynamical equations of biological groups
may suggest that these systems are in the same universality
class as fully dissipative models, since dissipation always
wins over conservative terms in the infinite-time and infinite-
distance hydrodynamic limit. However, real biological groups
are finite-size systems (and quite moderately sized, in the
case of flocks and swarms) in which dissipation has been
demonstrated by experiments to be quite low [22]. Therefore,
the size of these systems may actually be smaller than the
crossover scale Ry, so that, even if dissipative terms are
present in the equations of motion, critical dynamics is still
ruled by the symmetric and conservative structure of the
equations and therefore displays critical exponents drastically
different from the dissipative ones. As we shall see, for
natural swarms this theoretical mechanism produces a critical
dynamics whose phenomenology is remarkably similar to that
found in experiments.

Although our motivation is biological, it is worthwhile
to remark that our results apply to any BEC system with
weak dissipation. Relevant examples are quantum magnets
[29], exciton condensates [30], and photon gases [31]. In
quantum magnets, Bose-Einstein condensation of magnons
occurs at low temperature, due to the spontaneous breaking
of the U (1) symmetry; real quantum magnets, though, con-
tain weakly symmetry-breaking terms in their Hamiltonian,
thus violating the conservation of the conjugate momentum.
Another BEC system our results could be applied to is that
of excitons, bosonic hole-particle excitations created by laser
pumps, whose number, though, is conserved only within their
lifetime (which is finite and dependent on many factors) [30].
A similar situation arises within the context of photon gases,
when a polariton condensate emerges [31]; in this case, too,
depending on the polariton lifetime, one can have a violation
of number conservation, which is equivalent to an effective

dissipation. In all these cases, our calculation could provide
the crossover scale within which an exact BEC assumption
is justified and it may describe the critical behavior of the
CrOSSOVer.

Here is the plan of the paper. In Sec. II, we will discuss the
microscopic model, the inertial spin model, in its biological
context. This is introduced as a modified Vicsek model, with
the same velocity-aligning interactions but with Hamiltonian
dynamics incorporating inertia and conservation of spin (the
conjugate momentum). After discussing the fixed-network
approximation, we shall then (Sec. III) coarse grain the mi-
croscopic ISM equations and work out the dynamical field
theory we study, i.e., Egs. (1) and (2). Our field theory is thus a
mesoscopic-level (coarse-grained) description of the ISM un-
der the fixed-network approximation. We then proceed to the
renormalization group calculation of the critical dynamics: In
Sec. IV, we will perform in the calculation in the momentum
shell version of the RG. This section will culminate with the
formulation of the RG recursion equations, while the analysis
of the crossover between the two different fixed points on
the critical manifold and the corresponding crossover of the
critical dynamics will be studied in Sec. V. In Sec. VI, we
will give an alternative derivation of our results using the
more field-theoretical Callan-Symanzik approach. In Sec. VII,
we will perform numerical simulations to validate the RG
results, and finally we will present our conclusions and discuss
the outlook in Sec. VIII. Parts of the most technical material
are contained in the Appendixes. A shorter account of our
results can be found in Ref. [32].

II. BIOPHYSICAL ORIGIN OF THE MICROSCOPIC
MODEL

In this section, we derive the microscopic model of col-
lective behavior that we will use to describe the dynamics of
natural swarms. Because this model was first introduced in the
context of flocks, rather than swarms, we will have to take a
short detour in that direction. At the end of the section, we will
discuss under what approximations we will be able to perform
a field-theoretical RG study of the model.

A. Collective behavior and the Vicsek model

Collective behavior in biological systems, and more specif-
ically collective motion, is essentially a game of mutual
imitation, in which each individual tries to make its own state
of motion as similar as possible to that of its neighbors [9].
From a physical point of view, such a mechanism is clearly
suggestive of a ferromagnetic-like interaction: Focusing our
attention on the direction of motion of each individual (the
orientation of its velocity vector), such an imitation game
amounts to a local interaction due to which each (normalized)
velocity vector tends to align to those of its neighbors, much
as classical Heisenberg spins tend to align to each other. At
variance with standard ferromagnets, though, in collective
motion the positions of the particles change in time, as they
are carried around by their own velocities, thus creating a
nonequilibrium feedback between the alignment degrees of
freedom and the interaction network [20,33]. The simplest yet
most illuminating model describing this core mechanism of
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collective motion was introduced by Vicsek and coworkers
[34]; it describes a set of self-propelled particles that interact
with each other in a ferromagnetic way,

i =dY v + ¢ 4)
J
dri (5)
-V =
dt

where r; is the position of particle i, v; its velocity, and n;;(z)
is the (short-ranged) adjacency matrix (who is neighbor of
whom) at time ¢. The interaction between individuals is given
by the ferromagnetic term in (4), where J gives the strength
of the tendency to align to each other.> Such alignment inter-
action is often called social force in the collective behavior
literature [9]. In the Vicsek model, the speed is kept fixed,
|v;| = 1, which is the purpose of the cross products at the
right-hand side of (4). The term ¢; is a Gaussian white noise
with variance

(&) ;) =2d 7T 8;;8(t —1"), (6)

where 7 is a dissipation coefficient and T is a generalized
temperature measuring the strength of the noise.

The power of the Vicsek model is that it describes collec-
tive motion in its two different phases. When noise is low (or
density is high, in the metric case [9]), the alignment inter-
action produces long-range order across the system, forming
a polarized moving flock. The interesting thing is that such
ordering also occurs in two dimensions, which would be for-
bidden by the Mermin-Wagner theorem [35] in an equilibrium
ferromagnet with continuous symmetry; however, the Vicsek
model has an off-equilibrium feedback between alignment
and self-propulsion promoting long-range order [20]. On the
other hand, when noise is large enough (or density is low, in
the metric case [9]), the system is in a disordered (paramag-
netic) phase, which reproduces quite well the statistical prop-
erties of real swarms. More precisely, it has been observed
that natural midge swarms are disordered but highly correlated
systems [36]; the static velocity correlations are (qualitatively
at least) those given by the Vicsek model close to its ordering
transition. Hence, the Vicsek model captures rather well the
static correlation functions of collective motion for both flocks
and swarms. Dynamics is more problematic, though, at both
the qualitative and the quantitative level.

B. The inertial spin model

The first hint that the Vicsek equation of collective motion
required some new ingredients came from experiments on
flocks, in which it was observed that disturbances in the direc-
tion of motion of the birds (that is, turns) propagate linearly
with very low dissipation [27]. Although the hydrodynamic
field-theoretical description of the Vicsek model introduced
by Toner and Tu [19] contains linearly propagating “sound”
modes, caused by the feedback between local density and

>We use hatted parameters in the microscopic equations to dis-
tinguish them from their coarse-grained counterpart in the field
equations later on.

phase fluctuations [37], experiments indicate that flocks fol-
low a different mechanism: During the propagating event, the
density displays very weak fluctuations, if any; moreover, the
speed of the wave propagation has been found to increase with
increasing polarization, a feature absent in the hydrodynamic
theory of the Vicsek model [19] (see also the discussion in
Ref. [26]). It was therefore suggested in Refs. [27] and [25]
that Vicsek dynamics had to be complemented with some
nondissipative inertial couplings between order parameter (the
velocity) and a conjugate momentum, in order to reproduce
the structure of a conservative Hamiltonian dynamics. The re-
sulting microscopic dynamical equations give rise to the iner-
tial spin model (ISM) of collective motion [25],

dv,‘ 1

— = 8 XV,

dt X

ds; A U
_:viXJZnij(t)vj_Tsi"'viXCiv @)
dt T X

dr,‘

- =0

dt

where the new variable s; is the generator of the rotational
symmetry of the interaction (and is therefore called spin, in
an analogy with quantum mechanics) and is the cross product
of the velocity and the generalized momentum canonically
conjugate to the velocities v;. Associated to the momentum
s; we have a generalized inertia, ¥, which embodies the
resistance of a particle to change its instantaneous radius of
curvature [38]. One can show that, in the low noise, strongly
polarized phase, the nondissipative coupling between spin and
velocity of the ISM generates linear propagating modes of
the velocity fluctuations, which match quite accurately the
experimental results, including the key relation between speed
of propagation and polarization [39].

In the absence of a dissipative term, the Hamiltonian
structure of the ISM would conserve the total spin, as it
happens for any generator of a symmetry. However, one can
show that the spin is essentially the instantaneous curvature
of the particle’s trajectory [27], and hence a single particle (or
bird, in a flock) would maintain its radius of curvature forever
if the spin were strictly conserved. This is quite unrealistic.
Rather, it seems reasonable to expect curvature (and therefore
spin) to be dissipated in the long run in absence of interaction
or external perturbations. For this reason, the ISM has also
the dissipative term, —is;, and stochastic noise, ¢;, granting
relaxation of the spin for large times. If dissipation is small,
though, and the biological group has finite size, linear waves
will still propagate across the system, before dissipation kicks
in [25]. In other words, although in the hydrodynamic limit
(infinitely large times and distances) the conservative Hamil-
tonian structure always becomes irrelevant, on the finite-time
and finite-size scales typical of biological phenomena the
interplay between velocity and spin has crucial consequences
on signal propagation. Note, finally, that once dissipation is
included in the equations, one can recover the Vicsek model
as the overdamped limit of the ISM [25], which is quite
reassuring.

The second hint that a model with nondissipative dynamics
was required came from swarms. Swarms of insects are
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systems apparently completely different from flocks: They
show no group-scale coordination, so that their net motion
is zero: Swarms ‘“dance” above some landmark in seemingly
random fashion [13]. In fact, experiments on natural swarms
[13] showed that these systems have strong velocity correla-
tions, indicating that, despite the lack of long-range order, the
individuals within these groups are interacting with each other
rather intensely, hence driving the system close to an ordering
transition; indeed, such static correlations were qualitatively
similar to those developed by the Vicsek model at its critical
point [36]. More recent experiments [22] showed that swarms
in their natural environment exhibit another important prop-
erty of classical statistical physics, namely dynamic scaling
[3]: According to this law, the dynamic correlation function
of a system close to the critical point obeys the following
relations:

Clk,1) = Co(k) F(t /., k&), (®)

T =k f(kE), ©

where ¢ is time, k is momentum, Cy is the static correlation
function, t; is the relaxation time of mode k, F' and f are
well-behaved scaling functions, and z is the dynamic critical
exponent, ruling how space and time scale with each other.
The key idea of dynamic scaling is that the only relevant scale
in ruling both spatial and temporal behavior of a system close
to the critical point is the correlation length £. For k = 0,
we obtain t ~ &%, a property known as critical slowdown:
A system strongly correlated in space must also be strongly
correlated in time [23]. Experiments showed that swarms
satisfy relations (8) with a dynamic critical exponent 1 < z <
1.3 (with the best collapse for z = 1.2), whereas numerical
simulations of the Vicsek model in d = 3 give z & 2 [22]. It
must be noted that z = 2 is the exact value of the dynamical
critical exponent for a purely dissipative free theory (Gaussian
model) and that even in the interacting case the exponent
receives only very small (two loops) corrections to the value
2, if the dynamics has only dissipative terms (or even values
larger than 2, as in the case of model B [23]). On the other
hand, dynamical models with nondissipative inertial terms
tend to have values of the exponent z significantly smaller
than 2, as a result of the interplay between order parameter
and conjugate momentum [23]. Hence, the low value of z in
natural swarms was a further indication of the need for nondis-
sipative dynamics also in these nonpolarized systems. Finally,
dynamic relaxation in the Vicsek model has a classic expo-
nential form [22], while natural swarms display a completely
different shape, showing clear evidence of nondissipative
inertial behavior for short times. More precisely, if we define
the relaxation form factor [22], h = C(t/7)/C(t/7), in the
limit 7/t — 0 we have that 4 — 1 for the Vicsek model (as
for any exponential correlation function), while experiments
showed A — 0 for natural swarms, as it would happen in a
weakly damped harmonic system, where inertia dominates
over dissipation [22]. Hence, the whole dynamical behavior
of swarms seems to require the existence of nondissipative
inertial terms in the equations of motion, which is exactly
the extra ingredient the ISM has compared to the Vicsek
model.

Our plan is therefore to study the critical dynamics of the
ISM in its disordered yet near-critical phase to describe the
collective behavior of natural swarms of insects, in order to try
and reproduce the experimental results of Ref. [22]. Because
the ISM was originally introduced to describe the dynamics
of flocks, it has been studied extensively in its deeply ordered
(i.e., polarized) phase, both numerically [25] and theoretically
[39], while no previous studies of the ISM in the near-critical
regime have been performed.

C. Fixed network approximation

Before we proceed with the coarse graining of the model,
though, we need to decide whether to attack directly the
full-fledged off-equilibrium problem, which includes the self-
propelled nature of collective motion, or whether we first
take on the simpler (and yet nontrivial) equilibrium problem,
in which particles sit on a fixed network and thus have a
time-independent interaction matrix. For a number of reasons,
we will follow the second strategy. The model we want to
study differs from previous known cases in two main respects:
(1) it contains nondissipative terms and effective friction, the
interplay of which has never been studied before, not even at
equilibrium, and (ii) the model is a self-propelled one, hence
intrinsically off equilibrium, which may seem particularly im-
portant in the swarm phase, in which each particle changes the
local neighbors quite rapidly. Our central experimental con-
cern is to reproduce the correct dynamical critical exponent
z and the correct relaxation form factor of natural swarms.
The fact that the self-propelled, off-equilibrium Vicsek model
in its swarm phase gives exactly the same exponent and
form factor as equilibrium fully dissipative models (as the
classical Heisenberg model) suggests that self-propulsion is
not the primary source of the anomalous critical dynamics
of swarms. Moreover, we believe that having under control
the equilibrium problem puts us in a more solid position to
tackle the off-equilibrium one in the future, much as knowing
the physics of the equilibrium XY and Heisenberg models has
been fundamental to fully understanding and appreciating the
Vicsek model. Hence, we will study a fixed-network version
of the ISM, in which the particles belong to a lattice and the
connectivity matrix does not depend on time. In this context,
the order parameter no longer has the role of a velocity, so we
will call it ¢, the generic symbol for the order parameter, and
write the microscopic model as

dvy,; 1
ol 10
dt Xs v o
ds; A U
_dtl =y, xJ Ej nij¥; — 25t ¥i < & an

The modulus of the order parameter is still fixed to |¥;]> = 1
and the adjacency matrix n;; now corresponds to a fixed inter-
action network. Thanks to this approximation, the dynamical
equations can now be rewritten in Hamiltonian terms,

Wi _y x 22 12
dt 'ﬁl x 0s; (12)
ds; 0H oH
iy 25 XL 13
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with microscopic Hamiltonian,
A 52
H:-Jzni,w/f,.-wj+Z§- (14)
ij i

This is the model we now proceed to coarse grain in order to
obtain a dynamical field theory.

III. COARSE-GRAINED FIELD THEORY
A. Equations of motion

Since we are interested in describing the large-scale behav-
ior of the system, it is convenient to pass from a microscopic
description in terms of site-dependent variables to a field
description, where we consider smoothly varying order pa-
rameter and spin fields, ¥(x, 7) and s(x, ¢), obtained by coarse
graining the original variables over a small spatial volume.
Upon coarse graining, the original Hamiltonian (14) gives rise
to an effective field Hamiltonian H [, s] that—as in standard
ferromagnetic systems—reads [40,41]

2

Hiv.s1 = [ {1(W)2 ol ot + S—},

2 2 2x0
where ry is the bare mass (negative in the ordered phase), ug
is the bare static coupling constant, and x, is the effective
inertia. Here, we note the gradient term comes from the
mutual alignment interaction, which favors smoother configu-
rations; the quadratic and quartic contributions for ¥ represent
a confining potential and derive from the original constraint
on the ¥, and the coarse-graining entropy, while the field s
remains Gaussian as its microscopic counterpart.

When writing down the dynamical equation of motion
for the fields, we need to take into account the presence
of both the reversible and dissipative contributions present
in the microscopic dynamics (12) and (13) and add the
dissipative terms which may arise upon coarse graining.
Under very general assumptions [23,42], we can therefore
write

oY SH SH

£ = Ty— — 40, 15

” ow+go¢x5s+ (15)
ds SH SH
= = AV? = 19)— — 4+, 16
o (Ao Tlo)(ss +gorﬁx8¢+c (16)

where the Gaussian noises correlations are chosen to have a
Boltzmann-like static probability distribution, i.e.,

(O (x,1)05(X', 1)) = 2T084,58V(x — x)8(t — 1),

(La(x, 25X 1)) = 2(10 — Ao V?)ep8 D (x — X )S(t —1').
(17)

Here, Iy, 19, and X are the bare kinetic coefficient of the field
¥ and the bare friction coefficient and transport coefficient of
the field s, respectively, while g, is a mode-coupling constant
that regulates the reversible dynamical terms and describes the
symmetry properties relating the two fields: The fact that s is
the infinitesimal generator of rotations of ¥ is indeed specified

by the Poisson commutation rules,

(Yo, S,B} =g0€aﬁy1//y’ {Sa> Sﬁ} = 80 €aBy Sy, (18)

where €4, is the Levi-Civita antisymmetric symbol.?

The static properties of the model only depend on the
Hamiltonian . For the field ¢, they are therefore the same
as in the Heisenberg model [23], with an ordering phase
transition occurring for ry = r.. On the other hand, at the static
level s is a trivial, purely massive Gaussian field. Since there is
no static coupling between this field and the order parameter,
the inertia o will not acquire any perturbative contributions;
hence, in order to simplify our notation, we choose the units
of s such that yo = 1. The dynamic properties are ruled by the
transport coefficient A, the effective friction 7, the kinetic
coefficient 'y, and the dynamic coupling constant go; these
quantities will take perturbative contributions arising from the
dynamic interaction between s and ¥, which is ruled by go.

Equations (15) and (16) have two additional dissipative
terms compared to the microscopic theory of Eqs. (12) and
(13), namely —TI'06H /8% and AgV2§H/Ss. The first term
actually contains two contributions: first, a derivative of the
confining potential, ¥ 4 ¥*, which is the coarse-grained
analog of the microscopic sharp constraint, |¢;> = 1; and
second, a diffusive piece, o V>¥(x, ¢), which derives from
a loss of reversibility due to the coarse graining and which
describes the role of the fluctuations of the order parameter
in the relaxation process. Even though such fluctuations are
negligible in the low-temperature phase (where we recover
the microscopic theory with I'y = 0), they are crucial when
considering the system close to the critical point. For this
reason, even though we neglected the Laplacian of the order
parameter in our previous analysis in the deeply ordered phase
[39], we need to take it into account in the present study of the
critical regime.

On the other hand, the origin of the spin transport term,
LoV2s(x, 1), is perhaps less intuitive. In the microscopic
model, the spin is dissipated by the friction through the term
—17s;(t), and hence one might have expected just a term
—nos(x,1) in the coarse-grained theory. Why then are we
introducing the term in AoV3s(x,1)? We will show in the
following sections that, in the context of perturbation theory
and the renormalization group, such a term arises naturally
from the nonlinear interaction between the two fields once a
momentum shell integration is performed. It is then necessary
to include the transport coefficient Ay directly from the starting
field equations.

We notice that for 9y = 0, Egs. (15) and (16) coincide with
those of model G (antiferromagnet), or, in the planar case,
of model E (liquid helium), which have a fully conserved
spin dynamics and whose critical dynamical properties have
been studied long ago in a series of seminal papers [43,44].
The renormalization group analysis described in the following
sections will show that in an appropriate regime (when 1 is

3Note that we reabsorbed the minus sign in front of the cross
products in (12) and (13) into the definition of the coarse-grained
dynamical coupling constant, gg, so to obtain in (15) and (16) the
same field-theory notation as the classic reference papers, Refs. [43]
and [44].
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small), the ISM displays the same critical behavior as these
fully conservative models.

B. Free theory in Fourier space

The starting point to build the perturbative expansion of
the equations of motion is the free (or noninteracting) theory,
which is obtained by setting to zero the nonlinear coupling
constants, namely go = 0 and uy = 0. In Fourier variables,
hence using momentum k and frequency o, the free equations
of motion become

—iow Yk, ) = —To(k* + o) ¥k, w) + 0k, ), (19)

—iw s(k, w) = —(no + rok?) sk, w) + ¢k, ). (20)

The free theory is linear and it is therefore possible to solve it
exactly by inverting Egs. (19) and (20),

Yk, ) = Goy(k, 0)0(k, w), 2L

sk, w) = Gos(k, 0)¢(k, ), (22)

where the free propagators (or Green’s functions) are the
inverse of the dynamical operators in Fourier space,

Gy (k, 0) = —iw + To(k* + ro), (23)

Gy ik, ®) = —iw + (o + Aok?). (24)

The propagators describe the response of the fields to noise
and to external perturbations [45]. We can also define the free
dynamic correlation functions,

Coy(k, w) = (Y(k, 0)Y(—k, —0)), (25)

Costk, w) = (stk, w)s(—k, —w)). (26)

By using (21) and (22), and the noise correlators (17), we get
the relations

Co,y = 2T0|Go,y % 27)

Co,s = 2(no + 20k*)|Go . (28)

These four quantities, propagators and correlation functions,
are the building blocks of the perturbative expansion.

Calculations in the RG context are carried out in Fourier
space, and hence all relevant integrals are performed over
the momentum k. The lowest extreme of integration is k = 0
(or of order 1/L if the system is finite), whereas the upper
extreme is a momentum scale—the so-called cutoff, A—
corresponding to the inverse of the length scale over which
the coarse graining has been performed. Practically speaking,
if the continuous field has been obtained by averaging the
microscopic variables on a volume of linear size £, then
A =1/L. The coarse graining is performed over a scale
larger than the lattice spacing a; in practice, though, £ is
still a microscopic length scale of the system, so that, broadly
speaking, one often assumes that A is of order 1/a.

The cutoff is an arbitrary scale, which therefore appears
as an unknown parameter of the theory. In fact, all bare
parameters, ry, ug, Lo, Ao, N0, &0, depend on A and therefore
are all equally unknown. As we shall see, the central idea of

the renormalization group is to exploit constructively the ar-
bitrariness of A, by studying how the bare parameters change
when A is changed; from this flow, the critical properties of
the theory will emerge.

IV. RENORMALIZATION GROUP IN MOMENTUM SHELL

Broadly speaking, the renormalization group is a set of
symmetry transformations that are useful to determine the
scale invariance properties of a system at its critical point
[5]. An RG transformation unfolds through two stages: (i)
integration of the short wavelength details and (ii) rescaling
of length and time. The first operation amounts to integrating
the fields over large values of the momentum, A/b < k < A,
where b is a rescaling factor larger than but close to, 1.
This integration interval is the so-called momentum shell. The
effect of integration is to shift the cutoff from A to A/b; the
RG idea is that the long-distance physics of a system close to
the critical point, where the correlation length is large, cannot
change due to an arbitrary change of the cutoff. Hence, the
second stage consists in rescaling space (and consequently
time) in such a way as to formally restore the original cutoff
A and to compare the newly obtained equations to the original
ones. The compound effect of these two stages is to effectively
change the parameters that appear in the equations of motion,
hence determining a flow in the space of parameters. At the
critical point, where the correlation length is infinite, the RG
transformation must have left the system exactly the same
and therefore the fixed points of the RG flow provide all the
important information on the large-scale physical properties
of the system.

The RG technique is now standard and discussed in the lit-
erature both for static and dynamical problems [24,42,46,47].
In this section, we adopt a momentum shell renormalization
scheme [5], as this is the approach that was used in the
original papers on critical dynamics [23,43,48]. This will
allow us to immediately spot differences with respect to the
fully conservative case [43]. In Sec. VI, we will illustrate how
the same results can be obtained using a Callan-Symanzik ap-
proach, more common in recent applications of the dynamical
renormalization group [42].

A. Integration of the short-wavelength details

In the first stage of the RG, we integrate out short wave-
length fluctuations, namely modes with A/b < k < A. This
operation (described in Appendix D) leads to a new effective
theory that only depends on fields fluctuating over larger
wavelengths, k < A/b. In the free theory, modes at different
wave vectors are independent, so this operation has no prac-
tical effects. On the other hand, when nonlinear interactions
are present, the coupling between long and short wavelength
modes makes it impossible to carry out exactly this operation,
which therefore requires a perturbative expansion that we
describe in detail in Appendix A. The bottom line result
of shell integration is to produce additional terms in the
equations of motion that effectively modify the coefficients
of both the linear and the nonlinear terms. We start with the
linear dynamical coefficients, namely I'g, Ag, and ng. These
parameters are contained in the free propagators, Eqs. (23) and
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(24). Because of the shell integration, the propagators acquire
some new contributions, the so-called on-shell self-energies,
Y, and I, so we can write

G, (& w) =—io+To(k +ro) — Tk, ),  (29)
G,'(k, ) = —iw+ (o + hok?) — Mk, ).  (30)

As we said, to compute the self-energies one uses perturbation
theory. To carry out the expansion, we follow the generating

J

functional approach of Martin-Siggia-Rose [24,44,49], where
averages of physical observables over the stochastic dynamics
are rewritten as thermal averages over a functional measure.
The complication is that new auxiliary fields must be intro-
duced and the effective field theory therefore involves four
fields rather than two. The advantage is that the standard
Feynman technique can be used to perform a diagrammatic
expansion, and perturbation theory can be carried out in the
same way as in equilibrium statistical field theory. The details
can be found in Appendix A. To one loop order, the self-
energies read

A gdp (k> +ro)
y(k, w) = —2 2/ ’ !
»(K, ®) 8o ap Q) (p? + ro)(—iw 4+ To(p? + o) + Aok — p) + 19) (31
A dd 2 k — 212
ko) = —¢ / p [p” — (k—p)7] (32)

The self-energies modify the poles of the propagators in the
frequency plane, therefore affecting the way response and cor-
relation functions decay in time. In particular, the k — 0 and
w — 0 expansion of the self-energies and of their derivatives
modify the kinetic and transport coefficients, so that we can
define their renormalized values,
), (33)
k=0
w=0

3G, 1 0%,
= =To(1-—=2
=0 Iy 0k2
>, (34)
k=0
=0

T =
R="ok2
A 8G, ! =al1
R= "0k [ — 70

w=0

1
= 7)0<1 - —1II ) (35)
= Mo 1A=

First of all, we notice an important point: From (32), we im-
mediately see that [1,(k = 0) = 0, and therefore we conclude
that the effective friction 79 has no perturbative corrections.
As discussed in Appendix A, from the diagrammatic point of
view this is a consequence of the structure of the vertex, which
makes all perturbative contributions to IT,(k = 0) equal to
zero; therefore, this result is valid to all orders in perturbation
theory. Physically, this fact is a consequence of the rotational
symmetry of the theory: Even though n, breaks the conserva-
tion law of the spin, the symmetry is still at work, implying
that it is impossible for the conservative theory to produce a
nonconservative friction through coarse graining.

The accuracy of the perturbation expansion is increased
by substituting the bare mass ry with its renormalized value
r [47], which represents the inverse static susceptibility and
goes to zero when the systems approaches the critical tem-
perature. Since we are interested in the critical behavior, from
now on we will evaluate all integrals at » = 0, namely at the
critical point; given that integrals are on the shell there are no
infrared singularities and the self-energies are finite. We thus
have

A gd 1
FR=r0[1+2§f P ]

Lo Jap Qm)? p*[(To + Xo)p? + ol

P
nr = Gy

(36)

A 2)E (P2 + ro)[(k — p)? + rol[—iw + To(p? + (k — p)* + 2rp)]

(

A d
+lg%4/ dpi}, (37)

2Tohod A Q) pt
nR = To- (38)

These equations show that there is a great difference in the
role of the two parameters Ao and no. If we start from a
frictionless model that has ny = 0, the coarse graining of the
RG will not generate a friction through shell integration. On
the contrary, even if we start from a model without spin trans-
port coefficient, Ao = 0, integration over short wavelengths
inevitably generates a transport term Ag 7 0. In other words,
the interaction between the spin s and the primary field ¥
generates a nonzero transport coefficient Ag even if Ao = 0 in
the original microscopic theory. For this reason, we included
from the outset the parameter Ao in the coarse-grained field
equations.*

To make further progress, we must address a rather crucial
algebraic detail. While the integral in (37) is straightforward,
the one in (36) requires some care. The cutoff A is large,
while the rescaling factor b is close to 1; hence, the shell
integration is performed over large values of the internal
momentum p. If the effective friction 5 is finite (or zero), then
the term of order p? dominates over 7y at the denominator,
so that the overall integrand will have a 1/p* behavior for
large momentum. As we shall see later on, the hypothesis
that ny < oo is by no means harmless, and we shall need to
return over this point. Yet, for now we will work under this
hypothesis, and recognize that it is therefore convenient to
rewrite the integral as

FR=F0|:1 +2

g A dlp 1 }
I

Po(To + 20) Jay @m)* (P + 5

(39)

“In other words, iy = 0 is an RG fixed point (although unstable, as
we shall see), whereas Ay = 0 is not.
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We can now change variables, defining p = Ax, and obtain

Fp=rof1 42 S04 /1 d'x :
Loro(1+ 32) JipQ2m)? x2(x2 + i 1+1};jxo)
(40)
1@Ad*4 1 aix 1
AR =201+ = = = | (41)
2 F())\.() d 1/b (Zn)dx4

It is now convenient to introduce a set of effective parameters,
through which we can express these integrals in a simpler way
(so to speak),

g% d—4 I'o Ao
fO:_KdA - s wy = —, ROZ — (42)
Aol Ao Mo

where K, is the unit sphere volume in dimension d. We
can thus finally write the perturbative expression of all three
kinetic parameters after shell integration,

r—r[1+ 2o /lddx : }
k=70 L+wo Jip ¥ X2+ (RoA)~2(1 + wo)™!
2
=F0[1+ Jo Xologb} 43)
14wy
1 dd 1
)»Rz)»0|:1+&/ —4in=)»0|:1+—f010gb:|7 (44)
2 i x 2
Nr = No, 45)

where we have introduced the dimensionless crossover param-
eter X,

_ (RoA(1+ wy)
O T T F (RoA (0 + wo)’

and where to compute the integrals we have exploited the
fact that in the limit b — 1; that is, for an infinitesimal RG
transformation, the shell becomes infinitesimal, so we have
written the integrals as the shell thickness, 1 — 1/b ~ logb,
times the integrand evaluated at x = 1.

The dimensionless parameter wy is rather harmless, and
it will play only a moderate role in what follows; quite
conveniently, it will remain finite in all fixed points we will
find. On the other hand, fj is crucial, as it acquires the role of
the effective dynamical coupling constant: The perturbative
expansion, which naively one would think as a series in
powers of g, is in fact a series in powers of fy. From the
dimensional form of fj, and in particular from the fact that it
contains a term A?~*, RG connoisseurs can already deduce
that the dynamical upper critical dimension of the theory will
be d. = 4, the same as the static one. This will be made
explicit once we will have solved the recursive RG equation
for fp further on. We recall that this is a consequence of the
fact that both integrands go like 1/p* for large momenta,
hence giving a logarithmic behavior at d = 4, and that, in
turn, this follows from having assumed that 7 is finite in the
integral of Eq. (36). We will return to this hypothesis later on.

The second important effective parameter emerging from
the equations is the length scale, Ry, given by the ratio
between the transport coefficient and the effective friction of
the spin. Because of its definition, we can intuitively expect

(46)

that if Ry is large (o small) the dynamics of the spin is ruled
by a conservative diffusion mechanism. On the contrary, if
Ry is small (o large), we expect the dynamics of the spin
to be ruled by a dissipation mechanism. It is worth noticing
that for Ry = oo, namely ny = 0, the crossover parameter
is equal to 1, and one correctly gets the same equations as
the fully conservative model G. On the other hand, when
the conservation length scale is very small, Ry ~ 0, which
happens for 7y > X, one gets Xy ~ 0, so that 'y receives very
weak perturbative corrections at one loop. We will return on
this crucial point later on and we will see that this interplay
between nonconservative dissipation and conservative trans-
port coefficient of the spin plays a key role, giving rise to a
nontrivial crossover between two different RG fixed points
with different dynamic critical exponents.

Up to now, we focused on the coefficients of the linear
terms in the equations of motion, ['y, Ag, 779o. However, in
general shell integration produces corrections to all terms, in-
cluding the nonlinear ones. Therefore, the dynamical coupling
constant, gy, could in principle get a perturbative correction
from shell integration, in particular from the renormalized
vertex. However, it can be shown that—due to the structure of
the interaction vertices—there are no perturbative corrections
at all orders (see Appendix B about vertex corrections),

8rR = 80- (47)

As in the case of the lack of corrections to 7, this result
is a consequence of the symmetry properties of the system.
Although the global spin is not conserved in our case, the field
s is the generator of the rotational symmetry of the ¥ field, and
this symmetry generates Ward identities that protect g at all
orders (see Appendix C).

Finally, let us note that the static coupling constant, uy,
is renormalized as usual in the standard equilibrium theory
[47]. However, the lowest order corrections to the dynamical
coefficients due to the vertex u are at two loops [23], whereas
we perform here a one-loop calculation. Therefore, we do
not need to address static renormalization any further in what
follows. This is actually a nice feature of all theories with
mode-coupling terms: The dynamical vertex is triple (see
Appendix A), and hence one obtains very sizable corrections
to the critical exponents already at one loop order, without
using the two-loop corrections of the static vertex.

B. Rescaling of space and time

After integration over the shell, we are left with a theory
which has new renormalized parameters, and also a new,
smaller cutoff, A/b. In order to compare the new theory
with the old one, and therefore to be able to write a set
of recursive equations for the parameters, we rescale space,
and therefore momentum k&, by a factor b, in such a way
to formally restore the original cutoff, A/b — A. It must
be noted that frequency does not have a similar cutoff, and
hence in principle we would have no formal need to rescale
. However, this is deceiving: In order to reabsorb all powers
of b in the novel equations of motion, one can see that it
is necessary also to rescale frequency [23]. Physically, this
means that the rescaling of space and time cannot proceed
independently: Space and time are tied together by the—yet
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unknown—dynamic critical exponent z, through the following
rescaling relations,

k — bk, w— bo. 48)

Because of the nonlinear form of the equations of motion, we
do not know a priori how the spatial integration affects the
dynamics and we therefore allow for a generic dynamic z. As
we shall see, its value determines how the order parameter
relaxes close to criticality.

Rescaling momentum and frequency actually means
changing physical units, and hence each parameter will also
rescale according to its naive physical dimensions, which can
be expressed in powers of b in the following way:

Iy — b Ty, ro — b2, (49)

no — bino, g0 — b 4%gy. (50

Because the perturbative contribution of the shell integrals are
given in terms of the effective parameters, fy, wo, Ry, itis also
necessary to write their corresponding rescaling laws:

fo— b f,

For d > 4, the naive dimension of the effective coupling
constant fy becomes negative; as we shall see, this implies
that at its nontrivial fixed point the effective coupling constant
will be of order ¢, with

wy — wy, Ro — b 'Ry. (51)

e=4—d, (52)

as it happens to the static coupling constant, uq [8], confirming
the fact that the dynamical upper critical dimension is d. = 4.

We notice that, in general, shell integration and rescaling
of k and w imply also a rescaling of the fields. However, once
again we remark that the current calculation is at one-loop
level, whereas the fields acquire a nontrivial scaling contribu-
tion only at two-loop level. For this reason, the anomalous
dimension of the field ¥ (normally called n and not to be
confused with the friction) will be set to zero in the present
calculation.

C. Renormalization group recursive equations

The two stages described above, shell integration and
rescaling, must now be put together to define one step of
the RG transformation; in this step, a generic parameter P
is brought from its initial bare value, P, to a new value, P,
through an RG equation with the structure,

Py = bP? Py(1 + 8p logb), (53)

where the power of b comes from the rescaling step, so that
Dp is the physical dimension of P, whereas the term in the
bracket comes from the shell integration. For an infinitesimal
RG transformation, b ~ 1; hence, we can write 1 + ép logb =
b7, so that §p is an effective correction to the naive scaling
dimension Dp of the parameter. Of course, §p, which is the
result of the shell integration, will depend on all the other
parameters of the theory. One can then iterate this step / times,
giving rise to a recursive RG equation for P,

Pr1 = b Pi(1 + 8p, logb), (54)

where we emphasize that all integrals that appear in the
right-hand side through the factor §p, must be evaluated at
the running value of the parameters, namely at their value
at the RG step /, whereas the naive physical dimension Dp
is fixed once and for all. By using this procedure for the
dynamical parameters of our theory, we obtain the following
RG recursive relations:

[ =621 (1 + ; iﬁw,X’ log b), (55)
g1 =672 (1 + % filog b), (56)
M1 = by, (57)

g =b"g, (58)

and we recall that we are working at T = T;, namely on
the critical manifold. From these equations, we can finally
write a closed set of recursive relations for the effective
coupling constant f;, the dimensionless parameter w;, and the
conservation length scale R,

12X
=fb|1—fif= logh |,
Jivr =11 [ fz<2+ 1+w1) og }

1 2x
Wiyl = wz|:1 - fl(‘ - >logb:|, (59

2 1+ wy

where X; depends on R; and w; through Eq. (46). We note that
the full scaling dimension of the conservation length scale R
is determined by its naive dimension, 5=, plus a perturba-
tive contribution, 14 £ logh = bi/i, hence developing an
anomalous scaling dimension that will be crucial in ruling the
CrOSSOVer.

The derivatives of f, w, and R with respect to (— log b) are
called B functions and measure how the parameters change
when performing an infinitesimal RG transformation,’

1
Ry =Ry b [1 + Zf, logb],

. 12X

|
1 2X

/311) == U)f|:§ - l—i——w:|’

,BR=R|:1—%f:|. (60)

The zeros of these functions define the fixed points of the RG
flow and thus have a crucial role in the theory. The B functions
also will provide a link between the momentum shell RG
approach followed so far and the Callan-Symanzik approach
described in Sec. VI.

SUsually, in the momentum shell scheme 8 functions are defined
as derivatives with regard to log b; however, in that way one ends
up with the opposite sign as compared to the usual definition in the
Callan-Symanzik approach, where they are defined as derivatives
with regard to the arbitrary momentum scale (, which is morally
1/b). We use this convention so as to obtain in the end the same 8
functions in both calculations.
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D. Fixed points and dynamic critical exponent

The fixed point values of the RG equations (that we are
going to indicate with an asterisk) rule the critical behavior of
the system. The exponent z can be found by requiring that the
fixed point value of the kinetic coefficient of ¥, namely I'*, is
finite [23,24]. This condition, as we shall see, is what we need
to investigate the relaxation behavior of the field ¥ close to
criticality. From Eq. (55), we obtain z as

2f*
1+ w*

The dynamic critical exponent is therefore given by the fixed
point values of the parameters f, w, and X.

From the corresponding recursion equation, (59), it is
evident that R can have two fixed points, namely

R*=0, R"=o0. (62)

7=2

=01 = X" 61)

Since the fixed point of f is expected to be of order € [see
Egs. (60)], the scaling dimension of R is negative. Therefore,
the R* = 0 fixed point is IR stable while the R* = oo fixed
point is IR unstable: Any large, but finite, initial value of Ry,
decreases under the RG equation (59), driving the system to
the R* = 0 fixed point. Inserting back the possible values of
R* in the other equations, we therefore find two fixed points
for the global set of parameters.

1. The IR-unstable conservative fixed point

The first fixed point with R* = oo and X* = 1, which we
call IR unstable (or conservative), is

f*=e, R* =00, X*=1,

This fixed point describes a dynamics with z = d/2, typical
of conservative models such as models G and E [43]. Indeed,
R* = oo implies n* = 0: The spin is not damped at all,
so that dissipation becomes irrelevant and the conservation
law expressed by the symmetries of the Hamiltonian rules
the dynamics at all scales. If the system has Ry = oo (i.e.,
no = 0), the RG flow will converge to this fixed point, the
only stable one for zero dissipation. However, as mentioned
above, any other value of R will cause the flow to eventually
converge to the other fixed point.

w* =3, — z=d/2.

2. The IR-stable dissipative fixed point

The second fixed point is characterized by R* =0, or
equivalently X* = 0, and we call it IR stable (or dissipative):

ff=2, w*=0, R*=0, X*'=0, =z=2.

In this case, dissipation takes over (n* = oo) and the dynamic
critical exponent that we obtain is z = 2, which is common
for models with a completely dissipative dynamics [23]. What
we have depicted here is a scenario that includes the presence
of two fixed points with different dynamical behaviors and
different dynamic critical exponents, namely z = d/2 (con-
servative dynamics) and z = 2 (dissipative dynamics). Even
though one of the fixed points is unstable along one direction,
it is stable along the others and—as it will be discussed in
the next section—it can rule the RG flow at intermediate
iterations. In other terms, there is a crossover in the RG flow

1 » 2 =d/2
0
0 0.25 0.5 0.75 1
X
5 =
1.5f ¢ .
£ fi
1 e —X,
_____ ;
0.5
0
0 5 10 15 20
iterations

FIG. 1. Renormalization group flow and crossover. Top: Flow
diagram on the (X;, f;) plane for d = 3. When the initial friction
no is small, Xy ~ 1, the flow converges toward the unstable fixed
point, z = d/2, and remains in its proximity for many iterations,
before crossing over to the stable z = 2 fixed point. Bottom: running
parameters and critical exponent z as a function of the iteration step
along a flow line at small 1. The initial values of the parameters are
Jo=2,Xo=0.9999, and wy = 3.

in parameter space and, as a consequence, also in the behavior
of physical observables.

V. RENORMALIZATION GROUP CROSSOVER

A. RG flow on the critical manifold

To investigate the dynamic crossover, we studied the RG
flow from a numerical point of view. In the limit of infinitesi-
mal RG transformations (b — 1), the recursion relations (59)
become a system of coupled differential equations. We intro-
duce the continuous variable x = [ log b; Egs. (59) can then
be rewritten in the continuum limit (replacing, for instance,

Jx) = f:
') = Be(f, w, R),
w'(x) = Bu(f, w, R), (63)
R'(x) = Br(f, w, R),

where the prime stands for a derivative with respect to x.

The set of Egs. (63) can be studied numerically, for any
given initial condition. In Fig. 1 (upper panel), we show the
resulting flow in the (X, f) plane, each line corresponding to
a different set of initial values of ng, Ao, I'g (and therefore of
fo and Xp). The flow always proceeds from the conservative
to the dissipative fixed point, as expected. However, how fast
it does so depends on the initial condition Xy. When this value
is close to 1, which means that the friction 7y is small, the
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flow of parameters approaches the z = d/2 fixed point and
remains close to it for many RG iterations. Then, it eventually
moves toward the stable fixed point with z = 2. In the lower
panel of Fig. 1, we show the same dynamic crossover in terms
of z of the coupling constant f and of X. From this figure,
we clearly see that there is a well-defined intermediate regime
where the flow is regulated by the unstable fixed point, the
parameter X driving the dynamic critical exponent from one
value (z = d/2) to the other (z = 2).

B. Crossover in the critical dynamics

We have discussed so far the crossover along the RG flow
in parameter space. This crossover has important observable
consequences in the relaxational behavior of the system. In
the previous section, we showed that there is a parameter with
the dimensions of a length scale, R, which plays a crucial role
in the RG flow. As we shall see, it is precisely the interplay
between R and the relevant physical length scales of the
system that determines the way it relaxes.

1. Crossoverink at & = oo

Let us start by considering the system at the critical point
(r = 0). In this case, the correlation length is infinite and the
only physically relevant length scale is that at which we are
observing the system, namely 1/k. To study relaxation at this
scale, we can look at the correlation function of the order
parameter, which is directly connected to the dynamic critical
exponent through the dynamic scaling hypothesis (8). Since
we have been working in frequency space, it is convenient to
rewrite Eq. (8) in terms of frequencies [16]

2
Clh, ) = — j(Tk) Co(k) H(w/wc(k), k&),
we(k) = k*h(k§), (64)

where H and h are well-behaved scaling functions (the first
normalized to 1 to ensure the static limit®) and w.(k) is
the characteristic frequency of mode k [the inverse of the
characteristic time t; of Eq. (8)]. For £ = oo and for small
k, Eq. (64) gives

we(k) ~ k°. (65)

Since there are two possible values of z, one can wonder at
this point which one to consider in this relationship. It turns
out that this depends on k versus R. To see this, we note that
the characteristic frequency is the pole of the propagator of
the field ¥, i.e., the frequency satisfying G‘/_j1 (k, w.) = 0. We
can therefore study its infrared behavior by looking at G;l at
small k. This is very convenient because—by construction—
propagators along the RG flow are related to each other, and
we can link what happens in parameter space to the physical
behavior of the system.

The prefactor 27 /w.(k) in the right-hand side of Eq. (64) ensures
that, when integrating over frequencies, the condition C(k,t = 0) =
Co(k) is satisfied.

At every step [ of the RG, the physical propagator verifies
the relation

Gy(k, 0, P) = )Gy (b'k, b w, Py), (66)

where with P; we indicate the set of the parameters after [
steps of RG (and P = Py in the left-hand side). The scaling
factor on the right side of (66) is just the scaling dimension
of the propagator. What we are doing is to consider an initial
point in parameter space corresponding to our physical system
(left-hand side), and then follow the RG flow in the critical
manifold starting at that point. As / increases, the propagator
on the right-hand side is evaluated at farther points along the
RG line. Since we know that there is a crossover along the RG
flow, we are writing this expression with a dynamic critical
exponent, which explicitly depends on the recursion step /. If
we choose [ such that b = A /k, i.e., the maximum possible
value, the propagator satisfies

AN AT
Gw(k, w, P) = <?> Gv, (A, (;) w, P*) (67)

Here, we have evaluated the function on the right side at the
fixed point values of the parameters P. This is justified if
! is large enough to approach the vicinity of a fixed point
(i.e., small k). From Eq. (67), we get for the characteristic
frequency

-1 _ -1 WA\
G, ko, P)=0% G, (A’kT’P ) =0

= w.(k) ~ k7. (68)

Which one of the two fixed points is reached—and therefore
the value of z*—depends on the starting point (i.e., the set P)
and on the number of iterations. More precisely, the condition
that discriminates between the two possible fixed points is

R, ~A"", (69)

because it determines the value of the variable X; in expression
(61). Let us consider the situation, which interests us more,
where the starting point of the flow is close to the IR-unstable
fixed point. The initial value of R is therefore large, corre-
sponding to a system with low 9. If R; > A~! holds for all
the iterations, the flow will explore only the neighborhoods of
the unstable fixed point and the values of P* in (67) are the
ones of the conservative dynamics. Therefore, in this case

Ri> A = o, ~ k2. (70)

However, it may happen that, even starting at the same point
in parameter space, the number of iterations is so large that
eventually the condition R; < A~! becomes satisfied, and the
flow approaches the stable fixed point corresponding to z = 2.
In this case,

R < A= w ~ k% (71)

Since the number of iterations is fixed by the value of the
wave number k (b' = A /k), the condition R; ~ A~! can be
translated into a condition on k. The recursion relation for
the conservation length scale gives R; = Rob'~1*/"/¥); since
we are considering a flow starting close to the conservative
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fixed point, we can set f* = ¢, which gives the anomalous
scaling dimension of R at the conservative fixed point,

R ~ b 4/4, (72)

from which we see that the length scale R has a scaling
dimension equal to its naive dimension at the upper criti-
cal dimension, d = 4, as expected. From the relation R; =
Rob' =4/, we can finally identify a threshold value k. mark-
ing the limit between the two different scenarios described
above, namely

ke = A(ARo) 4. (73)

To summarize, we therefore find that at criticality the relax-
ation behavior of the order parameter—as captured by the
critical exponent z—depends on the relation between the scale
at which we observe the system and the value of the length
scale Ry, i.e.,

k<< A(ARy) ™! = z=2,
k> AARy) ™ = z=d/2. (74)

We therefore have found the third nontrivial critical exponent
of the theory, namely the crossover exponent [24],

K =4/d, (75)

which, as we have seen, is intimately related to the anomalous
dimension of the conservation length scale. In Fig. 2, we show
the regions corresponding to the two dynamical behaviors in
the (k~', Ro) plane.

2. Crossoverinéatk =0

In many cases, and in particular when looking at experi-
mental data, real systems are not exactly at the critical point.
For all practical purposes, we need to extract information on
the critical behavior of the system also when its correlation
length £ is finite, even if large. Predictions can be obtained
following a reasoning much similar to the one above, but
taking explicitly into account the dependence of the propa-
gator on temperature, i.e., on the correlation length. Besides,
since there is a characteristic length scale, it is convenient to
set k = 0. Instead of Eq. (66), the relevant equation for the
propagators then becomes

Gy(,8)=Gy(k=0,w,& P)
=By Gytk=0,b"w, &, P). (76)

What we are doing is, again, to consider a point in parameter
space corresponding to our physical system and to relate the
physical propagator with propagators of models along an RG
line starting at that point. The difference with the previous
case is that now the RG flow takes place off the critical
manifold, and therefore not only the parameters change upon
iteration but also the correlation length, i.e.,

§141=6&/b, (77)

with & = £ (i.e., the correlation length of the physical sys-
tem). We can choose the number / of iterations such that
b = EA.If £ is large enough that the system comes close to

Ro

&k

FIG. 2. Different critical regions. Different values of k, £, and R
correspond to different critical behaviors. The dark red region cor-
responds to conservative critical dynamics with z = d/2, while the
light green region corresponds to dissipative critical dynamics with
7z =2. We set A = 1 so that physical values for lengths are k! > 1,
& > 1, and Ry > 1. On the critical manifold relaxation is studied
in the (k~!, Ry) plane: The two different regimes are separated by
the curve Ry = k~%/*. Off the critical manifold, relaxation is studied
in the (£, Ro) plane: The two different regimes are separated by
the curve Ry = £9/4. The black dashed line represents, respectively,
Ro = k7! or Ry = £. The figure refers to the d = 3 case.

a fixed point, then the propagator satisfies the relation
Gy, &) = (AE) Gy (k =0, (AE) », A™', P*) . (78)

Since the pole of the propagator for k = 0 is the global
characteristic frequency of the system, we immediately get the
relaxation behavior as w.(&) ~ £77". As before, the value of z
depends on which one of the two fixed points is approached
at the end of the RG flow after [ iterations. The discriminating
condition is always R; >~ A~ we therefore find

Ri> A =0 ~E92
R <A = w0, ~E2 (79)

Since the number of iterations is fixed by & (i.e., b= EN), the
discriminating condition R; ~ A~! now identifies a threshold
value &, for the correlation length that can be obtained using
the recursion relations of both R and §:

£~ (RoA)IA!. (80)

To conclude, we therefore find that critical slowdown is ruled
by two different critical exponents depending on how large the
correlation length is (i.e., how close the system is to the critical
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point) with respect to the conservation length scale Ry, i.e.,

£> RoMYIATT =
£ < (RoMNIAT =

=2,
z=4d/2, (81)

thus giving the same crossover exponent as in the k de-
scription. A graphical representation of the different critical
regimes can be found in Fig. 2. To summarize, it is therefore
the interplay between the correlation length & and the con-
servation length scale Ry that defines what kind of critical
dynamical behavior is observed. We also note that—due to the
nontrivial recursion relation for R, see Egs. (59)—these two
length scales rescale differently upon RG transformations. As
a consequence, the region corresponding to the conservative
critical dynamics is larger than in the case of naive scaling.

C. A new upper critical dimension

So far we have been studying the RG flow in the vicinity of
the conservative, z = d /2, fixed point. Our original motivation
was indeed to describe experimental findings on swarms of
insects, where a low-dissipation critical dynamics has been
observed. As we have seen, in the neighborhood of this
fixed point, we have an upper critical dimension d. = 4 and
the effective dynamic coupling constant is the parameter f;.
However, we also showed that the conservative fixed point is
unstable, and hence the RG flow inevitably brings the system
to the dissipative fixed point, z = 2. The problem is that, in the
vicinity of this fixed point, the on-shell self-energy ¥, has to
be treated quite differently from the previous case, and f does
not play the role of the effective dynamic coupling constant
anymore. Let us see this in more detail.

In proximity of the IR-stable fixed point, the running
effective friction 7; becomes very large, eventually diverging.
In this regime, our previous assumption to have a mild, finite
value of the friction 1; in Eq. (36) must be revised, and the
integral must be arranged differently:

: ]

i Jam (27T)d P2+ A)p? + il

[ =6 2r;[1+2

=b2T 1+2— bdlp !
B : Lo Jap Qu)d p 2 F'J:MPZ"‘I) .

(82)

We see that, as the running friction n; goes to infinity, ap-
proaching the stable fixed point, the large p behavior of the
integrand turns from 1/p* to 1/p?, thus giving

Aadp 1
[y = 62T [1+2— P —} (83)

Lo Japp Qu)d p?

From this last equation, it is clear that, in the proximity
of the IR-stable fixed point, the actual effective coupling
constant in the perturbative expansion of I'; is no longer f; but
q1 = g A*>~9/T';n;, whose naive scaling dimension is d — 2,
not d — 4; accordingly, the integral now has a logarithmic
UV divergence at d = 2. We conclude that the upper critical
dimension for this fixed point is no longer 4 but d. = 2 and

that the actual expansion parameter is
E=2-d. (84)

In d = 3, which is the case of interest for us, the dimension
of g is negative, which is equivalent to say that the only
stable fixed point is ¢* = 0 (this can also be seen explicitly
by writing the RG recursive equations for g;). Therefore,
the self-energy contribution in (83) vanishes and the kinetic
coefficient has no perturbative contributions (at one loop),
thus giving

T =670, (85)

so that the only way to keep finite the kinetic coefficient at its
fixed point is to have

z2=2, (86)

in agreement with the previous result. In this regime, ¥ be-
haves dynamically as an independent field; i.e., its relaxation
has no contributions from the mode-coupling terms in the
equations of motion. This highly nontrivial crossover between
two different upper critical dimensions will be made more
explicit in the Callan-Symanzik approach, which we describe
the following section.

VI. CALLAN-SYMANZIK APPROACH

In this section, we derive the RG results within a different
renormalization approach, in which the large-scale properties
of the system are deduced from a differential equation (called
the Callan-Symanzik equation or renormalization group equa-
tion). This equation in turn follows, as we explain below, from
a reparametrization invariance of the renormalized dynamic
theory, which is introduced to deal with the strong cutoff (A)
dependence of the original theory (which leads to divergences
in the A — oo limit). This approach is complementary to the
momentum-shell renormalization developed in Sec. IV. Its
principles are described in several texts, e.g., Refs. [41,50—
52]. Our treatment of the ISM under the Callan-Symanzik
(CS) approach follows the lines of the dynamic renormal-
ization study of model E by De Dominicis and Peliti [44]
(see also Ref. [52]). The CS approach involves the following
steps:

(1) Write a renormalized theory, i.e., reparametrize the
original dynamic functional in a way that all A dependence
(equivalently, divergencies that appear for A — 00) of physi-
cal observables is absorbed into a finite set of constants. This
is done at an arbitrary momentum scale .

(2) Using the fact that the renormalization can be done at
arbitrary values of u, write a differential equation describing
how relevant renormalized observables (in our case the re-
sponse and correlation functions) change as u = |p| is varied.
This is the RG equation, sometimes called the CS equation.
Combining this with dimensional analysis, one finally ob-
tains a differential equation that describes the change of the
renormalized observables as the observation scale (external
momentum) is varied. The coefficients of this equation are
the 8 functions, which are computed from the renormalization
constants at a given order in perturbation theory. The equation
is solved by the standard method of characteristics.
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(3) The solution by the method of characteristics shows
that the behavior of the response and correlation functions
at large scales can be obtained by studying the response
and correlation at a fixed reference momentum scale but
with observation-scale-dependent coupling constants. How
the coupling constants change when increasing the observa-
tion scale is ruled by the B functions, and the trajectories in
parameter space induced by a change of scale are called RG
flow. Thus, one finally studies the RG flow, with particular
attention to fixed points, which will lead to scaling behavior
of the response.

We describe these steps in the following subsections. Many
aspects of the calculation are identical to models E and G, and
for these we refer to the article by De Dominicis and Peliti
[44]. We only describe in detail the aspects that are novel in
the ISM.

A. Renormalized theory and renormalization factors

The diagrammatic expansion of the dynamical action in-
volves integrals in momentum space that are divergent (in the
space dimension of interest) for large integration momenta
(ultraviolet divergences) unless some regularization procedure
is adopted (like the cutoff A for large momentum we used
in the momentum-shell calculation; see Appendix A). To
construct a renormalized theory means to reparameterize the
functional in terms of a different set of coupling constants and
fields in such a way that the divergences (or equivalently the
details of the regularization procedure) are confined in a finite
set of constants.

Instead of using a cutoff, here we renormalize according to
the dimensional regularization plus minimal subtraction pre-
scription [52]: Diverging integrals are evaluated in a dimen-
sion low enough that they are convergent, then analytically
extended to noninteger dimension. The original divergences
then show up as poles in the dimension variable. The minimal
subtraction procedure consists in introducing the renormal-
ized parameters so that they absorb only those poles.

Renormalization thus starts with the identification of all the
ultraviolet divergences of the theory and with the definition
of the renormalized constants to absorb them. Looking at
the perturbative expansion, we see that the introduction of 7
leaves the free propagator of the ¥ field (23) unchanged with
respect to the model G case, while in the free propagator of
the s field Gy (k, w) a k-independent term is added, so that
the k — oo behavior of the free propagators is unchanged.
Then, since the structure of the diagrams is identical to that of
models G and E (because the interacting part is the same), the
divergences in ISM arise in the same diagrams. Then, from
Ref. [44], we know that the theory is renormalizable in d = 4
(which is the upper critical dimension of the theory). The
divergent diagrams relevant to the dynamic renormalization
arise in the expansion of Gy (k, @) and G,(k, w), in particular
in the derivatives

G, 9G;!
k2 T 9k
Both divergences are logarithmic in d = 4. There are two
additional divergences in Gy (k, @) that we do not need to

consider. One is the quadratic divergence in G;l(k =0,w=

87)

0) that is absorbed into a renormalized mass (susceptibility)
in the static theory. Since we work here at the critical point
defined by r = 0, in practice this means setting ro = 0 in all
the diagrams we consider. There is also a logarithmic diver-
gence in 8G;1(k, w)/dw that, however, does not arise at the
one-loop level (and which is related to field renormalization).
The divergences are taken care in the following way: We
consider the relevant divergent quantities [e.g., the derivatives
in Eq. (87)] and evaluate them at @ = 0 and at a given value
of the momentum k = p (so as to eliminate infrared diver-
gences). We then replace the original kinetic and transport
coefficients and coupling constants by renormalized counter-
parts that absorb the divergences, in a such a way that—once
expressed in terms of the new parameters—the quantities of
interest are finite. The renormalized parameters are defined
through multiplication by Z factors; when considering the
derivatives in (87), this amounts to introducing renormalized
kinetic coefficients
I'=2ZrTy, X =2Zx. (88)
The two remaining dynamic couplings, go and 7, do not pick
up perturbative renormalization. In the case of gg, this is a
consequence of a Ward identity deriving from the fact that
s generates the rotations of ¥ (Appendixes B and C) [44].
In the case of 7, the reason is that it is not involved in
absorbing divergences due to the fact that G;'(k = 0, @ = 0)
is finite (see next section). We introduce, however,  and g as
nondimensional counterparts of ny and go,

_ n
f=Ku' g, n= ;TZ (89)

where K; = 274/2(2m)~?/T'(d/2) is introduced for conve-
nience and w is the arbitrary momentum scale used to evaluate
the propagators during renormalization. (Note that in this
section we choose the frequency units so that 'y and XA, are
nondimensional, i.e., [@] = [k2]).

The Z factors now have to be determined at a given order
in perturbation theory so that all the renormalized propagators
(and in consequence correlation and response functions) are
finite, i.e., the Z factors are divergent in a such way that all
observable quantities (expressed as averages with the renor-
malized theory) are finite. One can then in principle determine
all the renormalized parameters of the model in terms of
a finite number of observations (at fixed wave number and
frequency). Finally, since at one loop, as mentioned above,
the fields are not renormalized, the relation between original
and renormalized propagators and correlations is

Glﬂ(kv w, Up, 80, FOa )\'07 7]0) = Gi(kv w, U, g, Fa )\-5 n; H’)v
90)

Cy(k, w, ug, 80, To, 2o, 10) = Cip(k, , u, &, T, &, 13 ).
oD

We discuss the determination of the Z factors in below.
These play a leading role in the CS procedure since they give
the nontrivial contributions to the RG equation coefficients
(Sec. VIB).
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B. RG equation and dynamic critical exponent

In this approach, the dynamic critical exponent is identified
after finding the dynamic scaling form of the correlation
functions. The procedure is the standard one, which we briefly
recall. From the perturbation expansion at w # 0, one can see
that the correlation function Cy, can be written in terms of the
static coupling uy, the effective dynamic couplings (fy, wo,
Ro) and I'y, where I'g and w always appear in the combination
w/Ty. So, we can rewrite Eq. (91) as

Cy (k, w, uo, g0, To, ko, n) = Cy (k, /T, u, f, w, R; o).
(92)

Since the left-hand side is independent of the arbitrary scale
1, deriving with respect to log u one obtains the RG equation

M—-i-Zﬂz

where [ = u, f, w, R and the 8 and v functions are

Bilu, frw, R) = o, oy = p BB (gg)
I ou
The only dimensional arguments are k, w, and pu, and the
dimension of C$ is 2. Then dimensional analysis leads to
an Euler equation, which can be used to eliminate the u
derivative:

+ V]"F C{; = 07 (93)

3 07 & R
Han + K- Vit 20— |Cf = ~2C;. (95)

Restricting ourselves to changes in the scale of %, i.e., k =
/b, we have that k - V, = —bd /db. Then, combining (93)
and (95) we get

Zﬁa+v[‘a 220 40 R g (96)
— — — —_— a)— f—
l Yor T T do  ob| Y

(we have omitted terms that only appear beyond one loop).
We solve (96) using as initial condition b = 1, i.e., the value
of the correlation at a reference k = u, at some frequency w,
and at the physical values of the couplings I, u, f, w, and R.
The solution, found by the method of characteristics, is

CR(ba)Fuwa>

2

Y N
=b Cw (ko, f‘(b)’ iw(b), f(b), w(b), R(b)), o7

with

b/
and where vr depends on b through the couplings f, w, R.
The dependence of these on b is given by the functions #(b),

etc. (the running coupling constants), which are the solution
of the system

P(b) = Fex|: / "F(b/)db} 98)
1

dit = i), (1) = 99
E - _ﬂu(u)a u( ) - u7 ( a)
df . L.
b—i = _B,(f, . R) F() = f, (99b)

dw A

b% = —B,(f, W, R), (1) = w, (99¢)
dR .
b% = —Br(R, /), R(1) = (99d)

where the 8 functions must be computed perturbatively from
the relation between the bare and renormalized couplings (88).
At one loop, the flow of the static coupling constant u is
completely uncoupled from the dynamic couplings, so we do
not take it into account in the following.

The meaning of (97) is that the correlation function at the
physical values of the couplings # = (u, f, w, R) and at a
rescaled wave vector /b is equal to the correlation function
at the original scale u but evaluated for different couplings
ii(b). Fixed points thus are sets of coupling values #* such
that all 8 functions vanish simultaneously: It is clear that if
the flow starts at such a point, or approaches it for some large
value of b, it will stay there for all larger b. If in addition the
function Cﬁ (k, w/T", i) is continuous at i = u*, then all the
k dependence at large b (small k) is contained in wh? J/T(b):
Equation (97) is then the scaling law we seek, and we can read
off the scaling behavior from its second argument even if we
do not know the form of C¥. For example, if the flow is near a
fixed point for b > b*, then vr(b) = vr (ii(b)) ~ vr (i*) = vf.
Then, (98) gives

v
Since k = /b, we have b ~ k~'and

wb?
P®)
i.e., the value of vr at the fixed point gives the correction to
the naive dynamic critical exponent.
So we proceed next (Secs. VIC and VID) to determine the
Z factors that furnish the 8 functions, and then (Sec. VIE)
to find the fixed points of the flow (99) and their infrared (i.e.,
b — oo) stability. The infrared stable fixed points will rule the
scaling behavior at large length scales. Unstable fixed points
may, depending on initial conditions, lead to transient scaling
laws observable in certain regimes.

. 14 +
['(b) ~ Texp [—/ R )db — vf log(b/b%) } ~Db7'r.
1

z=24v5  (100)

C. Determination of Z factors

We must determine the two dynamic Z factors Z, and Zr
(in a two-loop or higher calculation, a third factor related to
field renormalization would arise, but we do not need it here).
First, Z; is fixed by requiring that dG; ' /9k?|,,=0 k=, be finite.
We have

G, (k, w) = [—iw + no + rok? — TI(k, )], (101)

where IT is the same self-energy as in Eq. (32), although from
now on all the integrals in k in the self-energies will no longer
be performed on shell but rather between 0 and oo, and for this
reason we drop the subscript b from the self-energy symbols.
From Eq. (90), we then have

a(GF)”
oK

A oIl

- 102
ez 0K (102

k=n
=0
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From this equation, two conclusions follow: The first is that
the Aok? term cannot be left out from a renormalizable theory.
This is a consequence of the fact that, in an expansion of
I1 in the external wave vector, it is the k2 coefficient that is
divergent, not that of k° (in fact I1(k = 0) = 0). Thus, if A is
absent, it is useless to define n = Z,n and try to absorb the
pole of IT into Z,, because n drops out from (102). This is
equivalent to the finding, in the momentum-shell scheme, that
the renormalization transformation generates a A coefficient
even if it is absent in the original theory.

The second conclusion is that Z, is determined solely by
the behavior of I1, and, since at one loop this self-energy is
unchanged with respect to model G, we can without further
discussion write it from the model G result [44]:

f
Z, =1+ o

At one loop, the differences between model G and ISM
are only found in Z, which we proceed to compute now. The
propagator of the v field is

(103)

G, (k, @) = 8upl—iw + To(k® + ro) — Sk, )], (104)
!
d GR - r 2 d—4
(G R P CTEOY
k2 k=n a2y Ty + Ao

w=0

& #

- FO{I + K,I'(d)2)

where R* = A/n = (*Z,ho/no, b = /1, and

L T14+R2 1 4/2-2
Li(Rw)= [ d — : :
v(Rw) /0 ﬁ[ Ttw ’ (1+w)2'3i|
(108)
The renormalized counterpart can therefore be written as
8(G§)71 =T : + f rd/2)r2—-d/2)I,(R, w)
o2 |\ Ze 1w I

=0

(109)

The one-loop term has a pole in d = 4 (from the second I"
function): This is how the original divergence of the integral
in d = 4 manifests itself in dimensional regularization. The
minimal renormalization prescription stipulates that this pole
be identified so that an equivalent pole but with opposite
residue can be added to 1/Zr, thus making the renormal-
ized vertex finite. So we expand the second term: Setting
IR, w) =1+ RB/(1 +w) = B*/(1 +w)?,

=r{ 1 +L[%+0(e°)]

-1
2(Gy) 1
Zr 1+w)e

ok?

1
x [1 — %/dﬂ log Z(R, w)+0(62)“
0

=T 1+2 f +
o Zr €el+w '

(110)

Toro 14+ To/A0

where X is the self-energy (31), which we recall here for
convenience:

dip k?
T =28 a'p k"t
Q2m)d p*+rp
1
X — . (105)
—iw + To(p? + ro) + Aok — p)% + 1o
‘We must now consider the renormalized derivative
a(Gk)™! r a%
_— =— - — (106)
ak2 k:_):) Zr‘ ak2 k:_):]

and choose Zr so that it is finite. In the dimensional regu-
larization procedure, this means that the Z factor cancels the
poles that appear for d = 4 (i.e., terms proportional to 1/e,
€ =4 —d), so that (106) is free of poles. Computing the
derivative from (105) for general dimension d = 4 — € at the
critical point and ignoring the contribution from a convergent
integral, one has

dx 1 }
x2 X2 4 [=2hoft - X + Ao + no/1?1/[To + Aol

re-ds2)rn(R, w)}, (107)

(

As long as R # 0, all singular behavior is contained in the
pole at d = 4, i.e., the term proportional to 1/¢ in the last line
of (110). Then, defining Zr = 1+ (2/¢)f/(1 + w) renders
G’; finite. Thus, naively one finds that Zr is independent of R,
and, since Z, is also independent of R at one loop, this leads to
B functions for the parameters f and w that are independent
of R and thus to flow equations identical to model G for f
and w, uncoupled to the flow of R. However, this is wrong:
We have already seen, in the momentum-shell scheme, that
the presence of 1o profoundly affects the flow of f and w,
with the notable macroscopic consequence of a change in the
dynamic critical exponent.

Even without the insight we have from the momentum-
shell calculation, one could guess that the naive expectation
cannot be right: Since Ry has the dimensions of a length,
one expects that its stable fixed point is 0, and indeed below
we shall find from the 8 function (118) that R ~ b~'+/7/4
for b — oo, with f* of order €. In the above equations,
one sees that the limit R — O requires special treatment: In
(110), a logarithmic divergence appears in the € expansion
of I(R, w), and even before expanding one sees that (108) is
problematic because I, (R — 0, w) vanishes for d < 4, while
limRﬁo limdﬁ4 Illf(R, w) =1.

The difficulty here is that the length scale R occurs in the
Gaussian part of the dynamical functional and that it appears
in the loop integrals in such a way that their convergence prop-
erties change at one of the fixed points of R. To deal with this,
we use a generalized minimal substraction as discussed by
Frey and others [53,54]. This method involves incorporating
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the singular R dependence into the renormalization Z factors
(and consequently into the B functions): We thus “enrich” the
pole with a crossover factor X (R, w) extracted from I(R, w)
which absorbs the singular R — 0 behavior. Let us rewrite
(109) as

—1
9(Gy)
2

_rlt . f _
= F{Zr + o T@/2r@ -d/2)

xX(R,w)X‘l(R,w)I,/,(R,w)}, (111)

where X (R, w) is such that X "' (R, w)ly, (R, w) (and in con-
sequence all coefficients of its € expansion) is well behaved
for all values of R (including R = 0, R = o0). We discuss
in the next subsection how to fix this factor, but before let us
write the renormalization factors including the as yet unknown
X(R, w):

Z =1+ éf/z, (112)

1 f

Zr=1+ 62X(’R, w)1 o
We conclude this subsection writing vr, v;, and the 8 func-
tions for the couplings f, w and for R. These functions
determine the RG flow and the asymptotic scaling properties
of the observables (Sec. VIB). Recalling the definition (94)
of B functions and v exponents, and developing them to first
order in f, we get

(113)

vr = —2X(R, w)HLw, (114)
— —g, (115)

so that the B functions [to be compared to (60)] are the
following:

d
ﬁfEll%:—f(E‘i‘Vr—i—Vx)

1 2X
=—f[e—f<§+—l+w>], (116)
ow 1 2X
Buw = M@ =w(r —v) = wf|:§ - l—i-—wi|’ (117)
Br= 1 —R(1 4 vy/2) = R[l - lf}. (118)
ol 4

D. Determination of the crossover factor X

To determine X (R, w), the idea is to to fix it in such
a way that the renormalization factor Zp contains all the
singularities near both fixed points R = 0 and R = co. When
R is nonzero, the only singularity in (109) is the pole at

J

d = 4 originating in the I" function I'(2 — d/2). Thus, the first
condition we impose is that

lim X(R,w) = 1. (119)
R—o00

To find another condition, we must study Gr/_/] for vanishing
‘R. To do this, let us define a new parameter

g _ Kaigon'™

_ 2
I= Ty T ZeToung (120
and rewrite (107) as
a(Gh)" S T@) [odk
okr {Zr Tgan | 2y me
x ! } (121)
R2wx2 +R2(x — p) +1}’

where we have introduced a constant m? to avoid an infrared
divergence in d = 2. We can now set R = 0 in the integral to
find

1

9(Gy)
ok?

We now find a pole at d = 2, corresponding to the fact that for
R = 0 the integral in (121) diverges for d > 2: The critical
dimension for q is d. =2, not 4. We then expand around
d. = 2 and find

= r{zl +qI(1 — d/z)r(d/Z)m"‘z}. (122)
T

Zo=1+q—— =142, (123)
2—d €
By = —(2—d)qg+2¢" = —&q + 24", (124)
where
E=2-d. (125)

We note that 8, above is correct up to second order in g, i.e.,
around the new critical dimension d. = 2. Equation (124) can
give us the condition to impose on X (R, w) near the other
fixed point: From (116) and (118), we can write

By =TR*By +2RfBr = —4[2 —d —2X(R, W)L]’

(1 4+ w)R? }

1
1 —
XI(R, w)lw(va)—/Odﬂ[lJr(ler)R2

(1+w)R?

1+w
(126)
so that to recover (124) we impose
7121510512)((72, w) = (1 +w)R>. (127)
A simple choice for X (R, w) is then
(1+w)yR> 1@
XRw)y=| ——— 128
(R, w) [1+(1+w)722 (128)
with a(d = 2) = 1. Referring to (111), we find
14 1/R? L g e/
1+w (14 w)?
B /ld,g —a+e€/2 1 +R2 i R2 ,82 —€/2 (129)
Jo 1+ 1+ w)R? 1+ (1+w)R? 1+ +wR?1+w ’
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so that X (R, w) defined as in (128) with a = €/2 fulfills the
three conditions: (i) X(R — o0) =1, (ii)) X(R - 0,d —
2) = (1 + w)R?, and (iii) X ! (y, w)I(y, w) is finite and non-
vanishing for all values of R, so that all terms not included
in Zr (i.e., terms of order €” or higher) are regular and do not
cause further trouble. In particular, limz_¢limy_4 X _1110 =
limg_, 4 limp_g X_llw =1.

A subtle but important point, however, remains to be made.
At face value, our choice of X (R, w) recovers the flow (124)
only at d exactly equal to 2, while (124) has actually been
obtained in a general dimension. Thus, it seems that one
would want a = 1, which, however, accounts for the R —
0 behavior of I(R, w) only at d = 2. The way out of this
seeming inconsistence is to remember that (124) is valid in
general dimension but only up to second orderiné =2 —d =
€ — 2. This means that one should actually write this exponent
asa =1+ ¢&/2,and (128) as

I+ wR? € a+wpR?
X@w)—m{ +El°g[m}

+}

It is then clear that (since the nonzero fixed point of ¢ will be
of order €) (126) indeed recovers (124) in the limit R — 0
for general dimension up to order €. But then it also becomes
clear that (124) cannot fix X (R, w) at order € and beyond. So
a=1+¢&/2 is fine near d = 2 and also near d = 4 [where
(109) must be expanded].

From these considerations, in what follows, we will simply
set a = 1 when writing the $ functions also in d = 3, which
is the dimension of interest here. We do so because this is
the simplest choice that gives a correct description of the flow
at the one-loop level: When R — 0 the O(&) contributions
to X (R, w) cannot be fixed without going to two loops so
we may as well omit them, and on the other hand near
the R — oo fixed point X (R, w) — 1 independently of the
exponent. So the final form of 8 functions we find within the
CS scheme is identical to Eq. (60) we previously obtained
with the momentum-shell technique.

(130)

E. Fixed points
Equations (118) and (99d) show that R* = 0 and R* = oo

are fixed points of R. The flow can be solved formally as

b1 _ /
R(b) = Rexp [—/ Mdb’] (131)
1

b/
Since we expect (and confirm below) that the fixed point of
f will be of order €, we see that the integrand within the
exponential is negative (for large b) at least, and that R* = 0
is IR stable while R* = oo is IR unstable.

1. R* = oo—conservative fixed point

The R* = oo fixed point corresponds to X(R, w) = 1.
Since it is unstable, it is only relevant for b — oo when the
system starts at 1/R = 0. This corresponds to a very impor-
tant special case, namely no = 0, i.e., model G (equivalent to
model E for what concerns the scaling properties). It is also
relevant at moderately large scales for very small 1/R, when

the flow stays near X = 1 long enough that the other couplings
approach the model E fixed point before R becomes so small
that X is significantly different from 1 (see Secs. VD and
VIF).

Equations (99b) and (99c) for X =1 were studied by
DeDominics and Peliti [44], who considered model E at two
loops, and we refer to them for the analysis of the fixed points
and their stability. In summary, the relevant [IR stable in the
(f, w) subspace] fixed point is

f*:E, w*:3, R*ZOO, (]32)
implying
€ € d
=Ty f 272 (133)

It is interesting to remark that the result for z, although
obtained here at one loop, has to be valid at all orders in
perturbation theory as long as w* and f* are different from 0:
If w is non-null, (117) implies vr = vy, and (116) then gives
2\)[‘ = —€.
2. R* = 0 — dissipative fixed point
When R = 0, X(R, w) = 0, which gives immediately

(134)

v =0, z=2,

regardless of w and f (as long as they are finite). Setting
X(R,w) = 01n (99b) and (99c), one finds two solutions:

ff=0 (135)
and
w" =0.

f* = 2, (136)

The stability of the two fixed points can be studied lineariz-
ing the flow (99) around the fixed point #*:

dil

bd—b =-W(@i—u"), (137)
where W is the Jacobian matrix
af aw IR
W=|2% % b (138)

af ow IR

Br  Br  Pr

af dw IR
evaluated at the fixed point. The fixed point is stable if W is
positive definite; i.e., its eigenvalues are all positive. We find
for the two cases above

—€ 0 0
W(f=0,R=0=1(1/2 0 0], (139)
0 0 1
which has eigenvalues 0, 1, and —e, while
€ 0 0
W(f=2e,w=0,R=0=|1/2 ¢€/2 0 . (140)
0 0 1 —¢

with eigenvalues €, €/2, and 1 — 2¢. So the only IR stable
fixed point (at 1 loop, neard = 4) is f* = 2¢, w* =0, R* =
0, which implies as we have seen that the critical exponent is
7z =2.
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F. Crossover

We have just concluded that the only IR-stable fixed point
gives z = 2, so that for large observation scales (k — 0) the
critical dynamics is like that of a purely dissipative model (like
model A) when the starting (physical) value of n is nonzero.
However, for nonzero but small 5, such that the starting R is
very large, the initial value of X (R, w) is very close to 1 and
will stay so until R(b) is of order 1 (e.g., for w = 3, X is larger
than 0.99 for R > 5). So one can expect that f and w will at
first move as if X =1, i.e., toward the conservative (model
G) fixed point, staying in its neighborhood until R decreases
significantly, and in effect the numerical study of the flux
(Fig. 1) confirms this expectation. Then, experimentally one
will observe model G critical behavior (z = d/2) for moderate
(i.e., not too small) values of k, possibly lasting a rather
wide interval, until at some point for k — 0 the asymptotic
z = 2 exponent will be seen. We show here how to obtain the
scaling of the wave vector k. (marking the end of the model G
behavior) with the physical value of R (cf. Sec. V E).

Assume then that the physical value of R is R(b=1) =
R > 1 so that X(R, w(1)) =~ 1. Assume also that one is
observing at a scale k = p/b such that the flow has already
reached the neighborhood of the z = d/2 fixed point (which
in particular implies vr ~ —e/2). We ask how small we must
make k so that the system moves away from this fixed point
and the scaling law changes. For this to happen, X must be
significantly less than 1, so let us impose that X < ¢, with ¢ =
0.99 say. This requires R(k) < R. = +/c/[4(1 — c)]. Now
since we are near the conservative fixed point, we can use
(99d) with vr = v to obtain

R(k) ~ Ry (k/p) 72, (141)

Now the crossover wave vector will be such that R(k.) = R.,
so that

—1/(14v5 /2 11— -
ke ~R; [A+v7/2) R, 1/(1—€/4) _ R; 4/d (142)
Hence, we find the same crossover exponent as in momentum
shell, namely,

Kk =4/d. (143)

Let us notice that the crossover exponent « is nontrivial:
From naive dimensional analysis, one would have guessed
k. ~ Rl’l. However, the renormalized R is dimensionless,
and the RG result is actually taking into account the nontrivial
effects of the hidden microscopic length scale.

Finally, let us note that the crossover exponent derives its
value from v; at the model G fixed point which, as we have
mentioned before, takes the value —e /2 at all orders in pertur-
bation theory [44] and thus so must the crossover exponent.

VII. NUMERICAL SIMULATIONS

To test our results, we performed numerical simulations
of the microscopic ISM model on a fixed lattice in d =
3. We implemented the dynamical equations (10) and (11)
using a generalized Verlet integrator [55-57] for second-order
equations. Details of the algorithm can be found in Ref. [58].
The lattice spacing is A~! = 1. We fixed the parameters
J=1, X =1, and performed simulations at several values

of the temperature 7" and of the friction coefficient 7). Since
the temperature sets the correlation length and the friction
regulates the conservation length scale Ry, we can in this
way explore the (&, Ro) plane of Fig. 2. For all values of
T and ) considered, we computed the correlation length &
and the relaxation time t and inferred the exponent z from
the scaling relation Eq. (8) between them. In this way, we
could investigate the dynamical critical behavior and com-
pare results with the predictions of the RG computation.
Before illustrating the results, let us briefly explain the pro-
cedure followed to compute the main quantities required for
our analysis, namely & and 7.

A. Static behavior and determination of &

Since we are interested in the critical behavior of the
system, we need first of all to locate the transition temperature
and characterize the static critical properties of the system. To
do so, we perform numerical simulations of Egs. (10) and (11)
in the stationary regime and use decorrelated dynamical con-
figurations to compute one-time equilibrium averages (from
now on indicated with (- --)). From the static point of view,
the ISM on a lattice is completely equivalent to a standard
ferromagnetic model, we therefore expect static properties to
reproduce the well-known results of the Heisenberg model.
For a system of N velocities and vectors, the polarization is
defined as

1

® N Z v, (144)
and its modulus, the scalar polarization ¢. Here, v is the
modulus of the vectors ¥ (which are all the same and equal
to 1 in our case). ® measures the degree of global alignment.
The average value of this quantity is plotted in Fig. 3(a) as
a function of temperature, and clearly shows the occurrence
of an ordering transition. The critical temperature can be
conveniently located by looking at the fluctuations of (¢),
namely the susceptibility

x = BN[(¢*) — (9)*],

where f is the inverse of the temperature. We analyzed these
quantities for a wide range of temperatures (0.1 < 7 < 5.0)
and sizes (N = 512, 2197, 4096, 8000). From Figs. 3(a)
and 3(b), we can see that the critical temperature is located
approximately at 7, >~ 1.5. As usual, finite-size effects imply
that the critical point moves toward lower temperatures as
the linear size of the system increases [59]. This happens
because the correlation length &, and hence the susceptibility
X, saturates close to the critical point so that the effective 7,
decreases as the linear size of the system increases [60].

To measure the correlation length &, we first computed the
static connected correlation function C(r):

Zi’j(&/fi . 5'/’j>5(’" - Vij)

2080 —rij) ’
where r;; is the distance between two sites i and j, and §v; =
¥; — (¥;). Since we are mostly interested in the paramagnetic
phase of the model, the relevant one to describe swarms,

we focused on temperatures T > T, approaching the critical
point from above. The behavior of the correlation function

(145)

Cr)= (146)
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FIG. 3. Static critical behavior. (a) Average scalar polarization for temperatures 0.5 < 7' < 2.5 and for different sizes (N = 512, 1000,
2197, 4096, 8000). An ordering transition occurs at approximately 7, >~ 1.5. (b) Susceptibility as a function of temperature, same sizes as
in panel (a); the maximum of each curve is located at a temperature that decreases with increasing the size of the system and approaches
the critical temperature 7, in the thermodynamic limit. (c) Finite-size scaling of the susceptibility. Curves at N = 2197, 4096, 8000 satisfy
finite-size scaling with exponents v = 0.707 and y /v = 1.973, as predicted by the theory of the Heisenberg model [41].

(not displayed) is as expected for a Heisenberg model, and we
therefore computed the correlation length from the expression
rC(r) = exp(—r/&), exploiting the fact that the anomalous
dimension is small [41]. We combined this information with
data on the susceptibility to obtain an estimate of the ratio
between critical exponents y /v for sizes N = 2197, 4096,
8000. Simulations at N = 8000 gave y /v = 1.905 in agree-
ment with the literature [41]. We therefore used this size for
all following analyses. Finally, to further test the equivalence
of the static properties of ISM with the Heisenberg model we
performed a finite-size scaling analysis on the susceptibility,
as displayed in Fig. 3(c).

B. Dynamic behavior and determination of ©

To investigate the dynamical behavior of the system one
has to look at time-dependent quantities. In particular, the
characteristic timescale t is by definition the scale over which
fluctuations of the order parameter become decorrelated. To
compute it, we introduce the spatiotemporal correlation func-
tion, that is,

1 in(kr;;
k=12 %j;”wim S 1+ Db
L]

(147)

with T being the length of the simulation. The number
of operations needed to calculate this quantity is in general
~TmaxN?; however, what we actually need for the scaling
analysis is the correlation function at k = 0 (see Sec. V B 2),
which is numerically less demanding:

Trnax—t

> 59(to) - 59 (to + 1),

=1

E— 1
(1) = 5 D 8¥ilto).

Ck=0,t)= ——
( ) Tmax_t

(148)

From this quantity, we computed the characteristic timescale
T from the definition

1 /°° | (t) Ck=0,1)

— = dt—sin| — | —/———.

2 0 T t)Ck=0,t=0)
This condition corresponds to requiring that half of the total
integrated area of the dynamic correlation function in the
frequency domain comes from the interval —ow, < ® < w,,
with w. = 1/7. This definition of 7 has the advantage of
capturing the relevant timescale both when relaxation is dis-
sipative and when propagating modes are present, and it is
the standard definition adopted in the literature on dynamic
critical phenomena [16].

(149)

C. Dynamic crossover

Our primary objective is to observe the crossover in the
dynamic critical behavior predicted by the RG computation.
According to Eq. (81), there are two dynamical regimes at
small and large values of &, separated by a crossover length
scale fixed by Ry. The simplest protocol to check this scenario
in numerical simulations would seem to fix the value of
the dissipation coefficient (and therefore R() and extensively
vary the correlation length by tuning 7. Since t ~ &%, when
plotting t versus &, we should then observe two different
power laws, one with exponent z = d/2 for small £ and
another one with z =2 at large £. The problem with this
protocol is that to see a change in the power-law exponent one
must span several orders of magnitudes in &, three decades
at the very least. However, L = 10° gives N = 10° in d = 3,
which is quite demanding numerically, considering that the
largest relaxation time would be of order T ~ &2 ~ L2 ~ 10°,
This is not possible, and the maximum size we used is well
below (L < 20).

In other terms, simulations at a single value of 7 are
unlikely to show clearly the crossover.

To better illustrate this point, in Fig. 4 we have reproduced
the (¢, Ro) plane of Fig. 2, which describes the crossover

062130-21



ANDREA CAVAGNA et al.

PHYSICAL REVIEW E 100, 062130 (2019)

10

£>E&max

FIG. 4. Numerical protocol in the (&, Ro) plane. Depending on
the values of & and Ry, the system explores two different critical
regimes (see also Fig. 2). Simulations performed at fixed # and
different T correspond to exploring the (£, R,) plane along hor-
izontal segments. Since the size of the system is finite (L < 20),
only a limited window of & can be accessed and the length of
such segments is finite (1 = A" < £ < &0 = 10). According to
the RG prediction, for all values of # corresponding to Ry > 10°/*
the segments belong entirely to the conservative region (segment a).
For larger values of #}, such that 1 < Ry < 10%*, the segments cross
from the conservative region to the dissipative one (segment b): In
this case, there is no sufficient span in each region to extract the
exponent z from the 7 vs £ plot. Since the minimum physical value
of Ry is A~! = 1, larger values of # are all equivalent to the Ry = 1
case (segment c).

predicted by the RG computation, and we have explicitly
marked the physical constraints related to the simulated mi-
croscopic model. Since the maximum simulated size is L =
20, the region with & > &;.x & L/2 = 10 is unaccessible.
Besides, the lattice spacing we use is A~'=1,and both & and
R must then be considered starting from such physical value.
Numerical simulations at fixed 7 (i.e., fixed Rg) therefore
correspond in this diagram to finite horizontal intervals that
we depicted with dashed dotted lines in Fig. 4. The value of 7
used in simulations determines the value of R (larger values
of the first one mean lower values of the second), i.e., the value
at which the horizontal lines run in the figure. Upon increasing
1, Ro will at some point reach its minimal value A~'=1and
all larger 7 therefore correspond to the same boundary Ry = 1
interval [Fig. 4(c)].

Figure 4 clearly shows that there is only a narrow range
of Ry where the horizontal interval crosses the crossover line
[Fig. 4(c)], and here the span within each regime is by far
too small to appropriately extract z from a power law fit. On
the contrary, in most cases the horizontal interval entirely lies
within the same dynamic regime [Figs. 4(a) and 4(c)]. In this
case, in numerical simulations at fixed 7 we should expect
that only one power law is observed in the 7 versus & plot.
For this reason, the best way to capture the presence of the
crossover is to run simulations at several different values of
the effective friction. If the RG picture is correct, when 7 is
small, corresponding to large Ry, we should measure z = 3/2
[Fig. 4(a)], while for large enough 7 we should measure z = 2
[Fig. 4(c)].

8L =40 —a— %-
z=2.0
7 n=2.0
z=1.5
6 n=1.0
(- z=15
\_/5
=
4
3
2

0 0.5 1 1.5 2 2.5

In(¢)

FIG. 5. Dynamic critical exponents. Relaxation time versus cor-
relation length in d = 3, for L =20, N = 8000, and T € [1.48 :
2.00], at various values of the friction coefficient, 7) = 1.0, 2.0, 4.0.
Each point is an average over 10 samples, apart from the lowest T’
(largest &€ and 1) at ) = 4, for which we have four samples (one such
sample takes 7 days to run on a i7-8700, 3.20 GHz CPU). Lines are
the best fit to z = 1.5 (low friction, # = 1.0, 2.0) and z = 2 (large
friction, 7) = 4.0).

The numerical findings fully confirm this scenario. In
Fig. 5, we show results for three different sets of simulations,
respectively, for 7 =1, 2, 4. We cannot use larger values
for the effective dissipation because the maximum relaxation
time becomes too long to equilibrate the system. For the
smaller values (f = 1, 2), the data are in good agreement
with a dynamic critical exponent z = 3/2, while for 7 = 4 the
characteristic timescales with the correlation length with an
exponent z = 2. We therefore conclude that the ISM exhibits
a dynamic crossover in critical behavior, as predicted by the
RG.

To further support the existence of two distinct regimes
in dynamical behavior, we tested the full dynamic scaling
hypothesis (8) on the dynamic correlation functions. In Fig. 6,
upper panels, we display the normalized C(k = 0, ¢) for all the
temperatures that we analyzed, and for two different values
of 7). In the lower panels, we report the same curves but
plotted as a function of the rescaled variable 7 /&%, where we
used the values of z obtained from the previous analysis. The
figure shows that dynamic scaling is nicely verified, but with
different exponents (z = 3/2 and z = 2, respectively) at small
and large values of the friction coefficient.

D. Natural swarms and inertial dynamics

Both theoretical computations and numerical simulations
describe a dynamic crossover ruled by the interplay of the cor-
relation length & and the conservation length scale R. This
analysis has important consequences regarding systems of
finite size. What we have shown is that, even in the presence of
dissipation, the critical behavior can be ruled by conservative
critical dynamics with exponent z = 3/2 (ind = 3) in a wide
region of parameters (case Ry > &3/4; red region in Fig. 4).
This result is particularly relevant if we think back at the
biological motivation of our study: explaining experimental
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FIG. 6. Dynamic scaling for correlations. Test of the dynamic
scaling hypothesis on the dynamic correlation functions at k = 0.
Upper panels: spatiotemporal correlation functions at various values
of the temperature for /) = 1 (a) and #j = 4 (b). Lower panels: same
curves plotted as a function of 7 /£° with, respectively, z = 1.5 (c) and
z =2 (d): In both cases, the functions verify the dynamic scaling
hypothesis.

data in natural swarms of insects. As discussed in Sec. II,
swarms exhibit dynamic scaling, but with an exponent smaller
than the one predicted by models of collective motion with
a purely dissipative dynamics. This is why we considered
the ISM in the first place: to put back inertial terms in the
dynamical equations and to understand whether they can
produce z < 2 on the collective scale of living groups. The
answer to this question is therefore yes. The exponent that
we get in the conservative region, z = 1.5, is not yet that
observed in the data (z ~ 1.2), but it is a big step forward
as compared to the prediction of the Vicsek model (z = 2).
This strongly indicates that the ISM captures an important
ingredient—inertia—absent in previous models.

Numerical simulations of the ISM also reproduce another
feature measured in natural swarms, which is not reproduced
by previous models. Experimental correlation functions in
natural swarms display a concave shape at short times, incom-
patible with the exponential relaxation of the Vicsek model
[22]. The ISM, on the other hand, displays the same kind of
behavior as in the swarms data. To show this, in Fig. 7(a)
we compare the dynamical relaxation of natural swarms with
simulations of the ISM and of the Vicsek model in the param-
agnetic phase. We can see that ISM reproduces the curvature
of the experimental correlation for + — 0, contrary to the
Vicsek model. The consistency between ISM and natural
swarms becomes even more striking when we compute the
relaxation form factor [22],

C(t/t)
C@t/t)’

The limit of this function for + — 0 is equal to 1 if the dynam-
ics is purely exponential, as in the case of the Vicsek model.
On the other hand, an inertial dynamics approaches zero for
small times: This is the case of ISM and of natural swarms.

h(t)7) =

(150)
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FIG. 7. Inertial behavior: experiments vs models. (a) Normalized
dynamical correlation functions C(k,t)/C(k,0) at nonzero values
of k; in all three cases, k has been chosen in such a way to have
k& = 1, to reproduce the scaling situation found in experiments on
natural swarms [22] (Vicsek swarm k = 0.717, natural swarm k =
0.798, and ISM k = 0.673). (b) The relaxation form factor h(t/7) =
C(t/7)/C(t/7) goes to 1 for overdamped exponential relaxation,
while it goes to O for inertial relaxation [22]. The fixed-network ISM
reproduces the correlation form of real swarms in a rather compelling
way.

We therefore conclude that the ISM in the paramagnetic phase
qualitatively well describes the inertial dynamics of natural
swarms.

VIII. CONCLUSIONS

We have performed a one-loop RG calculation of the
critical dynamics of a statistical system with inertial nondis-
sipative couplings in the presence of a dissipative term which
violates the conservation law of the symmetry generator. Our
calculation was motivated by recent experiments on the col-
lective dynamics of natural swarms of insects [22], although
the dynamical field equations we studied are relevant also for
BEC systems with terms weakly violating the symmetry in
the Hamiltonian [29-31]. We find that the RG flow has two
fixed points: a conservative yet unstable one and a dissipative
stable one, associated to the dynamical critical exponents
z=4d/2 and z = 2, respectively. The crossover between the
two fixed points is regulated by a conservation length scale,
Ro: For scales much larger than R, the dynamics is ruled by
the dissipative fixed point, while for scales smaller than Ry
critical slowdown is governed by the conservative fixed point.
Numerical simulations on the microscopic model confirm our
results.

The length scale Ry is given by the ratio between the
transport coefficient, A, and the effective friction, 7, of the
spin field. While the coarse-grained parameter 7 is certainly
connected to its microscopic counterpart, 7}, of the original
model, the same cannot be said for the transport coefficient:
In the microscopic model, there is no transport term. The
interesting fact, then, is that the conservative transport term,
Lo V?s, is generated by the renormalization group through the
spin self-energy IT at one loop. Therefore, we are in one of
those rare cases in which a crucial length scale of the system,
i.e., Ro, cannot be guessed purely on the basis of dimensional
analysis of the microscopic equations of motion (possibly
with some renormalized anomalous dimensions). Of course,
one could have guessed (admittedly rather smartly) that the
presence of a symmetry and conservation law, albeit violated
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by 79, should require a conservative transport term. But even
if our intuition is not so good, the RG requires by itself
the existence of such term and therefore the emergence of a
crossover length scale, thus confirming its power in dictating
what is relevant and what is not in strongly correlated systems.

The fact that the crossover length scale R is larger as
the dissipation is smaller has important consequences for
biological systems. Real biological groups always have finite
size; hence, in order to study their behavior we cannot just take
the hydrodynamic limit (infinitely large times and lengths)
for granted but we have to cope with the actual size of the
system. In both flocks and swarms, experiments have shown
that dissipative terms are rather weak [22,27], suggesting that
the conservation length scale R is quite large. Under these
circumstances, one may have a conservation length scale that
is larger than the system’s size, R > L. In this case, one
would find a dynamical critical exponent equal to that of the
fully conservative RG fixed point, namely z = 3/2 in d =
3, and a dynamic correlation function with strong signature
of nonexponential inertial relaxation. Thanks to this finite-
size critical crossover, the fully conservative phenomenology
should hold at all practically attainable values of the correla-
tion length, which is always limited by the system’s size.

From the point of view of the comparison between theory
and experiments in natural swarms, our calculation therefore
puts us in a semisatisfactory situation. Certainly, we can say
that the form of the dynamical correlation functions of natural
swarms and in particular the nonexponential inertial nature of
the short time dynamics, is rendered by the ISM in a much
more compelling way than by the Vicsek model (Fig. 7),
and actually our simulations show almost no quantitative
difference between theory and experiments in this respect.
Concerning the dynamical critical exponent, z, the situation
is still open, although we would say that the result of the
present calculation—z = 3/2 for finite-size weakly damped
swarms in 3-d—definitely goes in the right direction. Exper-
iments give z &~ 1.2, even though values up to z = 1.3 would
probably be acceptable, given the noise in the data [22]. On
the other hand, the Vicsek model, and in fact any model
dominated at short times by purely dissipative dynamics, gives
z &~ 2. This is quite understandable, as all these models belong
(at equilibrium) to the same dynamical universality class as
classic Heisenberg (model A of Ref. [23]), which has z = 2
at the one-loop level, with very small corrections at two loops
[23]. Moreover, when off-equilibrium (self-propelled) effects
are taken into account, numerical simulations performed over
time and space scales comparable to real swarms still give z ~
2 [22], completely incompatible with the data. The present
calculation, on the other hand, shows that once nondissi-
pative terms are introduced in the dynamics, provided that
dissipation is not too strong, the dynamical critical exponent
changes to z = d /2. This is a value significantly closer to the
experimental exponent than that of purely dissipative models.
Hence, it seems to us that nondissipative terms are important
to reproduce the correct critical dynamics of real swarms.

Of course, one must now ask how to bridge the gap
between the present RG exponent and the experimental value
z &~ 1.2. There are several possibilities. First, one should try to
have more statistics in the experiments, possibly with larger
swarms, to check whether the data are really inconsistent

with z = 3/2; work in this direction requires considerable
technical effort on the experimental side (in particular, higher
definition and faster acquisition systems). Second, one may
hope that a two-loop calculation improves things. We are not
very optimistic in this respect, though. Normally, two-loop
corrections to the exponents are quite small, so it seems hard
to bridge the gap between 1.5 and 1.2 in this way; furthermore,
in the nondissipative case the value z = 3/2 is actually valid
at all order of the perturbative series, courtesy of the Ward
identities generated by the symmetry [43]. Although in our
case there is dissipation, we suspect that, as long as the system
is in the proximity of the conservative RG fixed point, z = 3/2
will resist any attempt to be perturbatively changed.

Finally, there is the third and most promising source of
corrections to z, namely off-equilibrium effects due to the
self-propulsion of the individuals. Even though these are not
sufficient to change the critical exponent in the Vicsek model,
it could be that the compound effect of having nondissipative
inertial couplings and a self-propelled dynamics, further shifts
the exponent in the correct direction. Studying this case from
the theoretical point of view (i.e., with RG) will be quite non-
trivial, as one needs to use the approach of Toner and Tu [19],
including in the theory one extra field, the density, coupled
to velocity and spin, much as it has been done in Ref. [39]
for the low-temperature phase. However, at low temperature
one could exploit the spin-wave expansion to linearize the
equations, while close to 7. one needs to fully take into
account the nonlinearities through the RG. Performing even
a one-loop calculation with three fields (which become six
once the Martin-Siggia-Rose functional is introduced) really
does not look like a piece of cake. Still, one should try.
In the meanwhile, numerical simulations of the full-fledged
self-propelled ISM close to criticality should be performed, to
see from the data if there is case for hope.

Actually, we have some reasons to be optimistic. The fact
that models with nondissipative terms have dynamical critical
exponent z significantly smaller than the purely dissipative
value 2 may be interpreted as a critical counterpart of the
linear spin-wave behavior at low 7': In this regime, “second
sound” modes propagate linearly, with dispersion relation
o = ck [38]. Naively, this relation would suggest z = 1 for
these systems, but this is not the case because close to 7
parameters renormalize and the second sound speed, ¢, goes
to zero as some function of k: This RG-induced k dependence
changes the exponent from the trivial 1, to the final z = 3/2 in
this kind of models [23]. Despite this correction, though, the
exponent remains significantly lower than the purely dissipa-
tive 2, as a relic of the low-temperature spin-wave dynamics.
We may hope that a similar mechanism will be at work
when self-propulsion will be taken into account. The first
obvious effect of self-propulsion on a system with nondissipa-
tive mode-coupling terms is to produce ballistic (i.e., linear)
motion of each individual, even in the disordered collective
phase. The dynamic critical exponent does not measure the
motion of the individuals, of course, but rather the relaxation
law of the velocity fluctuations; however, similar to what
happens with the renormalization of linear spin waves, one
may hope that some relic of the ballistic regime creeps into
the critical phase calculation of z, thus lowering it below the
static equilibrium value 3/2 and eventually bringing it closer
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to the experimental value. Further experimental, numerical,
and theoretical effort will tell whether this educated guess is
just wishful thinking.
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APPENDIX A: PERTURBATION EXPANSION
1. Martin-Siggia-Rose formalism

The Martin-Siggia-Rose (MSR) formalism is a method
to write stochastic differential equations as a field theory
formulated using path integrals. The core idea is that when
computing thermal averages of all possible field configura-
tions, only those satisfying the original equations do con-
tribute. One can select such configurations using a Dirac §
functional: Suppose that we want to select only configurations
of the field ¥ that satisfy the equation F(¢) — @ = 0, where
F () generically describes the deterministic part of the equa-
tion (i.e., time derivatives, differential operators, interaction
terms, coupling with other fields, etc.) and 0 is the stochastic
noise. If det(§.F/8¢¥) = 1, which is the case for stochastic

J

d% do .

Sy, ¥, 5.8

Langevin equations in the Ito representation [24,61], we can
write

1= /Diﬁ(x, 1) S(F(Y(x,1)) —0(x,1)). (A1)

We can introduce the field ¥ (x, t) and use the integral repre-
sentation of the Dirac § functional:

1 = / DwD]A/fe{_ifddxfdf l]l(x,t)[f(l[l(x,t))—o(x,l)]}. (AZ)

The field fh may also be interpreted as a Lagrange multi-
plier, since it is introduced to select given values, or rather
configurations, of the field ¥. In our case, since (15) and
(16) are two coupled equations for two distinct fields, we
need to implement two § functions, and therefore introduce
two auxiliary fields ¥ and §. The above identity can then
be averaged over the distribution of the stochastic noises,
leaving with an effective functional measure that can be used
to compute thermal averages, i.e.,

1= f DYDY DsDse SV-¥5:31, (A3)

— / DYDY DsDsfeS¥ ¥4 (A4)

where f is a generic function of the fields. After standard

manipulations [24], we get

= So.y [, ¥] + So[8, 5] + Si[¥, ¥.5.8]. (A5)

Here, Sp.y and S; o are Gaussian free actions respectively for
the fields ¥ and s and are given by

Sov = | Gyt 2 Ve = o)[ — iw + To(k* + r5) [¥a(k, ©) + Toa (=K, —0)u (K, ©), (A6)
d% dw ) 5
So,s = Gyl 2 Sa (=K, —w)[—iw + (o + Aok?)]sa (K, @) + (0 + 21k7)3o (—k, 0)3a (K, @), (AT)
where Greek letters stand for space coordinates and repeated indices are summed. The interaction term involves both s, § and ¢,
¥ and is given by
S ddk1 ddkz da)1 da)z( )lﬂ (k )'(ﬂ (k ) ( Kk Kk )
= —g0€ux B ) Sa s -
1 80€apy @) @my 27 2n y (K2, w2) ¥ (K, o 1 — ko, —w1 —
s Ao Ao o dr G s, w015y (ks — K )
— 2 ¢ , @ , W2)S , —W] — W
) aBy (2n)d (27t)d o g e 1, W)Y Kz, @2)Sy 1 — K2 1 2
dk; dik dls dw) dws do
—2Tgug e T T T (K, o) Ya (K, 00V (K3, 03 (—Ki — ko — ks, —01 — @) — @3) (A8)

Q) 2x) 2m) 27 21 27

From the free part of the action, Eqs. (A6) and (A7), we immediately read the expressions for the bare propagators and correlation
functions for the effective field theory, which coincide with Eqs. (23), (24) and (27), (28), respectively:

(Vo (—K, —0) 5K, 0)) = 84Go,y (K, 0) = Sepl—iw + To(k* + 1) ™", (A9)

(Va (=K, —0)Yp(K, 0)) = 8upCo.y (K, @) = 2804T0|Go.y I*,
(sa(—k, —)35(k, )) = 8apGo s(K, @) = Sapl—iw + (10 + rok>)] ™",

(o (=K, —@)sp(K, ©)) = 8apCo.s(k, w) = 2805(n0 + 1ok*)|Go |*.

(A10)
(Al1)

(A12)
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These functions are the building blocks of the perturbative
expansion: Full correlation functions and propagators can be
written in terms of these bare averages. At this point, standard
Feynman rules can be applied to carry out the perturbation
theory.

From the form of the interacting part of the action, we can
see that there are two kinds of dynamic vertices, namely

da
5 — o€asysy (Da(2)Pp(-1 - 2) (A13)
Vs
v,
— Deas (k= kD01 (230 (~2-1)
Vs

(Al4)

Here we are representing with a solid line the fields ¥, 17[,
and with wavy lines the fields s, §; for clarity, we are indi-
cating with +n the dependence of the fields on wave number
and frequency: vV, (+n) = ¥, (xK,, £w,). Besides these two
dynamic vertices, there is also a static vertex involving the
coupling ug. Since we are focusing on the contributions of
purely dynamic origin to the perturbative expansion, we do
not concern ourselves with that vertex in our discussion. We
just take it for granted that the perturbation expansion related
to uy gives back the terms of the equilibrium theory and
refer the reader to the standard literature for more details
[24,47].

At this level, we should notice that the second vertex
carries with it an important factor (k3 — k7). This is a con-
sequence of the reversible couplings between the field ¥ and
s present in the equations of motion. Its origin lies in the
symmetries of the system: The spin is the generator of rota-
tions of the order parameter and, consequently, the reversible
couplings between the fields occur just via a cross product.
The field § therefore couples only with (Vy)?; for this reason
the vertex is proportional to (k3 — k7), and this implies that
every diagram with an §(k = 0, w) external line vanishes.

J

do'’
Top(k, @) = —28084p Gy

Mup(k, @) = —2g380p

2. Perturbation expansion at one loop

To compute average quantities with the measure (A4), one
proceeds as usual to develop the exponential contribution
due to the interaction action, being left with a perturbation
expansion where only free propagators and free correlations
appear connected to each other through the various interaction
vertices. When building the full averages in such a way, we
have to take into account that both (12;10)0 and (Y¥), are
nonzero. To graphically distinguish between them, we will
represent the propagators with an arrow and the correlation
functions with a line, since propagators are time ordered while
correlation functions are not. We will use the same rules also
for propagators and correlation functions of s, but using wavy
lines. It is more convenient to write down the perturbative
expansion of G using the Dyson equation [62]:

G, (K, )ap = Gy ), (K, ©)8ap — Tap(k, ), (AlS)
G, (K, 0ap = Gy (K, 0)80p — Map(k, @),  (A16)

for which we use the following diagrammatic notation:
Goawaﬁ: — Cow"/)avﬁ = (Al7)
GO,S(\,S = AN, CO-,wa‘@ = AN (AIS)
P N (A19)
o5 =50 ~Q) 45. (A20)

Here, the blob indicates the sum of all one particle irreducible
(1PI) diagrams with an incoming ¥ (or s) field and an outgo-
ing fﬁ (or §) field and with amputated external legs: namely,
the self-energies X,z and I1yg.

The diagrammatic expressions for the self-energies of s and
¥ at one loop are

Sap = %Q bp + Ya {} da. (A2D)

where external legs are amputated. It is possible to translate
these diagrams into integrals using standard Feynman dia-
grams rules:

(A22)

dd / / / /
P / 5 [Goy (@, @)Cos(k —p, 0 = o) + (kK = pP*)Co.y (P, @ )Gos(k — p, ® — )], (A23)

Performing the frequency integration, we get the following expressions for the self-energies:

2 ddP
Fap (o ) = 228008 | Gy (2 1 rox

dp do' , / 2 2
o / Ty (P @)Goy (k = p.w — &)((k = p)’ = ). (A24)
2
: (k + 7’0) , (A25)
—iw + To(p* + 19) + Aok — p)? + 1o)
d 2 (K — n)212

Mk, ) = —g58up

Q) (P2 + 10)((k — p)? + r0) (—iw + To(p? + (k — p)> + 279))’
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We thus find that the self-energies only have, as expected, a
diagonal non-zero contribution for « = 8. We shall therefore
drop the coordinate index and simply indicate them as X
and IT, as in Egs. (31) and (32) in the main text. When the
perturbative corrections are calculated integrating over the
shell, as in the RG approach we use in Sec. IV, the integrals
are performed between A/b and A. On the other hand, in
the Callan-Symanzik approach of Sec. VI, all p integrals are
performed between 0 and oo.

APPENDIX B: VERTEX CORRECTIONS

It can be shown that the dynamic coupling constant gg
has no perturbative contributions at all orders of perturbation
theory. At one loop, the correction Agsgy, of order g%), to
vertex (A13) comes from these two diagrams:

Vg Vs
]{72 k2
k k-
Ags‘g'y =5y A + 5y A
kl kl
/l/;(l /1/311
(B1)

After integration over the internal lines, we get expressions of
the kind

1
Agfx,;y = €aBiy €arprr€apsys T franyafsys K1y k2, k3),  (B2)

where we are summing over all repeated indices, and the
tensor T only depends on the internal indices and on the
external momenta. At zero incoming momentum and fre-
quency, because of the symmetry under exchange of the two
internal lines of the field v, T becomes a symmetric tensor. In
particular, 7(0, 0, 0) is symmetric under exchange of indices
a; and B,. Therefore, the contraction between €g,4,, and ©
is zero. Other possible one-loop corrections may come from
both static and dynamic vertices of the kind

Ya

Ag((j@z'y =8y

; (B3)

(%]

which is of order goup. Also in this case, at zero incoming
momentum and frequency, the correction Agfgy is zero by
symmetry.

It is possible to extend this reasoning to all orders in
perturbation theory; the full perturbative expansion Ag,g, of
vertex (A13) satisfies the following diagrammatic equation,

(1
Ag(xﬂ'y =5y s (B4)
Y
/l/A)(J( 1/;(1
Agaﬁv =5y + Sy ,
Yg (O
(B5)

where we explicitly described the possible ways in which
the external s, line can attach to the correction diagram.
The result is zero for the same symmetry reason as above;
the dynamic coupling constant g, therefore has no perturba-
tive corrections at all orders in perturbation theory.

APPENDIX C: WARD IDENTITIES

The fact that gy has no corrections at all orders in per-
turbation theory is related to the presence of Ward identities
relating response functions (or, equivalently vertex functions
[62]) of different order. These identities derive from the fact
that the spin is the generator of the rotational symmetry of
the order parameter. In the absence of dissipation, the global
spin is conserved. In this case, if the system is prepared in an
equilibrium state with global polarization (®) the effect of an
homogeneous field H(z) coupled to the spin is simply to rotate
the polarization, i.e.,

d(®)
el goH x (V).

(ChH
Let us now consider a more complex situation where we apply
two fields: the first one, h(x, #), coupled to the local order
parameter, and the second, H(¢), coupled to the spin. The
first field will generate a space-dependent local polarization
(¥(x,1)), and the second field will simply homogeneously
rotate such local polarizations. If there is dissipation, and the
global spin is not conserved, the field H(r) will also change
the value of the global spin, giving a further contribution to
the rotation frequency of the (¥ (x,)). Let us focus on the
parts of both fields that are uniquely due to the presence of
H(t); from Eqgs. (15) and (16), we get

d{3yP(x,
W = go(H(t) — 8s(t)) (¥ (X, 1)), (C2)

d{s
(;t(l‘» = —nods(t) + noH(?), (C3)
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where §s is the change of spin per unit volume. Integrating
both equations, we get

(5Va(X.1)) = g0€ay /0 dt" (4, (x. 1))

t
X |:H,3(t//)—no / dt/e—'m(’—”)Hﬁ(r’)]. (C4)
0

Both sides in this expression implicitly also depend on h(x, 7).
Let us then derive with respect to this last field and then set it
to zero. We get

d{8vy (X, 1))
dhs(x1, 1)

t
=g06aﬂy/ dt"Hg(1")
h=0 0

X |:R)]Z5(X, 1", x1, 1) — T}o/

"

t
dt’ e~ M=t )R?/S(Xv ' x,, tl)j|’

(C5)

where we relabelled integration variables in the second
integral for future convenience. Here, R]’j sX X, 1) =
(Y, (x,1))/0hs (X1, t1)|n,n=o0 1s the linear response of the
order parameter to its conjugate field. Using response theory,
the left-hand side of (C5) can also be written as

d{8ya(x, 1))
dhs(x, 1)

t
= / di"dx"Hg(t" )R\ (x, 15 %1, 11:X", 1),
h=0 0

(C6)

where now in the right-hand side RZ;’(S(X, X, X7t =
82(¢a(x,t))/(8h,g(x1,t1)8H,3(x”,t”))lh,Hzo is the nonlinear
quadratic response. Equating the right-hand side of (C5) and
(C6), we finally get

fdx’/Rﬁga(x, tix1, 11X, 1) = go€apy [Rﬁa(x, 1" X1, 11)

t
- 770/ dt'e” "R (x, f/;X1,f1)} (e0))
.

4

with t; < ¢” < t. For ng = 0, this relation corresponds to the
Ward identity reported for model E in Ref. [43].

APPENDIX D: SHELL INTEGRATION

To perform an RG transformation, we need to implement
two different steps: integration of short wavelength fluctu-
ations and rescaling. To this end, once the coarse-graining
factor b is fixed, it is convenient to rewrite the fields as the
sum of two distinct components, one fluctuating on short
wavelengths A/b < k < A and and the other on larger ones

0<k<A/bie.,

vk )=y Kk o)+ ¥ Kk o).

At this point, one integrates out explicitly from (A4) the
¥~ fields, to remain with a measure and a new effective
action that only depend on the ¥~ fields. To perform this
integration, one proceeds, again, using perturbation theory.
The basic ingredients of this perturbation expansion (free
propagators and vertices) are the same as the ones discussed
in the previous sections, the difference being that they refer to
¥~ fields only, while the ¥~ are kept fixed as external sources.
The perturbation series therefore consists in diagrams with
external ¥~ legs and internal loops integrated over > prop-
agators. It can be recast in exponential form, as usual, by only
retaining one-particle irreducible diagrams. These diagrams,
that have external ¥~ fields attached, will therefore modify
the original terms appearing in the action. For example, for
the Gaussian part of the action, we get

(D1)

- M dlk dow s < , 2 2
Soy =/ WEW (=K, —w)[—iw + To(k* + rg)

+2(k, ) |¥=(k, ®) + Tofiu(—k, —0) P (K, w),
(D2)

where X, has the same expressions as in Eq. (A23) but where
integrals are performed only in the shell A/b < k < A. From
this expression, we immediately see that the behavior of the
self-energy X, at small k effectively modifies the coefficient
of k?. We are then left with a free part of the action similar to
the original one, but where integrals run only up to A/b. The
second step of the RGT, namely the rescaling of k, w, ¥, and
1?/, has the purpose of reinstating momentum integrals over
their original integration range. At one loop, the renormaliza-
tion of the field is trivial (i.e., given by its physical dimension)
and has therefore not been addressed explicitly in the main
text. The result is a new action formally of the same kind as the
original one but with a new renormalized kinetic coefficient
['p. A similar procedure can be applied also to the free action
of the field s and to the interacting part. All the coefficients
and coupling constants will get renormalized by the shell
integration and rescaling. If we call P the set of all parameters
entering the action, i.e., P = {ro, uo, ['o, N0, X0, g0}, an RG
transformation will therefore imply

P —> P, (D3)

S(P) —> S = S(Pp).

Multiple iterations of the RG transformation therefore define
a flow in the space of parameters, i.e., in the space of the
statistical models defined by the action (AS).
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