
Dexter: an Open Source Framework for Entity Linking

Diego Ceccarelli
IMT Lucca

ISTI CNR, Pisa

Università di Pisa

diego.ceccarelli@isti.cnr.it

Claudio Lucchese
ISTI CNR, Pisa

claudio.lucchese@isti.cnr.it

Raffaele Perego
ISTI CNR, Pisa

raffaele.perego@isti.cnr.it

Salvatore Orlando
Università Ca’ Foscari Venezia

ISTI CNR, Pisa

orlando@unive.it

Salvatore Trani
ISTI CNR, Pisa

Università di Pisa

salvatore.trani@isti.cnr.it

ABSTRACT
We introduce Dexter, an open source framework for entity
linking. The entity linking task aims at identifying all the
small text fragments in a document referring to an entity
contained in a given knowledge base, e.g., Wikipedia. The
annotation is usually organized in three tasks. Given an in-
put document the first task consists in discovering the frag-
ments that could refer to an entity. Since a mention could
refer to multiple entities, it is necessary to perform a disam-
biguation step, where the correct entity is selected among
the candidates. Finally, discovered entities are ranked by
some measure of relevance. Many entity linking algorithms
have been proposed, but unfortunately only a few authors
have released the source code or some APIs. As a result,
evaluating today the performance of a method on a single
subtask, or comparing different techniques is difficult. In
this work we present a new open framework, called Dexter,
which implements some popular algorithms and provides all
the tools needed to develop any entity linking technique. We
believe that a shared framework is fundamental to perform
fair comparisons and improve the state of the art.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval—Information Filtering, Search process

Keywords
Entity linking; Annotations; Evaluation.

1. INTRODUCTION
Most Web documents currently do not contain semantic

annotations, and they are commonly modeled as simple bags

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ESAIR’13, October 28, 2013, San Francisco, CA, USA.
Copyright 2013 ACM 978-1-4503-2413-7/13/10
http://dx.doi.org/10.1145/2513204.2513212 ...$15.00.

of words. One of the main approaches for enhancing search
effectiveness on these documents consists in automatically
enriching them with the most relevant related entities [?].
Given a plain text, the Entity Linking task consists in iden-
tifying small fragments of text (in the following interchange-
ably called spots or mentions) referring to any entity (rep-
resented by a URI) that is listed in a given knowledge base.
Usually the task is performed in three steps: i) Spotting: a
set of candidate mentions is detected in the input document,
and for each mention a list of candidate entities is retrieved;
ii) Disambiguation: for each spot associated with more
than one candidate, a single entity is selected to be linked to
the spot; iii) Ranking: the list of entities detected is ranked
according to some policy, e.g., annotation confidence.

Wikipedia is a perfect resource for performing this task in
a open domain context. Each article can be considered as an
entity, and possible mentions for an entity can be retrieved
considering all the anchor texts of the links that point to
that entity. Many approaches use Wikipedia for perform-
ing the task and also the two main entity linking tracks:
the Knowledge Base Population1 organized by the U.S. Na-
tional Institute of Standards and Technology (NIST), and
the TREC Knowledge Base Acceleration2.

The spotter detects the entities by looking in the text for
any fragment matching any of the Wikipedia mentions, and
therefore potentially referring to a entity. Once we retrieve
the spots, the main challenge to cope with is the ambiguity
of natural language mentions. In fact a fragment could refer
to more than one entity. For example consider the sentence:

On July 20, 1969, the Apollo 11 astronauts - Neil Armstrong,

Michael Collins, and Edwin “Buzz” Aldrin Jr. - realized

President Kennedy’s dream.

It is quite easy to map the spot Michael Collins to the
entity Michael Collins3, since in Wikipedia there are 98 an-
chors linking to that page. On the other hand, it could be
not so easy for a software to decide if Michael Collins is
an astronaut, an Irish leader or the president of the Irish
provisional government in 1922.

1http://www.nist.gov/tac/2013/KBP/index.html
2http://trec-kba.org/
3http://en.wikipedia.org/wiki/Michael_Collins_
(astronaut)

Several techniques were recently proposed for annotat-
ing documents with entities [?, ?, ?, ?]. These techniques
usually rely on features extracted from Wikipedia for per-
forming the disambiguation. Ratinov et al. [?] distinguish
the methods between local and global approaches. Local
approaches exploit clues such as the textual similarity be-
tween the document and each candidate disambiguation’s
Wikipedia page [?], or the probability (commonness, esti-
mated from the Wikipedia dump) for a mention to refer to
a particular entity [?, ?]. Global approaches try to optimize
the coherence among the entities in the documents. Coher-
ence is a subtle concept often modeled as the notion of relat-
edness between two entities (or by their semantic distance).
Many approaches were proposed for estimating the relat-
edness of two entities. Some approaches are based on the
similarity between the textual description of the articles [?],
or on comparing the categories to which they belong. Many
methods use measures defined on the Wikipedia entity link
graph. A popular measure was defined by Milne and Wit-
ten [?] that model the relatedness between two entities e1
and e2 as a variation of the Jaccard distance between the
set of the entities that link to e1 and e2. In [?] several tech-
niques for computing relatedness with the Wikipedia graph
are experimented.

Performing a fair comparison among these techniques is
very hard. To the best of our knowledge, only a few authors
released the source code of their methods (WikiMiner by
Milne and Witten4 and Aida5 by Hoffart et al.), or provide
a REST API for annotating documents using their method
(TAGME by Ferragina and Scaiella). Hachey et al. [?] pro-
pose a framework (not published) for entity linking in which
they implemented and compared three methods in the state
of the art. In their experiments they found that spotting
is more important than disambiguation and that mixing the
spotting and the disambiguation strategies of different meth-
ods can lead to interesting results.

A good performance obtained in spotting may heavily im-
pact on the performance of the whole system, as well as us-
ing a different dump of Wikipedia (i.e., old dumps contain
less entities, but also have less ambiguity for each spot),
or removing all the candidate entities of a spot which have
commonness below a certain threshold, or spots with a low
link probability (probability to be a link, estimated as the
occurrences of the text as anchor divided the occurrences
as pure text). Moreover, efficiency of the proposed meth-
ods is in many cases ignored even if, depending on the use
case, it could be of paramount importance (for example for
annotating a huge repository of webpages).

For these reasons, we strongly believe that for this kind of
research it is important to share a unique framework where
spotting, disambiguation and ranking are well separated and
easy to isolate in order to study their performance. Our pro-
posal goes in the direction of developing an open and flex-
ible framework for implementing entity linking strategies.
The framework, called Dexter, provides several facilities for
implementing annotation strategies. Differently from other
approaches which require high-performance hardware or to
install additional software (e.g., databases), Dexter is a stan-
dalone program designed to easily work with a small effort
from the user.

4http://wikipedia-miner.cms.waikato.ac.nz/
5http://www.mpi-inf.mpg.de/yago-naga/aida/

JSON Wikipedia

Dexter-Core

D
ex

te
r

ev
al

U
til

s

D
ex

te
r

W
eb

ap
p

Figure 1: Dexter architecture

2. DEXTER
Dexter is developed in Java, and is organized in several

Maven modules as shown in Figure 1. The Utils module
contains utility code for performing general operations: log-
ging, compressed file I/O, management of properties, writ-
ing command line programs, etc. Dexter-Eval implements
utilities for performing benchmarks of the methods. The
module relies on the trec-eval framework6. Dexter-Webapp
exposes REST API for performing the annotations. It also
implements a simple web interface for deploying demo and
user studies. In the following we will briefly describe the two
main modules: the Json-Wikipedia and the Core.

2.1 Json Wikipedia
This module converts the Wikipedia XML Dump in a

JSON Dump, where each line is a JSON record representing
an article. The parser is based on the MediaWiki markup
parser UKP7. DBPedia only contains semistructured data
extracted from the dump (mainly from the infoboxes) in
RDF format, while JSON-Wikipedia contains other fields,
e.g., the section headers, the text (divided in paragraphs),
the templates with their schema, emphasized and so on.
These fields are not properly attributes of an entity but
they can be useful for performing the annotation or a pos-
teriori, for presenting an annotated entity. Another main
difference is that in our dump all the articles are converted
to JSON records, so we have also Disambiguation records,
Redirect records, Category records etc. (the type of the
record is encoded in a type field). The module is designed
to manage different languages. Given a locale file describing
how disambiguations, categories, redirects, etc are denoted
in a given language, Dexter parses the XML dump in the
specified language and produces the JSON dump. All the
languages will share the same JSON schema. This should
simplify the development of techniques combining different
languages. Moreover, JSON is easy to parse and to be used

6http://trec.nist.gov/trec_eval/
7http://www.ukp.tu-darmstadt.de/software/jwpl/

Spot Repository

Spotter

Shingle
Extractor

Articles Index

Entity Link Graph

Tagger

Shingles

Spot Match List

Entity Match List

Figure 2: The Dexter-Core module

in scalable Map Reduce frameworks like Hadoop, Pig or Cas-
cading. In the future, we plan to improve the creation of
entity linking models to be used in map reduce jobs.

2.2 Dexter Core
The core contains all the code to manipulate the JSON

dump in order to generate: the spot repository, the arti-
cle index, and the entity graph. The main components are
depicted in Figure 2. The spot repository contains all the
anchors used in Wikipedia for intra-linking the articles. For
each spot, the spot index contains the link probability and
the list of entities that could be represented by the spot (i.e,
all the articles targeted by that particular spot). The arti-
cle index is a multi-field index of the article, built by using
Lucene. The entity graph stores the connections among the
entities. The Shingle Extractor produces a list of possible
spots from a given document. At the time of writing, the
extractor produces all the possible n-grams of terms, where
n ranges from one to six. The Spotter then associates with
each fragment a list of entity candidates (if any) using the
spot repository. Finally the Tagger takes in input the list of
spot matches produced by the spotter and selects the best
entity for each spot, performing the disambiguation if the
spot has more than one candidate. Disambiguation can be
performed using the features provided by the spot repos-
itory, the article index, and the entity graph. The Tagger
outputs an entity match list, with the position in the original
text of each annotated entity and a confidence score.

3. FUTURE ROADMAP
We implemented three methods in Dexter: TAGME [?],

the collective linking approach [?] and WikiMiner [?]. We
plan to implement other methods in the state of the art in
order to show their performance and efficiency on all the
datasets that will be able to obtain. Of course, we will give
our best to implement the proposed approaches as described
in the papers, and we will be happy to publish corrections
or better implementations. Currently we are working on
refactoring the code, and on writing documentation on the

project page 8. We would like to provide a demo of our
system at the workshop.

We are also investigating on evaluation datasets. We tried
several datasets, and we experienced that switching from a
dataset to another can change the ranking of the entity link-
ing methods. The best method on a certain dataset may not
be the first on another dataset. This seems reasonable if the
datasets contain different types of documents (e.g., TAGME
works better on short texts, such as tweets), but it seems to
happen also within the same type. We would like to inves-
tigate if there is a method able to annotate documents of
different type and on different domains with a good perfor-
mance, or if it is better to switch the model depending on
either the type or the semantic domain. For these reasons,
we are considering to perform a deep study on the available
datasets in order to evaluate their quality, as we observed
that some datasets miss relevant annotations or contain non-
relevant annotations. It would be also interesting to build
a new benchmark collection, using different types of doc-
uments not covered by copyright in order to facilitate the
sharing.

Acknowledgements.
This work was partially supported by the EU projects

InGeoCLOUDS (no. 297300), MIDAS (no. 318786), E-
CLOUD (no. 325091) and the Regional (Tuscany) project
SECURE! (FESR PorCreo 2007-2011).

8http://dexter.isti.cnr.it

