

The MEFISTO Project
 ESPRIT Reactive LTR 24963 Project

MEFISTO Partners:

CNUCE, Pisa, Italy

Alenia, Rome, Italy

Dept. of Computer Science, University of York, United Kingdom

DRA, Malvern, United Kingdom

Universitè Toulouse 1, Toulouse, France

CENA/Sofréavia, Toulouse, France

Associates Partners: University of Siena, Italy — ENAV, Rome, Italy

Title of Document: Task models and task-based design

Author(s): Paternò, F., Santoro, C.

Affiliation(s): CNUCE-CNR

Date of Document: Oct 7, 1999

Mefisto Project Document: D 3

Distribution: PROJECT

Keyword List: Task models, interactive safety-critical

applications, user interface design

Version: For MEFISTO reviewers

 2

Title: Task models and task-based design Id Number: D2.1

Abstract

This deliverable describes the work developed in the project concerning with the

use of task models. It discusses the reasons for their use and related issues, provides

some excerpts of task models related to a case study considered in the project and

examples of task-based design. It also includes a discussion on how to apply model

checking techniques to task models.

Title: Task models and task-based design Id Number: D 2.1

 1

Table of Contents

1. INTRODUCTION .. 3

2. MOTIVATION AND APPROACH.. 4

2.1 TASK MODELLING ... 4

2.1.1 Overview .. 5

2.2 THE MECHA FRAMEWORK ... 5

2.2.1 Criteria for comparison ... 6

2.2.2 Implications for individual tasks and task allocation .. 6

2.2.3 Implications for hazards and deviations .. 7

2.2.4 Co-ordination of activities and mutual awareness .. 8

2.3 FROM INFORMAL SCENARIOS TO TASK MODELS .. 9

3. TASK MODELLING ... 11

3.1 AERODROME CASE STUDY: THE CURRENT SYSTEM ... 11

3.1.1 Ground Controller ... 12
3.1.1.1 First Level tasks.. 12

3.1.1.2 Arrange strip ... 12

3.1.1.3 Update current mental picture .. 13

3.1.1.4 Handle Traffic .. 14

3.1.2 Tower Controller ... 15
3.1.2.1 First Level tasks.. 15

3.1.2.2 Arrange strip ... 16

3.1.2.3 Update current mental picture .. 16

3.1.2.4 Handle Traffic .. 16

3.1.3 Cooperations ... 18

3.2 AERODROME CASE STUDY: THE ENVISIONED SYSTEM ... 19

3.2.1 Ground Controller ... 19

3.2.2 Tower Controller ... 20

4. FROM TASK MODEL TO DESIGN ... 23

4.1 TASK-BASED APPROACH .. 23

4.2 THE AERODROME CASE STUDY ... 23

4.2.2 Ground Controller ... 23
4.2.2.1 Build path task ... 23

4.2.2.2 Build picture current state task (flight labels for ground) ... 32

4.2.2.3 The guidance task ... 39

4.2.2.4 Deviations and warnings .. 40

4.2.3 Tower Controller ... 42
4.2.3.1 Correlation between different views ... 42

4.2.3.2 Flight labels (standard) for Tower control .. 45

4.3 TOWARDS GUIDELINES FOR SAFETY-CRITICAL SYSTEMS ... 47

5. REASONING ABOUT TASK MODELS .. 49

5.1 INTEGRATING MODEL-CHECKING IN USER INTERFACE DESIGN .. 50

5.2 FROM CONCURTASKTREES TO LOTOS ... 51

5.3 USER INTERFACES PROPERTIES.. 52
5.3.1.1 Warning message for time-out expired... 52

5.3.1.2 Controllers’ mutual awareness ... 53

5.3.1.3 Controllers’ coordination ... 54

5.3.1.4 Controlled sharing .. 55

6. CONCLUSIONS .. 56

Title: Task models and task-based design Id Number: D 2.1

 2

7. REFERENCES ... 57

Title: Task models and task-based design Id Number: D 2.1

 3

1. Introduction

This deliverable describes the work developed in the project concerning the use of

task models in supporting the analysis, specification and design of interactive safety-

critical applications.

It is structured into four sections. Section 2 is dedicated to discuss methodological

aspects. In particular, we consider motivation for task modelling and the MECHA

framework whose aim is to indicate the main aspects that should be considered in

designing this type of applications and in evaluating different design options. We also

discuss an approach to support the development of task models from informal

material in order to facilitate such a development.

The next Section is dedicated to show and discuss excerpts extracted from the models

that we have developed for the aerodrome case studies (one of the two MEFISTO

case studies) for sake of brevity we do not report all the work developed which is

described in detail in [WP3-3].

Then, we move on how to use information contained in the task model to support the

design of the user interface, still considering the aerodrome case study. The criteria

that have been used can be applied also to other applications that have similar

requirements so that they can be considered the core for a set of guidelines to support

design of interactive safety-critical applications.

Finally, we describe how the work for applying formal reasoning to task models

specified in ConcurTaskTrees has evolved.

We conclude with some general remarks and indications for future work.

Title: Task models and task-based design Id Number: D 2.1

 4

2. Motivation and Approach

The use of task models for supporting the various phases of the design cycle

belongs to a more general research area, that concerning model-based approaches,

aiming at identifying models able to support design, development, and evaluation of

interactive applications. Such models highlight important aspects that should be

taken into account by designers.

This Section reminds the reader the approach that we follow in task modelling,

discusses the MECHA framework that highlights a set of aspects that are important

in analysing and evaluating design options in an interactive-safety critical context

and discusses possible support for designers in developing such task models.

2.1 Task modelling

The use of task analysis and modelling has been applied for a long time in the HCI

(Human-Computer Interaction) field. However, there is still a lack of engineering

approaches to the use of task models. An engineering approach should require at

least:

 use of flexible and expressive notations with precise semantics able to represent

the different ways to perform tasks and the many possible temporal and

semantic relationships among them;

 systematic methods able to indicate how to use the information contained in the

task model for supporting the design and evaluation of the user interface;

 availability of automatic tools able to make the development and analysis of

such task models more efficient.

The HCI group at CNUCE is involved in two European projects (MEFISTO and

GUITARE) where task models are considered from very different perspectives.

The reason for such a large difference stems from the different application areas

considered (interactive safety-critical application, with particular attention to air

traffic control, in MEFISTO; enterprise resource planning in GUITARE). Thus,

they require two different, yet complementary, approaches: in MEFISTO we want

to understand to what extent the use of rigorous techniques developed in the formal

methods areas can help in the design work and we pay particular attention to the

possible user deviations from the expected behaviour that can have an impact on

safety whereas in GUITARE we want to obtain a set of tools able to support

automatic generation of user interface from task models, objective reachable

because the application domain considered in that project imposes the use of some

well-defined guidelines of the user interface that limit the space of the possible

solutions.

Title: Task models and task-based design Id Number: D 2.1

 5

2.1.1 Overview

The task models developed have been represented using the ConcurTaskTrees

notation [P99]. The main features of this notation were already introduced in D1.2

so we just recall some basic concepts.

The purpose of a task models specified in ConcurTaskTrees is to provide a

description of how the activities should be performed in order to reach the user’s

goals. Such activities are described at different abstraction levels in a hierarchical

manner which is graphically represented in a tree-like format even though a task

can appear in different places of this structure. In contrast to previous approaches,

ConcurTaskTrees provides a rich set of operators with a precise semantics to

describe the temporal relationships among such tasks. The notation gives also the

possibility to use icons or geometrical shapes to indicate how the performance of

the tasks is allocated: only user, only application, interaction, abstract (which means

that there are subtasks allocated differently). Finally, for each task it is possible to

provide additional information including the objects (both user interface and

application objects) that are manipulated to perform it.

2.2 The MECHA Framework

The goal of the MECHA framework and the related method, that we have

developed together with Bob Fields (University of York), is to support the analysis

and comparison of a set of design options offering a bridge between a social view of

collaborative activity (as that in the ATC domain considered in the project) and the

work of designers of real systems who require systematic methods able to evaluate

design choices.

More specifically, it considers different options, the current and the envisioned

systems were new technology is supposed available, and the options differ in terms

of media allocation which means decisions about the access that actors in a system

have to different communication media. This implies decisions concerning how the

tasks are performed and allocated, and on the choice of the artefacts and

representations that are appropriate to support such tasks. These differences are

highlighted also by describing scenarios that allow the analyst to focus on a specific

sequence of tasks. The scenarios are introduced in the technical context of the

current system and subsequently, are modified in the other cases considered.

The comparison of the design possibilities will be guided by a collection of criteria

that involve usability aspects (such as task efficiency, and mutual awareness) and

safety aspects (such analysis of users’ deviations and their impact).

Title: Task models and task-based design Id Number: D 2.1

 6

2.2.1 Criteria for comparison

A collection of criteria that can be used in making comparisons between the

different design and task allocation options has to be identified (the selection of

those criteria depends basically on the specific features of the considered domain).

The aim of introducing such criteria is not to provide specific measurable

parameters that can distinguish in a quantitative way between the options, but

instead to suggest criteria that form a framework in which we may explore what the

differences between the options are.

The reasons for this more qualitative approach is that evaluation of interactive

systems is more economically carried out earlier in the development lifecycle,

where re-design in response to identified problems is more feasible, as several

authors (eg., [JK96]) have pointed out. Besides, the scope of MECHA is broader

than a number of other HCI evaluation techniques (such as Heuristic Evaluation

[N93]), that focus on specific aspects of a user interface design, since it deals also

with cooperation and hazards thus allowing designers to obtain a global evaluations

of the impact of using different communication technologies.

The process of comparing competing design alternatives will be a two phase one. In

the first phase, it is envisaged how the performance of a sequence of tasks will be

―played out‖ given a particular configuration of technology, task, and

responsibilities. In the second phase, we begin to ask questions that allow us to

make hypotheses about some of the problems with the allocation of tasks and

functions that might arise. In order to carry out this second, evaluative phase, we

assess the technology and its usage according to three sets of criteria. The enquiry

will be scoped and contextualised by considering the tasks, actions and artefacts

demanded by a particular scenario.

The MECHA method has already been applied to aspects of the en-route case study

[FPST99] in collaboration with Sophie Tahmassebi (CENA), in order to evaluate

how different arrangements of the media and artefacts supposed available can affect

the system as a whole with regard to three main criteria:

1. Implications for individual task and task allocation

2. Hazards and deviations

3. Coordination of activities.

2.2.2 Implications for individual tasks and task allocation

We can identify three main types of difference between the current system and

―augmented‖ systems where data-link is available:

Title: Task models and task-based design Id Number: D 2.1

 7

 Change of task allocation between the human and the machine: for example, in

datalink environment, the update of the ground system (containing flight

information) is no longer performed manually by the controller, but in an

automatic way by the system.

 Change of task allocation between human operators: because both controllers

can communicate with pilots as well, by means of datalink functionality.

 Change of objects manipulated by task and change of representations used to

support tasks: for example, in the new system the information contained in

flight paper strips can be electronically provided.

Furthermore, a number of factors relating to the way tasks are carried out must be

considered when making comparisons between the design options. For instance,

technological changes can have the effect of transforming interaction tasks into

vigilance and monitoring tasks at which people are often less effective (cf. [H88]).

Similarly, design and task allocation decisions can have a significant impact on the

workload of individuals and the range of responses to workload demands that are

available to participants.

2.2.3 Implications for hazards and deviations

Our collection of criteria are particularly important for interactive safety-critical

systems, and involve studying the different failure and hazard characteristics of

different design options. We use an inspection technique to go systematically

through the actions that are required from participants, and consider ways in which

failures might arise during a scenario, what the effect of failures might be, and what

safeguards and defences exist in the system. Since an objective of the current work

is to explore the impact of different arrangements of communication technology, a

special emphasis will be placed on communicative actions.

The particular questions we seek answers to are: what are the potential hazards that

can arise as consequences of deviations, failures in communication, or erroneous

actions in the scenario? Are there factors that tend to encourage mis-

communication, erroneous action, or faulty assessments? What recommendations

concerning the user interface design can be provided to mitigate possible hazardous

states and their effects?

This type of analysis will be performed with the help of guidewords (see [MOD96],

[L97], [BP93] for related techniques). A guideword is a word or phrase that

expresses and defines a specific type of deviation. Guidewords have been found to

be a useful tool to stimulate discussion as part of an inspection process about

possible causes and consequences in deviations of user interactions. Mechanisms

that aid the detection or indication of any hazards are also examined and the results

are recorded. We have found it useful to investigate the deviations associated with

the following guidewords:

Title: Task models and task-based design Id Number: D 2.1

 8

 None, the task has not been performed or it has been performed but it has not

produced any result;

 Other than, the task has been performed using the wrong data or producing

wrong data;

 Ill-timed, the task has been performed at the wrong time.

In an analysis, these guidewords can be further refined. For example, Other than

could be further refined into Less, More, or Different indicating situations where

less, more or different information has been used in the tasks. Likewise Ill-timed

can be refined into Early or Late implying that the task is performed too early or too

late.

The basic idea is that for each option we consider the main tasks and the possible

deviations that can occur in the performance of the task. Interpreting the

guidewords in relation to a task allows the analyst systematically to generate ways

the task could potentially go wrong, as a starting point for further discussion and

investigation. This analysis may generate suggestions for how to guard against such

deviations and recommendations about user interface designs that might either

reduce the likelihood of the deviation, or support detection and recovery.

This analysis of possible deviations can give better results if applied by

multidisciplinary teams, such as the MEFISTO team, that involve software

developers, user interface designers, application domain experts and end users.

2.2.4 Co-ordination of activities and mutual awareness

The concept of ―articulation work‖ and the means by which the activities of

individuals are coordinated are a complex topic. For current purposes, we focus on

one aspect, namely, the way in which technology changes (such as the introduction

of datalink) have an impact on the kinds of coordination that are necessary and

possible. More specifically, the two questions we will be asking about the design

alternatives are:

 What coordinations are needed so that the tasks of the two controllers are

brought into step? The answer to this question will typically be dependent on

the particular roles, responsibilities, and tasks of the individuals involved that

can be represented in ConcurTaskTrees.

 How such coordinations will be supported by the available mechanisms? The

answers to this question are likely to be dependent on the detail of the

technologies and artefacts that mediate the tasks of individuals and

communications between them.

Title: Task models and task-based design Id Number: D 2.1

 9

2.3 From informal scenarios to task models

In the MECHA framework we have seen the main design dimensions when

interactive safety-critical applications are considered. We have seen that task

models play an important role. One of the main problem in the use of task models,

especially for people who are not expert in this activity is how to start their

development starting from scratch. People may get confused in trying to identify the

tasks that should be included in the model and their relationships.

To support this initial phase it can be useful to consider that when approaching the

design of a new application or the re-design of an existing application, designers

have often a lot of informal information available: documentation concerning

existing applications, notes from meetings with users, requirements provided by

customers, and so on. They have to refine this material to identify the task structure

underlying the existing application to analyse or that corresponding to the new

application to design.

Scenarios are a well known technique in the HCI field [S95] often used during the

initial informal analysis phase. They provide informal descriptions of a specific use

in a specific context of an application. A careful identification of a meaningful

scenario allows designers to obtain a description of most of the activities that

should be considered in a task model. The main difference between a task model

and a scenario is that a scenario indicates only one specific sequence of occurrences

of the possible activities while the task model should indicate all the possible

activities and the related temporal relationships.

Given their limited scope and the simple structure underlying them, it is sometimes

easier to start thinking in terms of specific scenarios rather than more general

models of activities. Then, there is the need to obtain task models to reach a more

general and precise description of the possible activities. To this end some tool

support can be provided [PM99].

We start with an informal description of a scenario. The scenario should be selected

so as to include performance of most of the main activities involved by the

application considered. It can be either the description of a specific use of an

existing system or an envisioned use of a new application to design depending on

what the designer’s goal is. Next the designer can load such a description in the

environment provided by our tool and select the roles (1 in Figure 2.1), words

related to activities (such as detection of conflict, paper strip’s update, sends

clearance, see for example 3 in Figure 2.1) and add them to the list of tasks. The

names of such tasks can be edited in order to make them more general. The

designer can also interactively indicate how to allocate the performance of the task:

to the user (if only internal cognitive actions are required), to the application, to a

user interaction (if the performance consists in user interactions with some device).

This is specified by selecting the icon associated with the task allocation chosen. In

the scenario’s description it is also possible to select the objects (5 in figure 2.1)

and indicate to what tasks they are associated. One task can manipulate multiple

Title: Task models and task-based design Id Number: D 2.1

 10

objects during its performance and one object can be manipulated by multiple tasks.

In this way designers have an environment allowing them to rapidly identify tasks,

objects and their relationships.

Figure 2.1: Moving from informal scenario to task model.

The next step is to identify the structure of the task model. We split this activity into

two steps: identify the hierarchical structure among tasks and define their temporal

relationships. The input for this phase is the list of tasks identified with the scenario

support. This list is not definitive. It can be further modified, for example to add

new tasks whose purpose is to logically group a set of identified tasks that are

semantically connected and share some temporal relationship.

In our tool designers can activate an environment which has the list of tasks

identified as input and allows designers to indicate a logical hierarchy among such

tasks: from the list of identified tasks on the left side we can select a task and

indicate its parent task on the right side.

We thus obtain a hierarchical task model that can be further edited by the existing

ConcurTaskTrees editor (http://giove.cnuce.cnr.it/ctte.html). The difference is that

now designers have not to start by scratch but they have available the hierarchy of

tasks and most of the objects manipulated by such tasks have already been

identified. Thus only the temporal relationships among the tasks have to be

specified with the support of this editor.

http://giove.cnuce.cnr.it/ctte.html)

Title: Task models and task-based design Id Number: D 2.1

 11

3. Task Modelling

This Section describes some excerpts of the task models for the aerodrome case study

specified in ConcurTaskTrees. More specifically, the task models of the current

system are completely described in order to introduce the reader to problems and

issues connected to the considered environment, whereas for the task models of the

envisioned system the description has been kept with at a higher level because lower

tasks will be introduced and discussed later on when we explain how to derive

information from the task model for the design of the user interface. We provide

examples taken from the analysis of both the current and the envisioned system. In

both cases we consider two different roles: the ground and the tower controller. The

ground controller is mainly in charge of handling the air traffic within the airport

whereas the tower handles the landing and take-off phases.

3.1 Aerodrome Case Study: The Current System

The development of the task models of the current system has been carried out with

the support of information gathered in different ways. We have visited various

times the control tower of the Fiumicino airport in Rome (photo in Figure 3.1 was

taken during one of these visits), followed by interviews of controllers. We have

had various meeting with the Alenia team that has a long experience in

development applications for air traffic control and it is involved in the

development of the new prototype.

Figure 3.1: The Fiumicino control tower.

Eliminato: l

Title: Task models and task-based design Id Number: D 2.1

 12

3.1.1 Ground Controller

3.1.1.1 First Level tasks

At the highest level of the GND's task model three main tasks are recognisable:

Arrange strip, Update current mental picture and Handle traffic (see Figure 3.2):

they respectively refer to tasks about handling the paper strips, maintaining and

updating the picture of the current/future traffic situation and driving the traffic

under his/her responsibility.

Figure 3.2: First Level Tasks - (Current System/Ground controller)

For each of these tasks we provide a separate description in a dedicate paragraph.

Thus, by proceeding from left to right in the analysis of the task model of Figure

3.2, the first task to examine is Arrange strip.

3.1.1.2 Arrange strip

The Arrange strip task deals with the Ground's activity of continuously receiving

paper flight strips of departing flights (Arrange dep strip) and arriving flights

(Arrange arr strip), putting them in the right position into the respective strip bay

(see Figure 3.3).

Title: Task models and task-based design Id Number: D 2.1

 13

As the Ground controller receives the strips of arriving flights from the Tower

controller, Take arr strip task is marked as a task part of a cooperative task (double

arrow below the task name), whereas no co-operation is indicated in the Take dep

strip task as s/he receives them from the Apron controller whose activities we are

not interested to model.

Figure 3.3: Arrange strip task (Ground controller)

3.1.1.3 Update current mental picture

Concurrently with the previous task, controllers have to build and continuously

refresh their mental picture of the traffic situation (Update current mental picture,

see Figure 3.4) collecting and monitoring traffic data (Collect data) gathered by

looking at taxiways out of the control tower window or on the radar if present

(Check taxiways, Check radar tasks). This information is used in order to check

(Check conformance) if the current traffic situation conforms with the planned

situation reported in the flight strips (Read strip).

Figure 3.4: Update current mental picture task - (Ground controller)

If there is no conformance (Handle deviation), it means that some deviation has been

detected (Detect deviation) requiring that repairing actions are undertaken by the

controller (Handle repairing action) who has to think about a possible solution, to

Title: Task models and task-based design Id Number: D 2.1

 14

send an instruction to a pilot, and to update consequently his/her mental picture and

the flight strip.

If conformance exists, the (optional) Handle deviation task is not performed,

however, the GND mentally records the gathered snapshot refreshing the previous

mental picture with this information (Update mental picture). The next step is to

analyse whether according to the current and the expected situation of traffic

conflicts are possible to happen (Anticipate conflicts), deciding if some actions are

necessary (or not). Anyhow, the controller keeps in mind the collected information

refreshing his/her picture of current state.

3.1.1.4 Handle Traffic

The Ground has to manage both the path’s requests from pilots (Manage traffic task)

and the hazardous situations that could occur in the system (Control hazardous

situations task).

Figure 3.5: Handle traffic task - (Ground controller)

As far as it concerns the first task, once the controller receives the pilot’s request by

listening to the radio (Receive taxi request), the GND searches (Handle strip) the

associated strip (possibly modifying its location in the bay) in order to be in a

position of deciding how to answer to the pilot.

In order to make a decision on how to manage the received request in the current

situation of traffic (Make routing decision) the GND has to collect appropriate data

(Collect data) to identify at first the possible paths (Identify possible paths) and

then selecting the best path to communicate to the pilot (Select the best path).

Title: Task models and task-based design Id Number: D 2.1

 15

The action of actually sending the clearance to the pilot (Communicate routing task)

that is usually the task of communicating path to pilot (Comm path to pilot), can be

carried out by the Ground controller in two different ways, depending on the current

situation of traffic:

 sending once the entire path to pilot (Communicate complete path), or

 giving at first a partial path and afterwards when some conditions are

verified completing the path (Communicate partial path).

When the controller receives the pilot’s message acknowledging that the destination

has been reached (Receive approaching destination), s/he performs the hand-over

with the next controller (Handover task), that is to pass the control of the a/c either

to the Apron controller or to the Tower controller.

As far as it concerns the Control hazardous situations task, the GND can receive

warning messages from pilot (Receive warning from pilot) or s/he can realise by

himself that some conflicts are occurring on runways or taxiways : in the first case

s/he has to ask TWR for agreement (being runways under the responsibility of

TWR) before sending repairing actions, in the latter case s/he autonomously sends

emergency instructions to pilot.

3.1.2 Tower Controller

3.1.2.1 First Level tasks

If we analyse the task model of the Tower controller we note that it presents

relevant similarities with the Ground’s despite the fact that they manage aircraft in

two different phases (from both temporal and spatial viewpoints). The reason is that

they perform mainly the same general tasks (arrange paper strips, communicate

with pilots, supervise the system, solve possible hazardous situations, …), although

the specific objects they manage are quite different. For example, both controllers

receive requests from pilots however, while the requests for the Ground are requests

to have a path to get to the holding position from the departure’s gate (or from the

end of the runway to the arrival’s gate), the requests directed to the Tower are

requests to get the clearance to take-off or to approach the airport.

Figure 3.6: First level tasks - (Tower controller)

Title: Task models and task-based design Id Number: D 2.1

 16

3.1.2.2 Arrange strip

The Tower’s Arrange strip task is similar to the Ground’s respective task. The only

difference is that now the task part of a cooperative task is Take dep strip because

the Tower receives the strip of departing flights from the Ground controller,

whereas s/he receives the other ones from the Arrival Co-ordinator whose

activities we are not interested to model, then no link to a co-operative task is

specified.

Figure 3.7: Arrange strip task - (Tower controller)

3.1.2.3 Update current mental picture

The Tower’s Update current mental picture task is quite similar to the Ground’s

respective, keeping in mind that, differently from the Ground controller (whose

responsibility is mainly on the taxiways), the Tower has to build the picture of the

runways’ current/future state.

Figure 3.8: Update current mental picture task - (Tower controller)

3.1.2.4 Handle Traffic

Again, Handle Traffic task is along the lines of the respective Ground’s task, with

the most evident differences at lower levels.

Title: Task models and task-based design Id Number: D 2.1

 17

Figure 3.9a: The initial part of the Handle Traffic task.

It is decomposed into the Manage Traffic task and the Handle hazardous situation

task. The first one concerns with driving a departing/arriving flight (respectively

Manage take-off and Manage landing tasks), the second one is about the problem of

coping with some hazardous situation (Handle hazardous situation).

Figure 3.9b: Manage take-off task.

More specifically, when a departure has to be managed the controller receives the

request from the pilot (Receive take-off request) listening to the radio and searches

the associated strip in the strips’ rack (Handle strip). Once s/he has the strip, s/he

starts to collect data (Collect data for dep task) about the flight from all the

available sources of information (looking out at the runways, at the strip, and on

the radar) and starts to identify possible solutions in order to manage the request

and to ensure that minimal separation is maintained between flights. When s/he

finds the best solution s/he communicate it to the departing pilot (Handle the

departure), sending the clearance to take-off (Send clearance to take off) and

passing to the pilot the frequency to contact the Approach controller (Send

Approach freq).

On the other hand, if s/he has to manage an arriving flight (Manage landing, Figure

3.9c) after s/he has received the request to land and s/he has found the strip, s/he is

Title: Task models and task-based design Id Number: D 2.1

 18

in a position to decide how to answer to the request of the pilot (Handle the

arrival), which is sending to the pilot the clearance to land (Clear to land) or

sending to the pilot the order of ―go around‖, which means that the pilot has to wait

for landing safely on the assigned runway.

Figure 3.9c: Manage landing task.

3.1.3 Cooperations

ConcurTaskTrees gives designers also the possibility to model explicitly

cooperations. A cooperative task is task that implies actions from two or more

users. In figure 3.10a there is an excerpt of the specification concerning the

communication between the ground controller and a pilot to identify the path to

follow. As you can see the leaves of the cooperative part are tasks performed by one

user (whose role and related cardinality are explicitly indicated).

Figure 3.10a: Communicating path cooperative task.

The leaves of cooperative tasks are tasks performed by a single user that appear also

in the task model of the related role. In the role-related task model such tasks are

annotated by a double-arrow to highlight that they are a point of connection with the

cooperative part.

Before analysing the task models of the envisioned system just to give an idea of

the current level of refinement in specification work that has been carried out for

Title: Task models and task-based design Id Number: D 2.1

 19

the aerodrome case study, in the Figure 3.10b we show a summary of statistical

information (number of tasks, number of occurrences for each operator, …) for the

task model of the two controllers the cooperations that occurr in the current system

(and, for completeness, also for the role of the pilot).

Ground controller Tower controller Pilot Cooperative tree

Figure 3.10b: Statistic information abut task models in the current system.

3.2 Aerodrome Case Study: The Envisioned System

About the envisioned system, in the following sections we give the description of

the task models of the envisioned system for the highest levels, leaving the analysis

of more detailed specifications to the next section where some excerpts of task

models will be used to derive suggestions for the design of the user interface. The

basic requirements for the envisioned system are the use of data-link to support the

communication with aircraft and the use of enriched flight labels to provide

information concerning each flight.

3.2.1 Ground Controller

In the envisioned system, the Ground controller has to build and maintain up-to-

date the picture of the current state (Build picture current state), looking at the

taxiways out of the Control Tower window and looking at the tools supposed

available on the radar display in the new environment (enriched flight labels,

aerodrome map). The task of both verifying conformance between the current

situation of the traffic and the future situation and to anticipate possible conflicts in

the near future is mainly up to the system in the forms of automatic tools which

signal to the controller when some deviation is detected or is near to happen.

Title: Task models and task-based design Id Number: D 2.1

 20

As far as it concerns managing properly the traffic (Handle traffic), the controller

receives continuously the data-link requests that arrive and, from time to time

decides which one is the (taxi) request that has to be managed. Once s/he selects it,

s/he has to build and send a path to the pilot (Build path), driving and controlling

the flight until the pilot gets to the destination point (e.g. holding position for

departing pilots) and finally the controller passes the responsibility of the flight to

the next controller (Handover). The Control hazardous situation task manages all

the situations when some deviation has been detected or some conflict occurs both

on the taxiways and the runway (eg: runway incursion): in the following sections

we show how to manage a space-based deviation, expanding the associated subtask

(Handle spatial deviation).

Figure 3.11: The Handle Traffic task in the new system.

3.2.2 Tower Controller

In the envisioned system, the Tower controller has to build and maintain an up-to-

date picture of the current state (Build picture current state), looking at the runways

out of the Control Tower window and looking at the tools supposed available on the

radar display in the new environment (enriched flight labels, aerodrome map). Also

in this case the task of both verifying conformance between the current situation of

the traffic and the future situation and to anticipate possible conflicts in the near

future is mainly up to the system in the forms of automatic tools which signal to the

controller when some deviation is detected or is near to happen.

As far as it concerns managing properly the traffic (Handle Traffic), the controller

receives continuously (look at the iterative operator on the Receive pilot request

Title: Task models and task-based design Id Number: D 2.1

 21

task) the data-link requests that arrive and, from time to time decides which one is

the request that has to be managed. If it is a request from a departing pilot (Handle

the departure), the controller has to collect data for the departing flight and find the

best answer for the pilot, alternatively, if the request is from a pilot who asks for

landing, (Handle the arrival) the controller has to decide if there are all the safe

conditions necessary to make the flight land and then passes the responsibility of

the flight to the ground controller, who drives the flight to the apron. Finally, the

Handle hazardous situation task manages all the situations when some deviation

has been detected or some conflict occurs on the runway (eg: conflicts,

emergencies).

Figure 3.12: Main activities of tower controller in the new system.

As before, we show a summary about statistic data on task models of the envisioned

system (see Figure 3.13 below).

Title: Task models and task-based design Id Number: D 2.1

 22

Ground controller Tower controller Pilot Cooperative tree

Figure 3.13: Statistic information about task models in the envisioned system

Title: Task models and task-based design Id Number: D 2.1

 23

4. From Task Model to Design

4.1 Task-based Approach

The approach is based on a top-down visit of the task model and for each level it

considers two main aspects:

 the analysis of the operators between tasks, which gives information about the

temporal constraints to implement in the design of the user interface in terms of

relationships between the different dialogues associated to the tasks;

 the analysis of the task, in terms of type and category of task, type and

cardinality of data manipulated by task, which provide information useful to

design the user interface;

In the previous sections we show the specification of the task models in both the

current and the new system, giving for the new system the specification of only the

highest levels. In the following sections some excerpts of the task models in the new

system will be resumed and analysed more deeply in order to highlight how to derive

information from them for the design of the user interface.

4.2 The Aerodrome Case Study

4.2.2 Ground Controller

The first task that we analyse is the Build path task of the Ground controller, which

describes all the activities necessary to answer to a taxi request from a pilot.

4.2.2.1 Build path task

(a) General description

At its highest level the Build Path task is decomposed into two main subtasks (see

Figure 4.1):

 Build path with automatic suggestions, which describes the activities performed

by the controller to build a suitable path exploiting automatic tools (in this case

the system really drives the controller to get the best solution showing the set of

possible solutions);

 Build path without automatic suggestions, when the controller is more self-

confident and builds directly the path (in this case the role of the system is

mainly to support controllers by helping their decision-making process).

As far as it concerns the subtask Build path with automatic suggestions, it is

composed by an iterative subtask (Ordering paths) that describes all the activities

Title: Task models and task-based design Id Number: D 2.1

 24

necessary to get the set of possible solutions ordered by some specified criterion:

the controller selects the parameter by which s/he wants the solutions are ordered

(for example, if s/he selects the parameter ―Length‖, the system will show to the

controller all the possible paths ordered by this parameter, at first the paths that

have the minimum length and then the others in an increasing order) and the system

calculates the paths ordered by this parameter and shows the ordered list to the

controller (Show ordered paths). This process can repeat more than one time (the

task is iterative) because the controller can change mind and select another

criterion, however finally the controller chooses the ―best‖ path and after having

(optionally) activated a preview of all the information about this path, s/he is able to

actually send the path or cancel the whole process and restart it over again (in the

task model it is modelled by a recursive instantiation of the Build path task).

Figure 4.1: The Build Path task model

The subtask Build path without automatic suggestions allows the controller to build

the path specifying directly the taxiways and optionally specifying whether and

which parameter s/he is interested to know as s/he gradually builds the path. For

example, if the controller has selected the parameter ―Length‖, as s/he gradually

selects the taxiways the system shows from time to time how long the distance is, in

order to help the controller to decide about the appropriateness of the path.

(b) The analysis

 Analysis of the operators between tasks

Title: Task models and task-based design Id Number: D 2.1

 25

In this part of the analysis we focus mainly on the operators, thus in Figure 10

we give a schematic representation of the Build path task model, where the

expansion of some subtasks has been neglected (a grey triangle has been put

instead of them) and for sake of brevity task names have been substituted

by letters. The aimed goal is to focus on a (portion of) task model little enough

not to bore the reader with too many details but sufficient to explain which

information the operators give to the designer. In fact as you can see from the

picture, almost all the CTT operators appear in the selected task model

(Enabling, Disabling, Interleaving, Option, Iteration, Choice) so the discussion

could be easily generalised and re-applied to other task models. The indications

in the right part of the below figure allow to derive the ―simplified‖ task model

shown in the left part of the picture from the task model in Figure 4.2.

 Figure 4.2: A ―simplified‖ representation of Build path task model

Referring to this ―simplified‖ task model, the Choice operator ―[]‖ at the

highest level means that two possibilities are available: some suitable

interaction technique should be provided to the user in order to highlight that

initially s/he can choose from two possibilities, clearly displaying to him/her

what they are, and to activate the dialogue associated to each branch of the task

model. Using an intuitive graphical language we express the information

obtained up to now with the picture in Figure 4.3:

Figure 4.3: Implementing choice among tasks.

a) Task model

 b) Associated dialogs

A
B

BA

[]

Root

Title: Task models and task-based design Id Number: D 2.1

 26

In the part a) of Figure 4.3 the task model has been shown highlighting only

operators and subtasks at the level that is currently considered (the root level),

neglecting for the moment the further specification of each subtask; in the part

(b) of the picture it has been shown what the task model means in terms of

structure of dialogues and presentations, which is in the considered case

that two dialogues (whose structure has been temporarily left unspecified)

have to be designed one associated to the execution of the subtask A and

another one for subtask B. For the moment, the choice of the interaction

technique most suitable to activate the two different dialogs can be put off (by

using two items in a menu as stylised in the picture is the most intuitive

example).

Back to the task model and going ahead in the visit of the task model, the

analysis goes down across the subtask A, whose decomposition has been

shown in the part (a) of the below Figure 4.4:

What are the information associated to the task model in Figure 4.4? The

presentation associated to A should be structured in such a way that the activity

of the iterative task C could be performed more than one time until the first

action of the disabling task D is activated (note that task D is decomposed into

D1 []>> Dx and the first subtask of task D, D1, should be always available to

the user during the whole performance of subtask C in the shape of some

interaction technique, e.g. a button as in the picture or something like that).

When finally D is started, the presentation should convey to the user the

information captured by the task model, which is that, once the D1 subtask has

been started, the C subtask is no longer available. This effect could be achieved

activating another separate dialogue associated to Dx.

Down again into the C task, its structure can be viewed as that in the part (a) of

the following Figure 4.5:

Figure 4.4: Implementing disabling operator between tasks.

Title: Task models and task-based design Id Number: D 2.1

 27

The meaning associated to the |[]| operator is that the activities are concurrently

interconnected each other as they exchange information and in addition, as the

parent task can be performed more than one time, it is useful to show the

presentations associated to them grouped in the same dialogue (see part b) in order

to highlight how they exchange information each other.

Figure 4.5: supporting concurrent tasks exchanging information.

If we summarise the results achieved up to now, we can say that —as far as it

concerns the temporal constraints between dialogs associated to subtasks of task

A— the presentation should be structured as in the following picture (using the

same intuitive representation that we used before):

Figure 4.6: Implementing the example

 (a) (b)

FE

|[]|

C* E

F

C

E

Dx

C

A

F

D1

Title: Task models and task-based design Id Number: D 2.1

 28

 Analysis of the task
Now we focus on the presentation techniques associated to each parent task and

which we left undefined. We need more information about tasks: the goal, the type

and category of task, objects manipulated by tasks with their type and cardinality,

As we previously saw, the dialogue associated to the Ordering paths task (C in

Figure 4.4) is composed of two logical sub-dialogs, the first one dedicated to the

selection of the parameters, and the second one where the set of paths are displayed

according to the chosen criterion.

As far as it concerns the first dialog, it is associated to a Selection task (the user has

to select item(s) from a predefined set of elements), so the decision about its

presentation has to consider this in terms of the possible choices that should be

provided, e.g. the cardinality of this set, how they should be provided to the user

(single choice, multiple choice). For instance, the possible parameters which the

controller could be interested to know are the calculated length of the path, the

number of foreseen runway crossings, how much time the travel will take

(supposing a standard velocity on the taxiways), and so on.

The user interface should allow the user to select a list of parameters from a defined

set of parameters (allowing a multiple choice) and within this set to allow to mark

which one (single choice) has to be used as the ordering criterion. A possible

implementation is shown in the left part of window in Figure 4.7: controllers can

mark which parameters are relevant to them (a ― ‖ is associated to each selected

parameter) but only one parameter can be selected as the ordering criterion (which

is highlighted by a different presentation technique in the user interface). There is

also an Edit button that allows the controller to change the criteria available.

Figure 4.7: selection of a path.

Then, we consider the task of providing to the user (the controller) with the set of

the possible solutions from which the controller will choose the ―best‖ solution.

Title: Task models and task-based design Id Number: D 2.1

 29

The type of the activity that the controller performs is to decide which is the ―best‖

solution, so the user interface should enhance all the interaction techniques that

highlight the Comparison of different elements of the same set. In the picture this is

modelled by using an ordered list of elements that share the same structure, so it is

easy to compare different values referring to the same parameter.

Other considerations have to be done about the type and cardinality of data being

the ultimate choice about the specific presentation that have to be used (especially

that exploiting multimedia features) dependent on the integrate consideration of all

those aspects. For example, being the path a spatial data, a good way to present it is

by using some graphical technique, but this can be confusing when there are many

paths that have to displayed at the same time. In this case, a good solution could be

to provide more than one type of presentation, for example an immediate textual

presentation of the path, and the possibility to have on request a graphical

presentation too (for example selecting a textual representation of a path, then the

path is graphically highlighted in a separate window as shown in Figure 4.8).

Figure 4.8: Interactive selection and graphical representation of path.

As we derive from the task model the activity of managing parameters and display

accordingly the solutions could be performed more than one time, however, when

the controller finally selects the path (for example by double-clicking on it as shown

in Figure 4.9), before sending actually it a preview should be made available to

show a summary (Show summary information task) of the main characteristics of

the selected path.

Title: Task models and task-based design Id Number: D 2.1

 30

In Figure 4.9 we show a possible implementation of the ideas that have been

expressed: the controller by double-clicking on a path activates a window where a

possible answer for the pilot has been already composed. S/he can decide to send

this path to the pilot or not, or to view other information on this path (―More…‖

button). As this figure has just explanatory goals, we suppose for sake of simplicity

that only one predefined format of answer exists to reply a taxi request (―GO to

RWY <rwy> via <path>‖) even though it would be more realistic to provide the

controller with the possibility of selecting other formats and/or specifying

additional options on his/her answer in order to make them more flexible. For

instance, once the controller has decided for a particular path, s/he could decide to

specify other options on when the pilot should start to execute the order.

Further improvements could be thought: for example the possibility to specify some

range of values that the calculated set of solutions has to satisfy for a selected

parameter (this solutions could be pretty useful when the calculated set of solutions

is very large, so the controller needs to refine the selected criterion) or even better,

to allow the controller to specify more than one criterion to be optimised:

sometimes it might occurs the case that two (or more) solutions come up to share

the same value for a selected criterion, and in this case the controller should be able

to select an additional criterion to have a further classification order within the first

one in order to support controllers in their decision-making process to identify the

―best‖ solution. In this way the controller could define the criteria in successive

steps of refinement, that is at first s/he selects only one criterion, view the set of

Figure 4.9: Automatic generation of a command to send to a pilot.

Title: Task models and task-based design Id Number: D 2.1

 31

proposed solutions and then (when it makes sense) s/he can select the other

criterion to do a more complete evaluation of the solutions proposed.

Now we pay attention on how the controller could be supported by the user

interface when s/he decides to build autonomously the path. In this case more

freedom should be given to the controller although the system should still support

controllers in building the path, allowing them to evaluate the effects of their

decisions: the task of sending a path is really safety-critical so it is really important

to avoid that meaningless solutions could be sent to the pilot.

If we analyse the task model associated to the task Build path without automatic

suggestion (see again Figure 4.1) we can note that the first, optional task is just to

give controllers the possibility to choose some parameter that they want to know

while they build the path, and then to specify the path.

Suggestions on how the controller can build the path could be derived by the type of

the data. For example, from the point of view of the domain objects, paths are

spatial objects, so a graphical presentation should be the best because it is

immediate to convey such information (in the next section we show an example of

a graphical composition of the path when we discuss the flight labels). However,

the taxiways composing the paths are named by strings, so other techniques could

be used in order to allow an expert controller to directly enter the name without

using graphical presentations. In addition, the total number and the names of

taxiways are statically known, so interaction techniques allowing the controller to

choose within a predefined set of possible values could be useful (e.g. a menu),

because the possibility of directly enter a string is really prone-to-error mechanism.

Thus, a menu is an efficient mechanism to avoid typing errors and it is efficient

with a limited set of elements, so we can suggest that, in order to avoid typing

errors, it could be used providing as selectable choices all the possible taxiways in

the aerodrome (as long as they are a small/medium number).

However, the considered system is a safety-critical system, so we cannot limit

attention only to syntactical errors: all the ―semantic‖ errors that could be detected

with the information contained in the system should be avoided providing

additional checking mechanism. For example, in order to decide which options

offer in the user interface, the design should consider the functional dependencies

that exist in the set of data avoiding the possibility that the user can choose no-sense

options and offering on the user interface only the actual subset of sensible choices:

for instance, if the flight is at the gate G1 and from the gate G1 the taxiways that

could be followed are only A, B and C taxiways, the interface should allow the

controller only to select from this set and not from the all possible taxiways of the

aerodrome. The same holds when the controller enters the string of the path: some

checking mechanism has to be provided by the system in order to check and

discover some enter-data errors, not only syntactical but also supporting and/or

implementing functional dependencies between data: for instance, if taxiway A is

Title: Task models and task-based design Id Number: D 2.1

 32

not directly connected to the taxiway B the user interface should not allow to enter

―AB‖ string as portion of path.

4.2.2.2 Build picture current state task (flight labels for ground)

a) General issues

A key point to investigate is the information provided by flight labels. The idea

behind the flight labels is that they should be a sort of ―mini-strip‖, collecting all the

information controllers could be interested to know on a flight under their

responsibility. However, showing all the information permanently on the radar

screen is not recommendable for the safety of the system because the aerodrome is

really crowded of vehicles and aircraft. It becomes crucial to decide different levels

of priorities in terms of presentation of data, by selecting from time to time the

information that are important for the controller (and that should be made

permanently available, e.g. standard label) from other information that should

presented after an explicit action of the controller (e.g. selected/extended label).

1. As the standard label is supposed to be displayed permanently on the radar, a

radar displaying the situation of an aerodrome can have many flights to present,

safety issues claim to reduce as much as possible the information to display

permanently. Thus, the information presented in the standard label should be

overall the ―most important‖: this refers firstly to how frequent are tasks that

manipulate (read and/or modify) specific data in a specific period of time or

flight phase, then the opportunity to offer them soon available on the radar.

Secondly, in terms of how much information they give to the controller in order

to easily maintain the overall picture of all the flights in terms of both their

current state and future intentions of the pilots just looking on the aerodrome

map.

2. As far as it concerns the selected label, the different ways of activating it imply

quite a different intention of the controller. When the controller activates a

selected label (by moving the mouse on the standard label), behind this

interaction there is the implicit request to know precise information about a

specific flight (the controller has selected a specific flight); so differently from

the selected label, where the information enhanced the possibility to get the best

―overview‖ of the system in the minimum possible space, the information in the

selected label should allow the controller to interact with the flight.

3. The extended label is the third format of the flight labels that are supposed to

exist in the new environment. In a stripless environment (as that supposed for

the envisaged system) they are expected to contain all the information regarding

a specific flight. Thus, from the extended label the controller should obtain at

least all the information that in the current system s/he derived from paper strip

(for example, the history of the datalink messages exchanged with the pilot

should be made available as in the paper strip the list of instructions/annotations

Title: Task models and task-based design Id Number: D 2.1

 33

were available). Safety assessment suggest the opportunity to display the

extended label in a separate window and to make it movable in order not to hide

large areas of the screen.

b) The standard label

From the task model we can see that the two controllers are interested to different

information to perform their ordinary activities: for example, the Ground’s activity

is mainly dedicated to drive and follow the flights during their taxiing phase, thus

s/he is interested to data concerning the current and expected positions of the flights

on the taxiways (see task model in Figure 4.10). On the other hand when the TWR

wants to get information about an aircraft under his/her responsibility s/he is mainly

interested to check the current state of the runway and/or to know the aircraft

category and SID in order to calculate separation, information not so relevant for

the GND. Thus, the findings are that only a part of information is really meaningful

for each controller at some time, thus, the UI has to be designed in such a way to

appropriately filter the information distinguishing data actually meaningful for each

controller.

Figure 4.10: Build picture current state task (Ground – new system).

In addition, the system is really time-dependent (e.g. the flight’s position in the

aerodrome continuously changes), thus the associated information displayed in the

labels should accordingly change too in order to show only the information that is

really useful to the controller from time to time, filtering it from the information

that has became meaningless (or that could be easily derived by other sources)

because some conditions changed, and to provide the controller with information

continuously kept up-to-date.

The same happened in the current system too: e.g. when the Ground controller gives

the path to a flight s/he updates the paper strip in order to keep track of the order

just sent and to be able to check the flight afterwards. Thereon, from time to time

the controller is interested to just a part of the annotation, being the current taxiway

the border line between the useful information (future positions in the path) and the

useless information (past positions in the path). As you can see there are cases

Title: Task models and task-based design Id Number: D 2.1

 34

where artefacts and associated interaction techniques are different between current

and envisaged system (e.g. paper strips are supposed not to be available in the new

system), but the goals remain unchanged.

In the new system the challenge becomes to make easier this activity exploiting as

much as possible the capabilities of the new (electronic) environment. Thus, once

the controller has given the path to the flight, the information about the destination

point (the runway) has been further refined and detailed by the information about

the path, which has to substitute the previous one because it details much more the

intentions of the flight in the next future instead of informing only about the

foreseen target.

Thus, for example, once the flight has sent its request for taxiing and is waiting at

the gate for the path, displaying the information about gate in the standard label

could be pretty redundant if the controller is aware of the current state of the flight

(departing flight, waiting for a path) and see its icon on the radar near the

representation of the gate. On the other hand, the same does not hold for the

information about the flight’s assigned runway, because s/he could not derive it by

looking at the radar and indeed this information is crucial just for the activity that

s/he has to perform: building and sending the path.

In addition, when it is possible (within the same controller’s UI) to distinguish these

data depending on different states or flight phases, the presentation should take into

account this aspect, varying dynamically the data presented and possible

operations/actions that could be performed by each controller on these data.

In the following figures we show a possible way for implementing the standard

label of the Ground controller while the aircraft is under the Ground’s

responsibility. In Figure 4.11 the flight SR111 is at the gate, waiting for the path

from the Ground controller. The path is between an origin point and a destination

point: just looking at the radar screen the controller is able to know the first one (the

gate), information about the second one should be explicitly provided by the system

in the standard label because it is the first data that the controller look for in the

system. For this reason the standard label (at this phase) shows information about

the intention of the flight that is to reach the runway 27L.

Title: Task models and task-based design Id Number: D 2.1

 35

Figure 4.11: Start of an interaction to communicate a path.

In Figure 4.12 it is shown how the Ground controller can select and build the path

(Build path without automatic suggestions task in Figure 4.1): s/he clicks on the

different taxiways that s/he wants the flight to cover (Specify next taxiway task), and

the system consequently draws step by step the path in a graphical way. In addition,

other information can be displayed associated to the portion of the path that has

been selected up to now: for example, a useful information can be to show from

time to time how much time should take the travel between the origin point and the

current last point selected on the path, in order to facilitate the controller to match

the expected departure time of the aircraft or alternatively how good is the match

with the slot time (if present) or with the expected time of departure.

Title: Task models and task-based design Id Number: D 2.1

 36

Figure 4.12: Build path without automatic suggestion path.

Of course, the controller should be always able to change mind and select another

path, but, finally, when he decides that the selected path is the best path for the

flight, s/he should be allowed to send the selected path in the most immediate way.

For example, by double-clicking on the last point selected the system automatically

changes the information contained in the flight label: instead of the ―27L‖ the

system sets automatically the selected path (DBEC in the Figure 4.13), showing it

in a different colour in order to highlight to the controller that the data has changed.

Title: Task models and task-based design Id Number: D 2.1

 37

Figure 4.13: Update flight label.

When the selected path has been actually sent to the aircraft, the changed state of

the aircraft is reflected on the standard label which now displays the received path

from the controller. More importantly, as it is shown in Figure 4.14a, the

information on the standard label is continuously maintained up-to-date, as the field

of the path contained in the standard label changes depending on the current

position of the aircraft in the aerodrome: as the past positions of the aircraft are no

longer useful for the controller, the flight label shows only the portion of the path

that the flight has still to cover, so in the part a of the picture only the next taxiways

(BEC) is shown. We have to note that it is only one possibility: another possibility

is – in order not to clutter the screen with too much information- to show only the

name of the next taxiway.

The controller can optionally enable the displaying of the path in a graphical way

and in this case the label shows in a different colour also the current taxiway, in

order to have conformance between the displayed graphical information and the

textual information on the label (see Figure 4.14b).

Title: Task models and task-based design Id Number: D 2.1

 38

Figure 4.14: An interaction with an enriched flight label.

Of course, this is just an example of how to implement labels for the GND

controller and other possibilities can be envisaged, but the most general guideline

is that the labels should:

 present different information depending on the tasks that the specific controller

want to perform, as they are interested to different data (in the following

sections we show a suggestion for a TWR’s label different from the previous

one);

 present (when possible) dynamic information that changes depending on the

changed state of the aircraft.

In this way, relevant information for the Ground controller (such as the path) are

permanently shown on the radar display, allowing the ground controller to have

them always soon available.

In addition, the interface should also provide the controller a graphical presentation

of the path displaying just the current position of the aircraft and the portion of the

path that it has still to cover (as we previously saw, the task model gives the

rationale not to show the taxiways that have already been covered). With regard to

the specific interaction technique to use, the choice of permanently displaying on

the radar a graphical presentation of the path (as it happens for the textual

presentation) reveals soon unacceptable because of the high number of aircraft that

are in their taxiing phase at any moment, and the consequent confused layout

deriving by displaying at the same time a lot of intersecting lines. A possible

solution is to display the graphical path only after explicit interaction of the

controller (e.g., by pressing the mouse on the associated field in the standard label,

as in Figure 4.14b).

(a) (b)

Title: Task models and task-based design Id Number: D 2.1

 39

4.2.2.3 The guidance task

The task model gives useful information to derive temporal constraints that have to

be implemented in the design of the user interface and to derive which are the

actions that should be made available to the controller and which not.

In the previous sections we saw how the controller builds the path (with automatic

suggestions or without them) and then s/he sends it to the pilot. However, at this

point his activity is not yet finished, because s/he has to continuously check if the

aircraft is following the expected path (although in the new environment we

suppose available automatic tools which perform monitoring tasks) within the

expected interval of time, in order to match as its best the expected time of

departure and minimise the possibility of delay. In order to do it, the controller

once s/he has sent the path to the pilot and the pilot starts to move the aircraft on

the taxiways should have the possibility to send instructions to pilot to change the

velocity of the aircraft during all the period of taxiing phase, depending on some

environmental conditions and/or his/her strategic decisions.

Figure 4.15: Guidance task.

Thus, although we assume that every aircraft is supposed to move on the taxiways

at a standard (default) velocity, we allow that that speed can be modified by an

explicit instruction of the controller in order to optimise the managing of the traffic.

If we analyse the Figure 4.15 what we have modelled in the task model is that the

activity to modify the velocity of the aircraft can be activated on the controller’s

interface only after the path has been sent to the aircraft (Enabling operator) in order

to avoid that an instruction to ―speed up/slow down‖ an aircraft could be

unintentionally sent to the pilot without any previous path. This kind of temporal

constraints should be always implemented when necessary, in order to ensure the

maximum level of safety in the system and the minimum room for the human slips

and/or errors.

What we want to capture with the task model is that before having sent the path to

the pilot the user interface should not allow the controller to change the velocity,

Title: Task models and task-based design Id Number: D 2.1

 40

whereas after having sent the path the ―Ground speed‖ field can be modified by the

controller.

In both cases, all the interactions that are currently possible should be made

available to the controller with a suitable interaction technique. For instance in the

first case should be appropriately highlighted to the controller that no interaction is

possible with the ―Ground speed‖ field of the selected flight label in order to

prevent him/her from starting at all any interaction (see Figure 4.16a where no

interaction is possible as the scrolling/editing are disabled), whereas in the second

case the changed state of the field should be highlighted (see Figure 4.16b, where

the scrolling/editing is enabled) and a suitable technique should be provided to the

controller. The ultimate choice about this technique should involve first of all

considerations about type of data, cardinality and range of values that the flight

parameter ―Ground speed‖ is supposed to span and, in addition safety assessments

about whether and how to limit the available interactions (for example safety

considerations about the specific environmental conditions of the aerodrome could

suggest to further limit the interval of the possible values assumable by the Ground

speed field).

Figure 4.16: The interaction technique to support change of speed.

4.2.2.4 Deviations and warnings

The analysis of deviations allows designers to better analyse how the UI should

warn the controller when the system detects some possible hazardous situations.

Three main guidelines should be followed:

1. different levels of warnings/alarms should be distinguished depending on the

different levels of urgency of situations that could arise in the system (a ―more‖

serious hazardous situation requires different presentation techniques with

respect to a ―less‖ serious situation).

2. different media should be used to convey different information to the controller,

exploiting the different nature of the media used;

3. avoid to overload the controller too much (e.g. too many different warnings

coming from different sources for the same problem) and too often (select the

actual hazardous situations in order not to make the controller to get

accustomed to see/hear warnings in the system and not to noise them

unnecessarily).

Therefore, when a classification of the possible hazardous situations has been

carried out (for example, a runway incursion is one of the most serious situations)

the UI should exploit in appropriate way its foreseen multimedia (audio/visual)

 (a) (b)

Title: Task models and task-based design Id Number: D 2.1

 41

possibilities: for example, in case of highly serious situation an audio warning is the

most appropriate way to be sure to capture the controller’s attention as soon as

possible (the controller could look at some other tools in the system, or out of the

window so a visual alarm could not be immediately received), and the attributes of

the audio signal could be calibrated in such a way to increase its effect depending

on the importance (for example, the ―volume‖ attribute of the alarm could be set at

a level that is much bigger as much more hazardous the situation is (to be sure that

controller is aware of it also in noisy situations), the ―tone‖ attribute could be

calibrated in such a way to associate high-pitched sounds to reinforce the

information about the urgency of the warning), and so on. Thus the audio channel

should convey information about how urgent and how ―catastrophic‖ possible

consequences of the hazardous situation are. On the other hand, once the

controller’s attention has been captured, the visual channel (exploiting its not-

transient nature) should convey additional information about the source of the

hazardous situation and (when possible), showing possible suggestions about the

admissible solutions to the problem itself, although the controller remains the

ultimate responsible for the final decision and action.

As far as it concerns handling the possible hazardous situations occurring on the

taxiways (Control hazardous situation task), we have to say that the possible

deviations of the controlled environment can be classified depending on two main

criteria: there are deviations that are time-based (an a/c is in the right position but at

the wrong time) and a deviation space-based (an a/c is in the wrong position).

With regard to the space-based deviation, as we show in Figure 4.17, the UI should

highlight both the current position of the aircraft and the position where the aircraft

was supposed to be, back until where deviation starts to occur: in this way the

controller is able to locate the deviation and its extent, and to focus his/her attention

on the most safety-critical areas (which are those wrongly covered by the aircraft).

As in almost the hazardous situations the time is the most safety-critical factor, we

suppose that the system is in the best position to calculate the optimum solution to

solve the deviation in the minimum interval of time so, the first action of the

controller is to ask the system for the best solution (Ask for best solution task in

Figure 4.17): if the solution is okay for him/her, s/he has only to send it,

alternatively s/he should be able to build an alternative path by him/herself.

Title: Task models and task-based design Id Number: D 2.1

 42

Figure 4.17: Handle spatial deviation task.

In Figure 4.18 we have summarised a possible solution on how to handle a spatial

deviation: the ―abnormal‖ nature of the situation is highlighted by means of a

message that appears on the standard label and with an appropriate colour in order

to highlight its urgency and to attract the attention of the controller. The user

interface highlights the deviation and allows the controller to get quickly a possible

solution (possibly shown in a graphical way) that the system has automatically

calculated to re-integrate safely the aircraft in the traffic flow (see Figure 4.18)

4.2.3 Tower Controller

4.2.3.1 Correlation between different views

Figure 4.18: Example of spatial deviation.

Title: Task models and task-based design Id Number: D 2.1

 43

In the current system, when the Tower controller receives a request from a pilot,

s/he has to make a decision about the best answer for this request. In order to do it,

s/he finds the associated paper strip in the bay to collect as much as possible

information and appropriately decide how to cope with the request in the current

situation of traffic. In the new system, the tasks that the Tower controller has to

perform are the same, most of the differences are on the tools and artefacts that are

supposed available and from which the controller finds the flight data: e.g. for

departures they are mainly the Departure Manager, the enriched flight labels shown

near the flight’s representation in the aerodrome map, and the list of data-link

messages received from pilots.

In fact, each of these tools provides the Tower controller with a specific and often

partial ―view‖ of the same referred object (the aircraft): for example, the Departure

Manager displays the planned order of departures, showing the foreseen departure

optimum time for each flight, the list of received data-link messages informs the

controller about the future intentions of the pilots in terms of their requests,

whereas the icon of the aircraft in the aerodrome map gives quick knowledge of the

current position of the aircraft, with the standard flight label showing permanently

immediate information about the flight.

When the Tower wants to collect information about the flight, s/he has to perform a

sort of ―merging‖ operation between those different sources of information in order

to have the most complete picture of the current/planned state of the aircraft. This

situation is described specifically in the task model of Figure 4.19.

Figure 4.19: Collect data for departures task (Tower – new system).

From the task model you can see that there is the ―|[]|‖ operator, meaning that there

is not a pre-defined order with which those actions have to be performed (e.g. the

controller could look at the Departure Manager and then in the aerodrome map, but

the vice versa is also possible), being the key point the fact that, whatever the

followed order is, all the information in the different provided tools are necessary in

order to build the complete picture of current/future state of the aircraft. In addition,

it is worth noting that once the controller has fixed the information about a specific

aircraft in one of the three considered tools, s/he should perform other two

Title: Task models and task-based design Id Number: D 2.1

 44

―retrieving‖ tasks in order to identify the related information within the other two

sources of information.

For example, once the Tower controller has selected a specific request from a flight

within the list of received data-link messages s/he should still perform a search

within the aerodrome map in order to retrieve the icon of the associated flight, and

another search within the Departure Manager message in order to know what the

planned optimum departure time has been scheduled for the flight. In the new

(electronic) environment it is possible to highly reduce the requested workload for

performing those task by providing the controller with some automatic link that

highlights automatically the correlation among the different ―views‖ of information

referring to the same object.

In order to summarise the guideline just explained, we can say that, once different

views of information are supposed spread between different tools the UI can be

improved by supplying:

1. Possibility to highlight the same information in the different views (e.g. when it

is selected in one of them for the Tower controller the link can be between the

Departure manager, aerodrome map, Message-in list. In this way it should be

soon clear that for example the aircraft A in position (x,y) within the aerodrome

map has made a request to take-off and within the departure manager has been

scheduled to take-off at a specific time T;

2. The different views have to be consistent each other (for instance an

inconsistent situation for the Tower controller could be that an aircraft that has

made a request to take-off is not displayed in the Departure Manager);

Figure 4.20: Different representation related to the same object.

Title: Task models and task-based design Id Number: D 2.1

 45

3. The different views take into account conditions that change in a dynamic way

depending on the time

4. From each view it should be possible to activate the operations that are logically

enabled from time to time (e.g. give the possibility to send a clearance from the

label, from the message in the list of messages, from the icon in the Departure

manager)

The above suggestion could be made more general and adapted appropriately to the

different cases and phases of the flight being the aforementioned example just a

specific case of use. The general guideline is that some automatic link should be

provided in order to easily find information that are strictly connected to each other:

e.g. for the Tower controller we can say that a correlation should exist also for the

arrival flights (they are not displayed in the Departure Manager) between the icon in

the aerodrome map and the list of received messages, and the same matter can be

applied to the Ground controller too.

4.2.3.2 Flight labels (standard) for Tower control

As far as it concerns the Tower controller, we know that his/her main task is to

manage take-off and landing, giving to them the clearance to takeoff/landing in

such a way to ensure that adequate separation has been provided between

consecutive flights. First of all, the problem of information that has to be provided

in the standard label arises. As it occurred for the Ground controller, the data that

have to be displayed in the standard label are the information the controller should

have soon available.

Focussing on the departing flights, the Tower controller receives them in a queue

that has been predisposed by the Ground controller on the basis of the expected

optimum departure time and this sequence should match as much as possible the

scheduled order. However, in situations of heavy traffic, sometimes occurs that a

queue of several flights ends up to accumulate in the proximity of the holding

position and (if necessary) the Tower controller should be able to perform some

modifications to this queue in order to manage the maximum number of flights in a

specific interval of time.

First of all, in order to decide which information has to be shown in the standard

label (the label permanently displayed on the screen), we have to do a compromise

between the need of offering soon available the information to which the controller

is mainly interested, and the necessity not to clutter the screen in a region of the

display where we suppose to have a high concentration of aircraft (being near the

holding position of a runway).

We know from the task models (Figure 4.19) that the information which the Tower

controller is mainly interested concerns the foreseen departure time and the

information about the assigned runway, the category of the aircraft and the SID

Title: Task models and task-based design Id Number: D 2.1

 46

(according on such information s/he is able to ensure adequate separation between

consecutive departing flights on the same runway that even share the same SID). As

far as it concerns the information about the assigned runway, when the Tower

receives from the flight the request to take-off, the aircraft’s icon is probably close

to the assigned runway, so the information about the runway can be easily derived

by looking at the aerodrome’s map (anyway the information about the runway

should be displayed in the selected label). About the other information (category

and SID), they should be displayed in the standard label, because they are both

necessary to the Tower in order to decide separation between consecutive flights.

As far as it concerns the most suitable way to present that information, again this

choice is mainly driven from the type of task and cardinality of data that have to be

manipulated: with regard to the aircraft category, as the cardinality of the possible

categories is low (only three different values) and the type of data that have to be

shown is a quantity (Light, Medium, Heavy) we can present it by means of some

graphical presentation such in the following Figure 4.21:

Figure 4.21: Flight label representation.

For example, in the above figure the three different categories of aircraft have been

modelled by means of three different areas which are progressively filled up as the

category increases (e.g. the Heavy category is when all the rectangles are coloured).

The low cardinality allows users to easily discern between category (whereas the

same presentation would not have been equally suitable if the cardinality was

around ten values). In addition, we have to note that this kind of presentation could

make easier some comparison tasks (between categories of different aircraft)

because of its intuitive graphical representation. Considerations about the

opportunity of reducing the occupied space in the standard label could suggest to

change the orientation of the rectangles (from horizontal to vertical, as in the Figure

4.22).

A similar reasoning about type and cardinality can be applied to decide the

presentation of the SID: the most simple presentation is the textual but

considerations about the type of task (spatial) and the cardinality of the SID

suggests that a more intuitive presentation (as shown in Figure 4.22) could be used.

Figure 4.22: Another flight label representation.

Title: Task models and task-based design Id Number: D 2.1

 47

4.3 Towards guidelines for safety-critical systems

In this section we summarise the main guidelines that we previously indicated for

the design of user interface for safety-critical systems starting from the analysis of

the task models.

1. Taking into account the task type. For example, spatial tasks (tasks that allow

users to provide or manipulate spatial information) should be supported by

graphical presentations to improve the immediacy with which convey such

information to the user and avoid that the users can perform errors while they

handle those data (see the task of building a path for the Ground controller).

2. Whenever a task manipulates numerical/quantitative data, provide presentations

(using graphical attributes) that enhance the performance of typical activities

connected with those data e.g.: comparison). For the ultimate choice about the

best presentation consider also the cardinality of data to present (See the

presentation of the category of the aircraft for the Tower controller).

3. Implementing a user interface dialogue that is consistent with the temporal

relationships indicated in the ConcurTaskTrees model reduce the possibility to

introduce errors, which is important especially for tasks with high level of

safety-criticality. (See the presentation supporting Change velocity task for the

Ground).

4. In order to reduce the amount of information to provide permanently to the user,

define different levels of priority amongst data; limit the permanently displayed

data only to those that are necessary to get the overall picture of the current and

future situation and give the possibility to get additional information only after

an explicit action of the user; allow to get presentation with different level of

refinement; maintain the information always up-to-date and allow to

read/modify different information depending on different activities that have to

be performed on a specific object from time to time. (See the presentation of

enriched flight labels).

5. If it is possible to identify different types of users that perform different

activities and are interested to different data, design different user interfaces for

each of them in order not to provide them with meaningless information and no-

sense interactions. (See the different labels for the two controllers).

6. When there are different tools that offer different, partial ―views‖ for the same

object, provide the user with an automatic link that allows him/her to get an

immediate correlation between the different views obtaining the most complete

picture of the object starting from each of these tools. While each view is more

suitable for a specific task it is useful that they are able to support also those

tasks that are primarily performed by the other views. (See the relationships

among different tools for the tower controller in the new environment).

Title: Task models and task-based design Id Number: D 2.1

 48

7. Change the allocation from the human to the machine for tasks (especially

routine tasks) that force users to distract their attention from the most safety-

critical activities. (See updating automatically flight data).

8. Provide different levels of warnings/alarms for each of the different deviations

that could occur in the system depending on the impact on the safety of the

system. Exploit different nature of media to convey different information to the

user about how to cope with hazards (e.g. audio media to attract attention,

visual media to suggest solutions). Avoid to overload the user with too many

alarms/warnings, avoid the user makes accustomed to them. (See handling

spatial deviation).

Title: Task models and task-based design Id Number: D 2.1

 49

5. Reasoning about Task Models

One of the advantages of using a formal approach is the possibility to rigorously

reason about properties of the specification. This can be carried out by model

checking: the specification represents the model against which properties can be

checked, and it is usually based on the analysis whether the transitions in the states of

the specification satisfy the properties given.

 Formal verification has been successfully used in hardware design where it is

important to check that some properties are satisfied before implementing the

specification into hardware. The HCI field is more challenging for verification

methods and tools, since the specification of human-computer dialogues may be

more complex than the hardware specifications. The main problems in applying

model checking techniques to the design of user interfaces are:

 the identification of relevant user interface properties to check

 the development of a model of the User Interface System which is meaningful

and, at the same time, avoids the introduction of many low level details which

would increase the complexity of the model without adding important

information for the design of the user interface.

There are various motivations to carry out model checking, in our case we found

particular important the following:

 it is possible to test aspects of an application even if they have not been

completely implemented;

 user testing can be rather expensive, especially in fields as what we consider

Air Traffic Control, the users (controllers in our case) are highly specialised

personnel whose time has high costs. We are not proposing that they should not

be involved but we are indicating that model checking can decrease the need of

empirical testing, even if it is always useful to have it;

 exhaustive analysis, the advantage of model checking is that the space of the

states reachable by the specification is completely analysed. In user testing we

just consider one of the possible traces of actions whereas there can exist a huge

number of such traces and even an extended empirical testing can miss some of

them. This lack of completeness in empirical testing can have dangerous effects

especially in safety-critical contexts. However there is another difference

between model checking and empirical testing: in the former case a model of

the application is considered whereas in the latter case the focus is on the

concrete implementation of the application (or part of it). This means that the

model should be a meaningful approximation of the application in order to have

a useful analysis of it. This opens an interesting issues that is on the one hand to

have models sufficiently detailed to support a meaningful analysis and

evaluation and on the other hand to have models that can be dealt with

automatically so as to avoid an explosion of possible states.

Title: Task models and task-based design Id Number: D 2.1

 50

In [P97] there is a discussion on how to approach the verification of user interface

properties and examples of a first set of general properties is given. Other

approaches to the same type of problems can be found in [AMW95], [ASDR98].

Here we want to extend that approach to analyse multi-users interactive applications

and address real case studies where the effort of using a formal approach is justified

by the safety-critical context.

5.1 Integrating model-checking in user interface design

The part of our method concerning the use of formal methods is represented in

Figure 5.1, where the processes are indicated with circles and the results with

rectangles. After a first phase gathering information on the application domain, and

an informal task analysis, designers should develop a task model which forces them

to clarify many aspects related to possible tasks and their relationships.

An additional reason for introducing ConcurTaskTrees was that after first

experiences with LOTOS [PF92] we realised the need for a new extension that

allowed designers to avoid useless complicated expressions even for specifying

small behaviours and to focus on more important aspects.

The ConcurTaskTrees specification can be used for two purposes: to drive the

development of a software prototype consistent with the indicated requirements as

we indicated in Section 4 and to transform it into a LOTOS specification. We have

implemented a transformation tool where each task specification is translated into a

corresponding LOTOS process. The motivation for this transformation is that there

are various model checking tools able to accept LOTOS specifications as input,

such as the CADP package [G97]) that transforms it into a finite state automata or

Labelled Transition System (LTS).

On the other hand, the informal information initially gathered is also used to

identify the relevant properties of the user interface, which can be both general

formal properties, such as mutual awareness, and other informal properties that are

specific of the considered application domain (for example, in the ATC application

domain, the request that a controller's voice clearance has to be received by all the

pilots currently in the sector).

Checking that the formal specification satisfy the relevant properties for the

possible dialogues it is useful to understand whether the design developed can

support usability and safety aspects.

Title: Task models and task-based design Id Number: D 2.1

 51

CTT
Specification

LOTOS
Specification

Prototype

Finite state
Automata

General
formal

properties

Informal
properties

Properties
Identification

Property
Formalisation

XTL Formal
Properties

Model Checking
Results

CADP (caesar)
Trasformation

CADP(xtl)
Property VerificationInformal

Evaluation

Formal
Evaluation

Modifying
Specification

Task
Modelling

Development
Software

CTTE
Transformation

Design
Modifications

Figure 5.1: A Graphical Overview of the proposed Approach

After having formalised the identified properties with a formal language, these

properties are checked against the LTS specification to verify which properties are

valid in the system. Properties of the user interface are expressed as temporal logic

formulae by the designer and model-checked against the model describing the

Interactive System software derived in previous steps.

The verification is performed by a general purpose automatic tool for formal

verification and the results of the model checking are used for formal and informal

evaluations that can lead to modify the ConcurTaskTrees specification thus re-

starting the process.

5.2 From ConcurTaskTrees to LOTOS

The first important aspect to consider is that the translation from ConcurTaskTrees

to LOTOS is composed of two relevant steps: to handle the translation of the

ConcurTaskTrees tasks into LOTOS processes, and to implement the

ConcurTaskTrees temporal operators by means of the operators provided by

LOTOS language.

Title: Task models and task-based design Id Number: D 2.1

 52

With regard to the former issue, for each process, its specification implies that all

the gates that are used inside the specification have to be declared in its heading.

The direct consequence is that in the specification of the root process all the gates

detected have to be listed, whereas in the specification of a process corresponding

to a leaf task the translation is reduced to insert the associated gate and the exit

action, in order to indicate when the successful end of the process occurs.

An example of the latter issue is the translation of the iteration operator appearing

on a tree root. Then the translation of a ConcurTaskTrees iterative process is

reduced to have a recursive call to the same process at the end of the execution of

the process itself.

5.3 User Interfaces Properties

As far as it concerns a possible categorisation for properties, classical taxonomies

already exist in the area of interactive systems. In a highly cooperative system as

that considered in our case study (but the same issues apply to other systems

presenting similar features) the distinction between the different user roles involved

plays an important part to get a more modular view of the system's and the sub-

systems' properties. Depending on the considered role we can elicit properties on

the specific user interface customised for the particular user, but at the same time

we can bring out other properties that are related to the interconnections and

communications between different users.

We will use an extended version of ACTL [DFGR93] to formalise examples of

properties in the case study previously introduced. This type of extension can be

easily converted in an XTL [MG98] expression that can be verified by the CADP

tool.

5.3.1.1 Warning message for time-out expired

With datalink functionality, all the messages have a time-out indicating the time

interval within the associated answer have to be received in order to be

appropriately considered and evaluated. When it happens that time-out expires, an

appropriate notification has to be shown on the message originator's interface, in

order to signal either that the message has to be sent again, or that possible answers

received after the time-out expiration have to be ignored. More precisely, the

property can be expressed in this way:

If there is expiration of an operational time-out without reception of the operational

datalink response message, the message originator shall be notified with an

appropriate feedback.

The related ACTL-like expression is:

Title: Task models and task-based design Id Number: D 2.1

 53

AG([is_sent(controller, request, pilot)]E[true{~is received(controller,

answer, pilot}U{timeout_expiration}A[true{true}U{is_presented

(controller,noanswer_feedback} true])

This means that whenever (AG operator) the controller has sent a request to a pilot,

then we have at least (E operator) a temporal evolution during which no associated

answer coming from the pilot to the controller has been received and finally, as a

result of the expiration of the fixed time-out we reach a state from where for all the

possible temporal evolution (A operator) the desired effect of presenting an

adequate feedback to the controller's user interface of the missed answer will be

reached (noanswer_feedback in the above property).

This means that only after the expiration of the time out we are sure that the desired

effect (the user interface showing to the controller that a particular order previously

sent to the pilot has not followed by any answer in time for being correctly

processed) will be reached, thus allowing the controller to decide what is the best

action to perform in order to make up for the error.

5.3.1.2 Controllers’ mutual awareness

This property means that whenever the ground controller executes an action on

his/her user interface, the associated effect has to be shown on the user interface of

the tower controller. With this property we want to be sure that the tower controller

is aware of all the actions (that we denote with ―control_action‖ wording)

performed by the ground controller which can have an impact on the his/her own

activity, namely either actions that a controller can perform directly on the system

based on his/her own decisions (for example the ground controller can change a

previously fixed flight parameter) or actions that involve datalink dialogues with

pilots. In other words, we want to pay attention to all the actions that might cause

that controllers’ activities clash each other, thus we do not consider the actions that

the ground performs in order to get information on the system for monitoring it.

More precisely, in ACTL, we specify that whenever (AG operator) the ground

controller performs a modification action on his/her user interface then for all the

possible temporal evolutions (A operator) the event associated with the user

interface modification reception will occur on the tower controller’s user interface

AG([is_executed(ground,control_action)]A[true{true}U{is_presented(tower,update

_effect)}true])

Title: Task models and task-based design Id Number: D 2.1

 54

With ―is_executed‖ and ―is_presented‖ we want to distinguish when the system

generates and undertakes the action from when the effects of the action are

presented on the user interface. Of course, the property holds for the tower

controller too.

5.3.1.3 Controllers’ coordination

A direct consequence of the awareness is that the two controllers are more

synchronised on these actions’ sequences when (for example) a flight passes from

one controller’s handling to the other controller. The most intuitive example is

during the hand over from the ground controller to the tower controller for

departure flights (whenever the pilot reaches the holding position, the ground

controller performs a last contact and then the control is passed to the tower

controller) and vice versa for arrival flights. However, it is worth noting that in

these cases, the previously cited awareness mechanisms present in the system (the

last contact message performed by the ground controller is displayed on the tower

controller’s user interface, so the tower expects a pilot’s message in the near future)

comes just before the explicit pilot’s first contact message requiring to the tower

controller to be considered ready to take-off and then properly scheduled.

But there is another case of proper controllers’ co-ordination: for example, this is

the case when a departure flight has to cross an active runway in order to reach a

different assigned runway. The ground controller gives to the flight a path on the

taxiways until the flight reaches the runway that s/he has to cross, thus on the one

hand the pilot is aware of when s/he arrives at that point he has to wait for a

message from a tower controller (who takes on responsibility for runways), and,

more importantly, the tower controller knows that, when the pilot has reached the

crossing s/he has to provide clearance to go through the runway as soon as it is

possible, without any explicit request from the pilot.

AG([is_sent(ground, path, pilot)]E[true{is_received(ground, path, pilot}

U{is_stopped(pilot, runways_crossing)} A[true{true}U{is_sent(tower,

ok_crossing, pilot} true])

This means that once the ground controller has sent the path to a pilot in order to

reach the assigned runway, we have a temporal evolution during which the previous

message has been received by the pilot and finally we reach a state by performing

the pilot’s action of stopping at the crossing of the taxiway with the runway, from

where for all the possible temporal evolution the desired effect (the tower controller

sending the authorisation to cross the runway) will be reached.

Title: Task models and task-based design Id Number: D 2.1

 55

5.3.1.4 Controlled sharing

The tower and ground controllers share flight information of all the planes currently

under their control (for example they can always obtain flight data by means of

datalink menus) however, in order to serialise the control actions performed by each

controller (for example sending datalink messages to pilots), it is important to

guarantee that, while the flight is under the control of the tower controller, the

ground controller can not send (voluntarily or unintentionally) control orders to

pilot until the tower controller performs a last contact and then the flight passes

under the control of the ground controller.

AG[is_sent(pilot, first_contact, tower)] A[true{not (is_sent(ground, control_order,

pilot) U {is_sent (tower, last_contact, pilot)} true]

This property means that if an arrival pilot sends a first contact message to the

tower controller then it will not be possible to have that the ground controller sends

a control_order to the pilot, until (U operator) the tower controller has been sent to

the pilot a last contact message.

Title: Task models and task-based design Id Number: D 2.1

 56

6. Conclusions

In this report we have described the use of task models that has been developed in

the MEFISTO project.

The original contribution lies in the engineering approach to task models that stems

from the use of a flexible and expressive notation, the support of automatic tools

and the development of criteria to support the design of user interfaces using

information contained in the task model.

In the third year we plan to focus on some specific design aspects and to use the

task models to support the usability evaluation of the prototypes developed.

Title: Task models and task-based design Id Number: D 2.1

 57

7. References

[ASDR98] B.d’Ausbourg, C.Seguin, G.Durrieu, P.Rochè, Helping the Automated Validation Process of User

Interfaces Systems, Proceedings ICSE’98 pp.219-228

[AWM95] G.Abowd, H.Wang, A.Monk, ―A formal technique for automated dialogue development‖,

Proceedings DIS’95, ACM Press, pp.219-226.

[BBDGMPY96], S.Shum, A.Blandford, D.Duke, J.Good, J.May, F.Paterno’, R.Young, ―Multidisciplinary

Modelling for User-Centred System Design: An Air-traffic Control Case Study, Proceedings HCI’96,

London, Springer Verlag, pp.200-218.

[BP93] Burns, D.J. and Pitblado, R.M. (1993) A Modified HAZOP Methodology For Safety Critical System

Assessment. Directions in Safety Critical Systems — Proceedings of the Safety-Critical Systems

Symposium, Bristol, 1993, Springer-Verlag.

[C95] Carroll, J. (Ed.), Scenario-Based Design, John Wiley and Sons & C., 1995.

[DFGR93] De Nicola, R., Fantechi, A., Gnesi, S. and G. Ristori (1993). An action-based framework for

verifying logical and behavioural properties of concurrent systems, Computer Network and ISDN systems,

25, 1993, 761-778.

[D91] A.Dix. "Formal Methods for Interactive Systems". Computers and People Series. Academic Press 1991.

[G97] H. Garavel, M. Jorgensen, R. Mateescu, Ch. Pecheur, M.Sighireanu, B.Vivien, CADP'97 - Status,

Applications and Perspectives

[H96] A.Hall, ―Using Formal Methods to Develop an ATC Information System‖, IEEE Software, pp.66-76,

March 1996.

[H88] Hopkin, V.D. (1988) Air Traffic Control. In E. L. Wiener and D. C. Nagel, Eds. Human Factors in

Aviation. Academic Press, 1988. Pages 639-663.

[L97] Leathley, B.A., (1997) HAZOP Approach to Allocation of Function in Safety Critical Systems, In

ALLFN’97, Proceedings of the 1st International Conference on Allocation of Functions., Galway, Ireland,

IEA Press.

 [ISO88] ISO (1988). Information Processing Systems - Open Systems Interconnection – LOTOS - A Formal

Description Based on Temporal Ordering of Observational Behaviour. ISO/IS 8807. ISO Central

Secretariat.

[JK96] John, B., Kieras, D., ―The GOMS Family of Analysis Techniques: Comparison and Contrast‖. ACM

Transactions on Computer-Human Interaction, Vol.3, N.4, pp.320-351, 1996.

[MOD96] HAZOP Studies of Systems Containing Programmable Electronics. UK Ministry of Defence, Interim

Def Stan 00-58 Issue 1.

[MG98] R. Mateescu and H. Garavel, XTL: A Meta-Language and Tool for Temporal Logic Model-Checking.

Proceedings of the International Workshop on Software Tools for Technology. Transfer STTT'98

(Aalborg, Denmark), July 1998.

[N93] Nielsen, J., Usability Engineering, Academic Press, 1993.

[P97] F.Paternò, Formal Reasoning about Dialogue Properties with Automatic Support , Interacting with

Computers, August 1997.

[P97] F.Paternò, Formal Reasoning about Dialogue Properties with Automatic Support , Interacting with

Computers, August 1997.

[P99] Paternò F., Model-Based Design and Evaluation of Interactive Applications, Springer Verlag, 1999

[PM99] Paternò, F., Mancini, C. , Developing task models from informal scenarios. Proceedings of CHI '99 -

May 15-20, 1999, Pittsburgh, USA.

[PST98] Paternò, F., Santoro, C., Tahmassebi, S. (1998) Formal Models for Cooperative Tasks: Concepts and

an Application for En-Route Air Traffic Control. In Proceedings DSV-IS '98, Springer Verlag, U.K.

[PSF99] Paternò, F., Santoro, C., Fields, B., (1999) Analysing User Deviations in Interactive Safety-Critical

Applications, Proceedings DSV-IS'99.

[WP3-3] F.Paternò, C.Santoro, Task-based design of aerodrome case study, MEFISTO Working Paper.

