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A B S T R A C T

In the present work the evolution of viscous drops oscillating under the action of surface tension
is tackled. Thanks to its structure, the SPH scheme allows for an analysis of the energy balance
that is rarely addressed to in the general Computational Fluid Dynamics literature for this
kind of flows. A procedure for checking the consistency between the energy of the surface-
tension force and the free-surface evolution is proposed. Such a procedure relies on well-known
analytical relations for the surface tension and on the evaluation of the free-surface area through
a level-set function. Several test cases, in both two and three dimensional frameworks, are
considered for validation. The study is performed by selecting a specific SPH scheme with a
specific single-phase surface tension model. In any case, the procedure proposed is general and
extendable to other SPH surface tension models and SPH schemes.

1. Introduction

The definition of an appropriate surface tension models in SPH has been an active and prolific research subject in the last
decade (see e.g. [1–7]). Generally, the most widespread approach for the inclusion of surface tension in SPH relies on the so-called
Continuum Surface Force (CSF) method, which dates back to the pioneering work of [8]. Succinctly, the main idea is to represent the
force along the interface in the form of a volumetric contribution inside the fluid. This can be done by modelling the surface tension
through the divergence of a proper tensor (see e.g. [9]) or through the definition of a volume force distributed along the interface
and vanishing inside the fluid bulk (see e.g. the pioneering work by [10] within the SPH framework). The latter approach (which
is the one selected in our study) is somehow more complex since it involves the explicit computation of the surface curvature, but
it has proven to be rather robust and accurate. In particular, in the present work we consider the model of Vergnaud et al. [11].
This choice is motivated by the fact that such a model has been validated on many benchmarks, showing to accurately model the
physics of the surface tension in comparison to other simpler surface-tension models (see, for example, [10,12–14]).

The idea at the basis of the present work is to analyse how the energy balance of the SPH evolves when a surface tension
model is implemented. Due to the complexity of this problem, the analysis is limited to single-phase problems, while the study
of multiphase cases is postponed to future works. In the last decade, the study of the energy balance in SPH has attracted an
increasing interest because of two main factors: (i) the simplicity in identifying the different contributions of the energy budget,
(ii) the possibility of inspecting in detail the properties of energy conservation of the scheme. This latter aspect is becoming more
and more compelling as the SPH models evolve towards non-conservative formulations (namely, those formulations that do not
allow for an exact conservation of momenta and energy). In this latter case the study of the energy balance permits to check the
extent of the deviations from the theoretical conserved quantity and to inspect the presence of spurious numerical dissipation. We
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highlight that the study of the energy balance described in the present work belongs to a line of research developed by the authors
in over a decade. This starts with the analysis of the viscous effects in SPH [15–17] and goes on with the investigation of the energy
balance for its diffusive variants [18,19]. The same kind of analysis is also applied in several different works, including wave impact
problems and violent sloshing dynamics in 2D and 3D (see [20–22]).

In the present work the surface tension model of Vergnaud et al. [11] is implemented inside the Regularized High-Order Diffusive
Smoothed Particle Hydrodynamics scheme (RHOD-SPH) described in Michel et al. [23]. This scheme belongs to the class of non-
onservative SPH solvers and proved to be reliable and very accurate thanks to an effective action of the shifting technique, to the

use of approximate Riemann solvers and to the control of the tensile instability (see [23] for more details). Incidentally, we observe
hat the model of Vergnaud et al. [11] is non-conservative as well, since it does not guarantee the perfect conservation of the linear
omentum. In the presence of surface tensions, the analysis of the energy balance benefits from some theoretical results which

llow us to check the accuracy of both the RHOD-SPH and the Vergnaud’s model. In particular, it is possible to represent the work
one by the surface tension in terms of a geometrical measure of the free-surface length. The latter one is computed by interpolating
he particles’ distance on a discrete grid and by using a level-set function. Such an approach allows us to extract the drop surface
nd to compute its area, checking the consistency between the geometrical evolution of the free surface and the work done along
t. Furthermore, the analytical findings described in [24] are used to verify the correctness of the viscous damping during the drop

oscillations and the corresponding energy contributions during the evolution.
The paper is structured as follows: in Sections 2 and 3 we briefly introduce the governing equation, the main theoretical results

and the RHOD-SPH, then in Section 4 we describe the numerical applications. These contain 2D and 3D problems with singularities
long the free surface (i.e. squared drops) and the evolution of 2D circular drops subjected to large deformations.

2. Governing equation

In the present work we consider the evolution of a single-phase viscous fluid in the domain 𝛺 subjected to surface tension along
the frontier 𝜕 𝛺 and without external forces. Phase changes and miscibility phenomena are not considered. The fluid is assumed to be

eakly-compressible (more details are given below) and barotropic, so that it is governed by the weakly-compressible Navier–Stokes
quations (NSEs):

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝐷 𝜌
𝐷 𝑡 = − 𝜌∇ ⋅ 𝒖 ,

𝐷𝒖
𝐷 𝑡 = −∇𝑝

𝜌
+ ∇ ⋅𝕍

𝜌
+ 𝒇𝜎 ,

𝐷𝒓
𝐷 𝑡 = 𝒖 , 𝑝 = 𝑐20 (𝜌 − 𝜌0) .

(1)

where 𝐷∕𝐷 𝑡 indicates the Lagrangian derivative with respect to the fluid velocity 𝒖, 𝒓 is the position of the material points, 𝑝 is the
fluid pressure, 𝜌 the fluid density and 𝕍 denotes the viscous stress tensor. Finally, 𝜌𝒇𝜎 represents the surface tension which, in the
present work, is modelled as a concentrated volumetric force acting on the interfaces 𝜕 𝛺 as described below:

𝜌𝒇𝜎 (𝒓) = 𝜎 𝜅(𝒓)𝒏(𝒓) 𝛿𝑆 , 𝜅(𝒓) = − ∇ ⋅ 𝒏(𝒓) , ∀𝒓 ∈ 𝛺 (2)

where 𝜎 is the surface tension coefficient, 𝛿𝑆 is a Dirac distribution along the interface 𝜕 𝛺 and 𝒏 is the normal unit vector of 𝜕 𝛺 point-
ing outward 𝛺. Accordingly, the dynamic boundary condition at the free surface 𝜕 𝛺 including the surface tension action reads as:

𝕍 ⋅ 𝒏 = ( 𝑝 + 𝜎 𝜅 )𝒏 ∀𝒓 ∈ 𝛺 (3)

As indicated at the beginning of this section, the liquid phase is considered a weakly-compressible Newtonian fluid, that means that
he density variations with respect to the reference value 𝜌0 (i.e. the density at the free surface) have to be always smaller than 1%.

Under this hypothesis, it is possible to use a linearized state equation (like the one adopted in the system (1)), where the speeds
of sound 𝑐0 can be modified for computational convenience. In order to ensure the attainment of the weakly-compressible regime,
however, the choice of the speed of sound is subjected to the following constraints:

𝑐0 ≥ 10 max
⎛

⎜

⎜

⎝

𝛥𝑈𝑚𝑎𝑥 ,

√

𝛥𝑃𝑚𝑎𝑥
𝜌0

,

√

𝜎 |𝜅|𝑚𝑎𝑥
𝜌0

⎞

⎟

⎟

⎠

, (4)

where |𝜅|𝑚𝑎𝑥, 𝛥𝑈𝑚𝑎𝑥, 𝛥𝑃𝑚𝑎𝑥 are the maximum interface curvature (in absolute value), velocity variation and pressure variation
expected during the flow evolution. The dimensionless numbers characterizing the motions described by the system (1) are the
Reynolds and Weber numbers. These are respectively defined as:

Re =
𝑈𝑟𝑒𝑓 𝐿
𝜈

, We =
𝜌0 𝑈2

𝑟𝑒𝑓 𝐿

𝜎
where 𝜈 is the kinematic viscosity and 𝑈𝑟𝑒𝑓 and 𝐿 are the reference velocity and length of the problem under consideration.

Following the approach defined in [17] and adding the action of surface tension, the energy balance of system (1) reads:
⎧

⎪

⎪

⎨

⎪

⎪

̇𝐾 + ̇𝜎 + ̇𝐶 = 𝑣 , 𝐾 ∶= 1
2 ∫𝛺

(𝒖 ⋅ 𝒖) 𝜌 𝑑 𝑉 , 𝜎 ∶= 𝜎 ∫𝜕 𝛺
𝑑 𝑆 ,

𝑣 ∶= 2𝜇 ∫ (𝔻 ∶𝔻) 𝑑 𝑉 , 𝐶 ∶= 𝑐20 ∫

[

log
(

𝜌
𝜌

)

+
𝜌0
𝜌

− 1
]

𝜌 𝑑 𝑉 ,
(5)
⎩

𝛺 𝛺 0
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where 𝐾 is the kinetic energy, 𝜎 the surface tension energy, 𝐶 is the potential energy associated to the fluid compressibility and
he dot indicates time derivation. The power dissipated by viscosity is denoted by 𝑣, where 𝔻 is the rate-of-strain tensor. During
he numerical simulations, we also check the energy dissipated by viscous effects, defined as:

𝑣 = ∫

𝑡

𝑡0
𝑣 𝑑 𝜏 . (6)

The terms 𝜎 and 𝐶 represent pure reversible energies. The latter quantity, however, is always negligible because of the weak-
compressibility assumption and, hence, it is not considered hereinafter. The initial energy components at 𝑡 = 𝑡0 will be denoted as
𝐾0 and 𝜎0.

3. Numerical model

3.1. Brief description of the RHOD-SPH model

In this section the Regularized High-Order Diffusive Smoothed Particle Hydrodynamics scheme (RHOD-SPH) derived in Michel
et al. [23] is briefly recalled. In particular the governing Eq. 2 are discretized within a Quasi-Lagrangian SPH model as below:

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝑑 𝜌𝑖
𝑑 𝑡 = −𝜌𝑖∇ ⋅ (𝒖𝑖 + 𝜹𝒖𝑖) + ∇ ⋅ (𝜌𝑖𝜹𝒖𝑖) + 𝛩𝜌𝑖,𝑅𝑖𝑒

𝜌𝑖
𝑑𝒖𝑖
𝑑 𝑡 = 𝑭 𝑝

𝑖 + 𝑭 𝜇
𝑖 + 𝑭 𝑎𝑑

𝑖 + 𝑭 𝜎
𝑖 + ∇ ⋅ (𝜌𝑖𝒖𝑖 ⊗ 𝜹𝒖𝑖) +𝜣𝒖

𝑖,𝑅𝑖𝑒

𝑑𝒓𝑖
𝑑 𝑡 = 𝒖𝑖 + 𝜹𝒖𝑖, 𝑉𝑖(𝑡) = 𝑚𝑖

/

𝜌𝑖(𝑡), 𝑝𝑖 = 𝑐20 (𝜌𝑖 − 𝜌0),

(7)

where the subscript 𝑖 refers to the generic 𝑖th particle while 𝑭 𝑝
𝑖 , 𝑭

𝜇
𝑖 , 𝑭 𝑎𝑑

𝑖 and 𝑭 𝜎
𝑖 are respectively the pressure, the viscous, the

coustic damper defined in [25] and the surface tension forces acting on the particles.
The time derivative 𝑑∕𝑑 𝑡 in (7) indicates a quasi-Lagrangian derivative i.e.:

𝑑(∙)
𝑑 𝑡 ∶=

𝜕(∙)
𝜕 𝑡 + ∇(∙) ⋅ (𝒖 + 𝛿𝒖) ,

since the particles move with the modified velocity (𝒖 + 𝛿𝒖).

3.1.1. Particle Shifting Technique (PST)
The vector 𝛿𝒖 is the so-called Particle Shifting velocity and it is used to regularize the particle distribution during the motion. The

aw chosen for 𝛿𝒖 is the same reported in [23]. Accordingly, the continuity and the momentum equations contain terms depending
n 𝛿𝒖. These are discretized as follows:

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

∇ ⋅ (𝒖𝑖 + 𝜹𝒖𝑖) =
∑

𝑗
(𝒖𝑗 − 𝒖𝑖 + 𝛿𝒖𝑗 − 𝜹𝒖𝑗 ) ⋅ 𝛁𝑖𝑊𝑖𝑗𝑉𝑗

∇ ⋅ (𝜌𝑖𝜹𝒖𝑖) =
∑

𝑗
(𝜌𝑖𝜹𝒖𝑖 + 𝜌𝑗𝜹𝒖𝑗 ) ⋅ 𝛁𝑖𝑊𝑖𝑗𝑉𝑗

∇ ⋅ (𝜌𝑖𝒖𝑖 ⊗ 𝜹𝒖𝑖) =
∑

𝑗
(𝜌𝑖𝒖𝑖 ⊗ 𝜹𝒖𝑖 + 𝜌𝑗𝒖𝑗 ⊗ 𝜹𝒖𝑗 )𝛁𝑖𝑊𝑖𝑗𝑉𝑗

(8)

where the subscript 𝑗 indicates the neighbouring particles to the 𝑖th particle, while 𝑊𝑖𝑗 = 𝑊 (‖𝒓𝑗 − 𝒓𝑖‖) is the kernel function
(hereinafter a 2-Wendland kernel is adopted [26]).

The particle masses 𝑚𝑖 remain constant in time and they are set using the initial particle volumes, 𝑉𝑖0, and the initial particle
densities 𝜌𝑖0, i.e. 𝑚𝑖 = 𝜌𝑖0 𝑉𝑖0. The particles are initially set on a lattice with an almost homogeneous spacing 𝛥𝑥, and, consequently,
the initial particles’ volumes 𝑉𝑖0 are evaluated as 𝛥𝑥𝑛 where 𝑛 is the number of spatial dimensions (see [27]).

Finally, the radius of the support of the kernel function is set to 2ℎ = 4𝛥𝑥 in two dimensions and 2ℎ = 3𝛥𝑥 in three dimensions,
here ℎ is the smoothing length.

It is worth noting that the ratio ℎ∕𝛥𝑥 = 2 implies 50 neighbour particles in the kernel support in two dimensions and 266 in
three dimensions. In order to lower the latter number and, as a consequence, limit the CPU costs, it is a common practice in SPH
to reduce the ratio in 3D simulations.

3.1.2. Numerical diffusion and tensile instability prevention
The symbols 𝛩𝜌𝑖,𝑅𝑖𝑒 and 𝜣𝒖

𝑖,𝑅𝑖𝑒 in Eq. (7) denote the numerical diffusive based on Riemann solvers and added to the scheme for
stability purposes. These are expressed following the approach described in Parshikov et al. [28] and, for the sake of brevity, they
are not reported in this work. The interested reader can find the details in [23].

Within the RHOD-SPH scheme the pressure force 𝑭 𝑝
𝑖 is modelled as:

𝑭 𝑝
𝑖 =

⎧

⎪

⎪

⎨

⎪

⎪

−𝜌𝑖 L𝑖
∑

𝑗
(𝑝𝑗 − 𝑝𝑖)𝛁𝑖𝑊𝑖𝑗𝑉𝑗 if 𝑖 ∈ 

−𝜌𝑖
∑

𝑗
(𝑝𝑗 + 𝑝𝑖)𝛁𝑖𝑊𝑖𝑗𝑉𝑗 otherwise

(9)
⎩
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where the subset  refers to the inner fluid particles whose kernel support does not intersect the free surface (for more details
ee [23]) and L𝑖 is the renormalization matrix (see [29]) which ensures the recovering of the exact gradient of a linear pressure

field. The switch in Eq. (9) changes from a non-conservative formulation on the inner particles to a conservative formulation for
the particle belonging to the thin region close to the free-surface. Even though the momenta conservation is lost, the proposed
formulation is invariant by change of reference pressure (for internal flows), free from the Tensile Instability, and more accurate in
the evaluation of the pressure forces with respect to the conservative scheme.

It is important to remark that during the droplet oscillations the surface tension can induce large negative pressure values (with
espect to the zero level of the free-surface), potentially leading to the onset of the tensile instability. If the analysis is limited to

high viscous regimes, the viscous forces can counteract this phenomenon. Anyway this is not the case when large Reynolds number
egimes are considered, as in the present work (see e.g. Section 4.3).

3.1.3. Viscous forces and damping of the acoustic waves
The viscous forces are modelled following Monaghan & Gingold [30]:

𝑭 𝜇
𝑖 = 2𝜇(𝑛 + 2)

∑

𝑗
𝜋𝑖𝑗 𝛁𝑖𝑊𝑖𝑗𝑉𝑗 , 𝜋𝑖𝑗 =

(𝒖𝑗 − 𝒖𝑖) ⋅ (𝒓𝑗 − 𝒓𝑖)
‖𝒓𝑗 − 𝒓𝑖‖2

. (10)

This classical viscous modelled is selected following the work by [15] where it is demonstrated that formula (10) is consistent
or free-surface flows. On the contrary, the formulation proposed in Morris et al. [31] and e.g. [32] presents some inconsistencies.

For example, it predicts a non-null viscous dissipation for a droplet that moves following a pure rigid rotation. Since our analysis
s mainly focused on the energy balance of the droplet dynamics, the formulation of Monaghan & Gingold is preferred in order
o avoid possible inconsistencies. Incidentally, we highlight that the above viscous model was widely validated in the context of
ree-surface flows (see e.g. [16,33,34]).

When the Reynolds number related to the droplet dynamics is larger than ten, acoustic waves may be generated inside the fluid
domain as a consequence of the weak-compressibility assumption. This issue is particularly evident when the initial configuration
of the free surface includes singularities (like corners or edges). Under these circumstances the use of the acoustic damping term
described in [25] proves to be advantageous. This term reads:

𝑭 𝑎𝑑
𝑖 = 𝛼2 𝜌0 𝑐0 ℎ

∑

𝑗
( ∇ ⋅ 𝒖𝑖 + ∇ ⋅ 𝒖𝑗 )𝛁𝑖𝑊𝑖𝑗𝑉𝑗 , (11)

where 𝛼2 is a dimensionless parameter. As discussed in Section 3.2, the choice of 𝛼2 is important, since for 𝛼2 > 1 a further constraint
on the time step has to be considered for the time integration of the numerical scheme (see Section 3.2).

3.1.4. Continuum Surface Force (CSF) model
The specific model for surface tensions adopted in the RHOD-SPH is the Continuum Surface Force (CSF) model described in [11].

This is reported below:
⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

𝑭 𝜎
𝑖 = 𝜎 𝜅𝑖 𝒏𝑖 𝛿𝐹 𝑖 , 𝛿𝐹 𝑖 = 2 ‖‖

‖

‖

∑

𝑗
𝛁𝑖𝑊𝑖𝑗𝑉𝑗

‖

‖

‖

‖

∇𝜆𝑖 = L𝑖
∑

𝑗
(𝜆𝑗 − 𝜆𝑖)𝛁𝑖𝑊𝑖𝑗 𝑉𝑗 , 𝒏𝑖 = − ∇𝜆𝑖

‖∇𝜆𝑖‖
,

𝜅𝑖 = L𝑖
∑

𝑗
(𝒏𝑖 − 𝒏𝑗 ) ⋅ 𝛁𝑖𝑊𝑖𝑗 𝑉𝑗 , L𝑖 ∶ =

[

∑

𝑗

(

𝒓𝑗 𝑖 ⊗ 𝛁𝑖𝑊𝑖𝑗
)

𝑉𝑗

]−1

.

(12)

where the improvement in the evaluation of the normal vector through the minimum eigenvalue 𝜆 of the tensor L−1 is described
in [35]. Following [11], four critical corrections for thin jets or small drops are also added in order to increase accuracy and
obustness of the scheme.

3.2. Time integration schemes

A fourth-order Runge–Kutta scheme is adopted for integrating in time the system (7), since this is computationally efficient and
allows for larger time steps with respect to other classical integration schemes. As discussed in [36,37], another advantage related
to the use of high-order Runge–Kutta schemes is the possibility, classically adopted in other numerical methods, to partly freeze the
update of the time-evolved quantities.

The explicit nature of the time integrator imposes a stability criterion on the time step, 𝛥𝑡, which is obtained as the minimum
among all propagation times for the physical information. In particular, this leads to:

⎧

⎪

⎪

⎨

⎪

⎪

𝛥𝑡𝑎 = 0.25 min
𝑖

√

ℎ
‖𝒂𝑖‖

, 𝛥𝑡𝑣 = 0.125
(

ℎ2

𝜈

)

, 𝛥𝑡𝜎 = 0.1 max
𝑖

√

𝜌0 ℎ2

𝜎 |𝜅𝑖|
,

𝛥𝑡𝑐 = 1.0
(

ℎ
)

, 𝛥𝑡𝑎𝑑 =
𝛥𝑡𝑐 , 𝛥𝑡 = min(𝛥𝑡𝑎 , 𝛥𝑡𝑣 , 𝛥𝑡𝜎 , 𝛥𝑡𝑐 , 𝛥𝑡𝑎𝑑 ) ,

(13)
⎩

𝑐0 𝛼2
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where ‖𝒂𝑖‖ is the particle acceleration and 𝜅𝑖 the local free-surface curvature as evaluated in Eq. (12). The constraint on the maximum
particle acceleration is relevant in problems involving liquid impacts, whereas in the present work it can be always neglected. The
econd and the third constraints, namely 𝛥𝑡𝑣 and 𝛥𝑡𝜎 , are linked to the viscous diffusion and to the surface tension modelling [31,38].

The time step 𝛥𝑡𝑐 is related to the weak compressibility of the medium through the speed of sound 𝑐0, whereas 𝛥𝑡𝑎𝑑 is the time
step associated to the use of the acoustic damping term [25]. The latter one can be, however, discarded when 𝛼2 < 1. It is also
important to highlight that:

(i) if the speed of sound, 𝑐0, is evaluated using all the constraints in (4), the formula for 𝛥𝑡𝑐 already embeds that for 𝛥𝑡𝜎 ;
(ii) for computational convenience, one may choose to evaluate 𝑐0 by using only the constraints in (4) that depend on 𝛥𝑈𝑚𝑎𝑥

and 𝛥𝑃𝑚𝑎𝑥. This might lead to the occurrence of local compressible effects in the fluid regions close to high curvatures of
the free-surface. Such an approach is, however, allowed as long as these effects play a minor role (see the discussion in
Section 4.1). Otherwise, it is necessary to consider the time-step constraint 𝛥𝑡𝜎 to avoid numerical instabilities.

3.3. SPH energy balance in the presence of surface tension

The energy balance of the RHOD-SPH with surface tension is obtained by following the approach described in [18] and, later,
n [23]. It reads:

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

̇𝐾 = 𝑑 𝑖𝑠𝑠 + 𝜎 , 𝐾 = 1
2
∑

𝑖
𝑚𝑖 (𝒖𝑖 ⋅ 𝒖𝑖) ,

𝜎 =
∑

𝑖
(𝑭 𝜎

𝑖 ⋅ 𝒖𝑖) , 𝑑 𝑖𝑠𝑠 ∶= 𝑣 + 𝑁 .

𝑣 =
∑

𝑖
(𝑭 𝑣

𝑖 ⋅ 𝒖𝑖) ,

(14)

where 𝜎 is the power of the surface tension forces while 𝑑 𝑖𝑠𝑠 is the overall power dissipated by the scheme. This includes the
power dissipated by the viscous forces, 𝑉 , and the power dispelled by the numerical dissipation, 𝑁 . The latter is linked to the
adopted scheme and is expected to converge to zero in the limit of 𝛥𝑥 → 0. The work exerted by the surface tension and the overall
work dissipated by the scheme are defined as:

𝜎 = ∫

𝑡

𝑡0
𝜎 𝑑 𝜏 , 𝑑 𝑖𝑠𝑠 = ∫

𝑡

𝑡0
𝑑 𝑖𝑠𝑠 𝑑 𝜏 (15)

It is worth noting that, even if 𝜎 should be theoretically equal to (𝜎0 − 𝜎) according to Eq. (5), this cannot be ensured
numerically. In particular the reversibility of 𝜎 cannot be guaranteed in the adopted SPH model. As a matter of fact, the work 𝜎
s intrinsically related to the CSF model (see Section 3.1.4) which is based on the evaluation of local quantities (like the normal and
he curvature of the free-surface shape), without any direct connection with global quantities (like the surface energy associated to
he deformation of 𝜕 𝛺𝐹 ).

3.4. Numerical procedure for verifying the surface tension energy consistency

In order to check the consistency of the SPH scheme in the evaluation of 𝜎 , we compute 𝜎 through a Level-Set function 𝜙 and
monitor the deviations of the numerical outputs from the identity 𝜎 = (𝜎0 − 𝜎 ).

The level-set function is obtained using the algorithm described in [39] based on interpolation of the particles set on a Cartesian
mesh. Fig. 1 depicts an example of the level-set function for a 2D liquid square droplet (see Section 4.1) . After the contour level
𝜙 = 0 is extracted, the length 𝐹 of the free-surface is evaluated, and the surface energy is computed as 𝜎 = 𝜎𝐹 . It is important
o point out that the level-set function is evaluated in a post-processing stage and for a limited number of time instants. Because of
he CPU costs, it is not calculated at runtime for each time iteration.

At the end of each simulation we check whether the work 𝜎 is consistent with 𝜎 by measuring the error:

𝐸𝑟𝑟 𝜎 = 1
(𝑡𝑒𝑛𝑑 − 𝑡0) ∫

𝑡𝑒𝑛𝑑

𝑡0

|

|

|

𝜎 (𝑡) −
[

𝜎0 − 𝜎 (𝑡)
]

|

|

|

𝑑 𝑡 (16)

The error 𝐸𝑟𝑟 𝜎 is evaluated for different spatial resolutions in order to check if it converges toward zero when increasing 𝑁 = 𝐿∕𝛥𝑥.
Note that, the surface energy 𝜎 is always evaluated geometrically by the particles positions through the Level-Set function 𝜙

whereas the work of the surface tension forces 𝜎 is evaluated from the CSF model which is embedded in the SPH scheme.

4. Numerical test cases

4.1. Oscillation of a 2D liquid square droplet

The benchmarks presented in this section and in the next one are among the most used for testing surface tension models (see
e.g. [40–51]). At the initial instant the fluid bulk is a square with side 𝐿, with null pressure and velocity fields. During the time
evolution the initial surface energy, i.e.  = 4𝐿𝜎, is converted into kinetic energy resulting in an oscillatory deformation of the
𝜎0

5 



S. Marrone et al. Computer Methods in Applied Mechanics and Engineering 433 (2025) 117473 
Fig. 1. Top: Level–set function 𝜙 contour calculated during a RHOD-SPH simulation of 2D liquid square droplet (see Section 4.1). Bottom: enlarged view showing
the Cartesian mesh adopted for the evaluation of 𝜙 and the normal vectors 𝒏𝑖 on 𝜕 𝛺𝐹 calculated through Eq. (12). The red dash-dotted curve represents the
𝜙 = 0 contour level.

Fig. 2. Oscillation of a 2D liquid square droplet: Pressure field in the initial and final instants of the simulations. Dash-dotted circle is the final drop configuration
expected at the end of the simulation.

drop. This motion is gradually damped by the viscous forces and by the numerical dissipation. At 𝑡 → ∞ the drop becomes circular
with a radius 𝑅 = 𝐿∕

√

𝜋 with a constant pressure field equal to the Laplace pressure:

𝑃0 = 𝜎∕𝑅 =
√

𝜋 𝜎∕𝐿
Fig. 2 depicts the initial and final states of the simulation. The energy gap:

𝛥 = 𝜎0 − 𝜎 (∞) = 2𝜎 𝐿
(

2 −
√

𝜋
)

, (17)

drives the flow evolution whereas the magnitude of the viscous forces influences the damping of the oscillation cycles.
If we assume that the energy gap 𝛥 is converted in kinetic energy according to the relation below:

𝛥 = 1
2
𝜌0 𝐿

2 𝑈2
𝑟𝑒𝑓 ,

the reference velocity can be represented as:

𝑈𝑟𝑒𝑓 =

√

2𝛥
𝜌0 𝐿2

= 𝐾
√

𝜎
𝐿 𝜌0

, 𝐾 = 2
√

(

2 −
√

𝜋
)

and, being 𝐾 ≈ 1, we approximate it as 𝑈𝑟𝑒𝑓 =
√

𝜎∕(𝐿 𝜌0) without any loss of generality. As a consequence of this choice, the
Reynolds and Weber numbers become:
6 
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Table 1
Oscillation of a 2D liquid square droplet: numerical evaluation of the maximum curvature |𝜅|𝑚𝑎𝑥 at initial configuration. Calculation are performed for different
patial resolutions, namely 𝑁 = 𝐿∕𝛥𝑟 = 25, 50, 100, 200, and for three different ratios ℎ∕𝛥𝑟.
𝑁 ℎ∕𝛥𝑟 = 2.82 ℎ∕𝛥𝑟 = 2.00 ℎ∕𝛥𝑟 = 1.49

|𝜅|𝑚𝑎𝑥𝐿 𝐿∕ℎ |𝜅|𝑚𝑎𝑥ℎ |𝜅|𝑚𝑎𝑥𝐿 𝐿∕ℎ |𝜅|𝑚𝑎𝑥ℎ |𝜅|𝑚𝑎𝑥𝐿 𝐿∕ℎ |𝜅|𝑚𝑎𝑥ℎ

25 9.33 8.86 1.05 13.9 12.5 1.11 19.1 16.8 1.14
50 18.7 17.7 1.05 27.9 25.1 1.11 38.2 33.5 1.14
100 37.3 35.5 1.05 55.7 50.1 1.11 76.5 67.0 1.14
200 74.6 79.9 1.05 111 100 1.11 153 134 1.14
400 149 142 1.05 223 201 1.11 306 268 1.14

Re =
𝜌0 𝑈𝑟𝑒𝑓 𝐿

𝜇
=

√

𝜌0 𝜎 𝐿
𝜇

, We =
𝜌0 𝑈2

𝑟𝑒𝑓 𝐿

𝜎
= 1 ,

hence, only the Reynolds number remains as a free dimensionless parameter. Note that this depends on the ratio
√

𝜎∕𝜇 which is
he only non geometrical parameter. In the following simulations, five different Reynolds numbers, namely Re = 3, 10, 50, 100 and
00, are considered.

Since at the initial time the droplet has a squared shape, the fourth oscillation mode is the mainly excited mode during the time
evolution. It follows that for the time scale, the period of oscillation is expected to be close to the analytical estimation given in
11] for 𝑛 = 4:

𝑇(𝑛,𝜎) = 2𝜋
√

𝑛(𝑛 + 1)(𝑛 − 1)

√

𝜌0 𝑅3

𝜎
⇒ 𝑇4,𝜎 =

√

√

𝜋
15

𝐿
𝑈𝑟𝑒𝑓

, (18)

The above relation is valid for oscillations characterized by small amplitudes, while for large amplitudes, as in the present case,
the recorded period is expected to be slightly larger during the early stages of the evolution.

In particular, for the simulations with Re = 100 the period of the first oscillation is 𝑇 ≃ 1.05 𝑇4,𝜎 .
The initial time of the simulation is arbitrarily set equal to 𝑡0 = −𝑇 ∕4, so that the maximum of the pressure and kinetic energy

at the drop centred is attained at about 𝑡 = 0.

4.1.1. Choice of the speed of sound
For the present benchmark the speed of sound should be, in principle, set through the constraints of Eq. (4). This would, however,

mply that an infinite speed of sound should be required at 𝑡 = 𝑡0, as a consequence of the singularities at the square corners. In any
ase, being consistent with the smoothing procedure at the foundation of SPH, the maximum allowable/modelling curvature in the

numerical simulation can be assumed equal to |𝜅|𝑚𝑎𝑥 ≈ 1∕ℎ. A heuristic proof for the latter statement is given in Table 1, where the
numerical evaluation of |𝜅|𝑚𝑎𝑥 in the initial squared drop configuration is performed varying the spatial resolution 𝑁 = 𝐿∕𝛥𝑟 for
three different ratios ℎ∕𝛥𝑟.

Substituting |𝜅|𝑚𝑎𝑥 ≈ 1∕ℎ in Eq. (4), we obtain:

𝑐0 = 10
√

𝜎 |𝜅|𝑚𝑎𝑥
𝜌0

= 10𝑈𝑟𝑒𝑓
√

|𝜅|𝑚𝑎𝑥 𝐿 ≈ 10𝑈𝑟𝑒𝑓
√

𝑁∕2 , (19)

Since the maximum resolution is 𝑁 = 400, it follows that 𝑐0 ≃ 140𝑈𝑟𝑒𝑓 , that is more than ten times larger than 10𝑈𝑟𝑒𝑓 . The
elated weakly-compressible pressure limit is ±111𝑃0 and these large pressure values are only reached during the initial iterations.

Fig. 3 depicts the initial evolution of the pressure field using two different speeds of sound, namely 𝑐0 = 140𝑈𝑟𝑒𝑓 and 𝑐0 = 50𝑈𝑟𝑒𝑓 .
As a consequence of the change of 𝑐0, the following observations can be made:

(i) only small differences in the highest pressure regions are detectable ( see the enlarged views on the bottom plots of Fig. 3);
(ii) a negligible effect on the free-surface evolution is observed;

(iii) at the indicated time instants, the pressure levels have already dropped in the range of ±10𝑃0;
(iv) for both values of the speed of sound, the singular initial condition leads to the generation of non negligible acoustic-wave

systems;
(v) in the initial stages of the evolution both simulations have the same time step, namely 𝛥𝑡𝜎 , since this is the most restrictive

constraint and does not depend on 𝑐0. An example is shown in Fig. 3 where for both the sound speeds the evolution at
𝑡 = 𝑡0 + 0.028𝑇 correspond to 30 time iterations. For longer times, however, 𝛥𝑡𝑐 becomes dominant and, consequently, the
smaller sound speed implies a reduction of the CPU costs.

The above results show that a smaller speed of sound can be adopted as long as the compressible effects are limited in time and
space.

To the authors’ knowledge, no reference in the state-of-the-art literature has addressed the potential issue related to the speed of
sound and to the fulfilment of the weak-compressibility assumption in presence of free-surface geometrical singularities, as in this
benchmark.
7 
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Fig. 3. Oscillation of a 2D liquid square droplet: Top: Pressure field in the initial stage of the evolution for the case at Re = 100 using two different speeds of
sound, 𝑐0 = 50𝑈𝑟𝑒𝑓 (left) and 𝑐0 = 141𝑈𝑟𝑒𝑓 (right) Bottom: enlarged views of the pressure field in the right top corner.

4.1.2. Damping the acoustic wave components
As discussed in the previous subsection, an acoustic waves system is generated during the early stages of the evolution of the

present test-case. The free-surface singularities induce intense free-surface forces which, in turn, generate high pressure regions and
lead to the formation of acoustic waves.

Fig. 4 shows the time histories of the pressure recorded at the centre of the droplet for 𝑐0 = 140𝑈𝑟𝑒𝑓 (top panel) and 𝑐0 = 50𝑈𝑟𝑒𝑓
(middle panel) without the acoustic damping term 𝑭 𝑎𝑑 described in Eq. (11). For the largest value of the sound speed, a high
frequency mode is well visible, while for 𝑐0 = 50𝑈𝑟𝑒𝑓 lower and more irregular frequency components are detected. The bottom
plot of Fig. 4 shows the time histories of the pressure recorded at the centre of the droplet for both values of the speed of sound
when the acoustic damping term is used. For 𝑡 > 0.2𝑇 the pressure signals are practically the same, even though for 𝑐0 = 140𝑈𝑟𝑒𝑓
the removal of the acoustic component is more effective (see [52] for more details).

It is worth noting that large values of 𝛼2 (in this case 𝛼2 = 6) are necessary to damp out the acoustic components completely.
Consequently, for these simulations the more restrictive time step is 𝛥𝑡𝑎𝑑 . Incidentally, we highlight that in all the four simulations
the free-surface configurations (not shown here for the sake of brevity) are practically unchanged, confirming that the acoustic wave
system does not alter the droplet dynamics.

Finally, Fig. 5 shows the time history of the kinetic energy without using the acoustic damper (i.e. 𝛼2 = 0) and with the acoustic
damper with 𝛼2 = 6. The two curves are practically superimposed. This behaviour confirms the observations in Sun et al. [25] where
it is highlighted that the acoustic damper does not act on the ‘‘incompressible flow component’’ but only on the acoustic component.
As a consequence 𝛼2 has negligible effect on the kinetic energy of the present test-case.

4.1.3. Droplet time evolution at re = 100 : convergence study
The case Re = 100 discussed in this section corresponds to a water droplet of about 𝐿 = 0.1 mm. As shown in the left plot of

Fig. 2, at 𝑡 = 𝑡0 the drop has a squared shape and, consequently, the surface tension is singular at the four vertices. As displayed in
the top-left plot of Fig. 6, the vertices are suddenly rounded inducing an high pressure region in their neighbourhood. In the same
8 
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Fig. 4. Oscillation of a 2D liquid square droplet, time histories of the pressure recorded at the droplet centre. Top: 𝑐0 = 140𝑈𝑟𝑒𝑓 without acoustic damper.
Middle: 𝑐0 = 50𝑈𝑟𝑒𝑓 without acoustic damper. Bottom: with acoustic damper 𝛼2 = 6, comparison for both the speeds of sound 𝑐0 = 50𝑈𝑟𝑒𝑓 and 𝑐0 = 140𝑈𝑟𝑒𝑓 .

Fig. 5. Oscillation of a 2D liquid square droplet, time histories of the kinetic energy without and with the acoustic damper 𝛼2 = 6.

picture it is possible to appreciate the absence of acoustic waves which are suppressed thanks to the acoustic damping term (11)
(see Section 4.1.2). At 𝑡 = 𝑡0 + 𝑇 ∕4 (top-right panel of Fig. 6) the drop has an almost circular shape with the pressure core which
reaches its maximum of about 2𝑃0, while at 𝑡 = 𝑡0 + 𝑇 ∕2 the droplet elongation reaches a second maximum (bottom-left plot). In
the subsequent time steps the drop keeps oscillating with rounded shapes. Finally, at 𝑡 = 𝑡0 + 10𝑇 (right plot of Fig. 2) the 99% of
the kinetic energy has been damped and the pressure field is uniform at the Laplace pressure level 𝑃0.

The plot of Fig. 7 displays the time histories of the kinetic energy for the five different spatial resolutions adopted. The
convergence of the solution is well visible; within the first oscillation a rate of convergence close to 2 is measured, as expected with
the RHOD-SPH scheme. For longer times the signals get out of phase, thus reducing the convergence rate. Fig. 8 shows the time
histories of the viscous and numerical dissipation, namely 𝑉 and 𝑁 . Increasing the spatial resolution, both quantities converge
monotonously in all the time range of the simulations. A convergence rate close to one is measured for both the dissipation quantities.
It is worth highlighting that only for 𝑁 > 200 the numerical dissipation decreases below 10% of the energy gap 𝛥 . This suggests
that a good energy balance is only possible for high spatial resolutions.

The left plot of Fig. 9 shows the time histories of the pressure recorded at the centre of the drop for Re = 100 and for five
different spatial resolutions, namely 𝑁 = 25, 50, 100, 200, 400. For this case more than 12 periods are required to damp the pressure
field oscillations. The left plot of Fig. 9 clearly shows that the solution converges towards the Laplace pressure 𝑃0 at the end of the
simulation. The convergence rate is between one and two. The maximum pressure recorded is about 2.4 𝑃0, that is rather below
the weakly-compressible pressure limit. Doing a comparison with the approximate solution described in [11], this case indicatively
corresponds to a motion amplitude of about 𝑎 ≃ 0.02𝑅 for the four-mode oscillating drop.

The right plot of Fig. 9 depicts the time histories of the work 𝜎 performed by the surface tension 𝒇𝜎 for the case Re = 100,
using the five different spatial resolutions indicated before. Again, the convergence rate is between one and two. It is evident that
at the end of the simulations the curves converge towards the correct analytical value, namely 𝛥 .

Finally, the left plot of Fig. 10 shows the time histories of the surface energy 𝜎 measured via a Level-Set function as described
in Section 3.4. Similarly to what shown for the work of the surface tension force, the surface energy also converges. However, the
rate of convergence is close to one, that is lower than the one measured for the work 𝜎 .

To verify the coherence between the work 𝜎 and the surface energy 𝜎 , the error 𝐸𝑒𝑟𝑟 𝜎 defined in the Eq. (16) is evaluated for
the five spatial resolutions considered (see the right plot of Fig. 10). The error 𝐸 converges with a rate between one and two.
𝑒𝑟𝑟 𝜎
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Fig. 6. Oscillation of a 2D liquid square droplet: Pressure field evolution for the case at Re = 100. Dash-dotted circle is the final drop configuration expected
at the end of the simulation. The video of the simulation is available at Link Video N◦1.

Fig. 7. Oscillation of a 2D liquid square droplet. Time histories of the kinetic energy 𝐾 . Five different spatial resolutions are adopted, i.e. 𝑁 = 25, 50, 100, 200, 400.

4.1.4. Inconsistency and convergence issues when using more classical SPH schemes
It is relevant to underline that the RHOD-SPH scheme is expected to be a high–order SPH scheme with convergence rate close or

above second order (see [23]). Here we showed that, when the CSF surface tension model is included, the order of the RHOD-SPH
is reduced. This is due to the intrinsic nature of the CSF model: the surface tension forces are evaluated only using the particles in
the free-surface region, a region where the particle spatial arrangement is difficult to keep regular (the PST can only act along the
tangential directions in this region). In this subsection we show that SPH schemes that do not implement the PST provide outputs
that are even worse.

The simulations for the test-case at Re = 100 at five different spatial resolutions were repeated using three different SPH schemes:
the Standard SPH, the 𝛿-SPH and the Riemann-SPH. All these three models can be obtained by the RHOD-SPH by switching off some
of the corrections described in Section 3.1. All these SPH schemes do not use the PST (i.e. 𝛿𝒖 = 0) and the tensile instability is not
prevented. On the other hand, conversely to the RHOD-SPH, those schemes are conservative in terms of linear and angular momenta.

In the 𝛿-SPH a numerical diffusion is adopted and inserted in the continuity equation, instead of using Riemann solvers in both
continuity and momentum equations (see [36]). In the Standard SPH the numerical diffusion corrections are not adopted at all.
10 
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Fig. 8. Oscillation of a 2D liquid square droplet. Top: time histories of the viscous dissipation 𝑉 . Bottom: time histories of the numerical dissipation 𝑁 . Five
different spatial resolutions are adopted, i.e. 𝑁 = 25, 50, 100, 200, 400.

Fig. 9. Oscillation of a 2D liquid square droplet using five different spatial resolutions, namely 𝑁 = 25, 50, 100, 200, 400. Left: time histories of the pressure
recorded at the centre of the drop. Right: Time histories of the work performed by the surface tension forces, 𝜎 .

As well documented in literature, the consequence is that in this scheme the pressure field is generally affected by non–physical
high–frequency noise.

Fig. 11 shows the error 𝐸𝑟𝑟 𝜎 as a function of the spatial resolution 𝑁 for the Standard SPH, the 𝛿-SPH and the Riemann-SPH.
For all these three models the convergence is not attained. The reason is related to the particles spatial distribution which becomes
locally irregular when increasing the spatial resolution, introducing large errors in the evaluation of the normal vector field and,
consequently, in the surface tension forces. Fig. 12 displays a snapshot obtained with the Standard SPH scheme where pressure
instabilities develops in some specific regions where particle spatial distribution becomes too irregular. Similar behaviours are
observer with the 𝛿−SPH and Riemann-SPH schemes but they are not reported here for the sake of brevity.

To the authors’ knowledge, the above convergence issues related to the use of the CFS model in the SPH schemes are not well
documented in the literature. This is likely due to the fact that the present test-case is usually solved only for very low Reynolds
numbers, leading to a weaker dynamics of the free-surface.
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Fig. 10. Oscillation of a 2D liquid square droplet using five different spatial resolutions, namely 𝑁 = 25, 50, 100, 200, 400. Left: time histories of the surface energy
𝜎 measured through the level-set function (see Section 3.4). Right: the error 𝐸𝑟𝑟 𝜎 (see Eq. (16)) as a function of the spatial resolution 𝑁 .

Fig. 11. Oscillation of a 2D liquid square droplet using five different spatial resolutions, namely 𝑁 = 25, 50, 100, 200, 400. the error 𝐸𝑟𝑟 𝜎 (see Eq. (16)) as a
function of the spatial resolution 𝑁 for the schemes: SPH Standard, 𝛿-SPH and Riemann-SPH.

Fig. 12. Oscillation of a 2D liquid square droplet at Re = 100. Left: pressure field at time instant 𝑡 = 0.471 𝑇 evaluated with the Standard SPH using the
resolution 𝑁 = 400. Right: enlarged view showing the particle spatial distribution and the free-surface normal vectors.

4.1.5. Droplet time evolution for five different Reynolds numbers
Fig. 13 contains the time histories of the energy balance for Re = 3, 10, 50, 100 and 500 at the highest resolution, i.e. 𝑁 = 400.

In all the cases a good agreement between ( −  ) and  is attained. For the lowest Reynolds numbers, i.e. Re = 3 and Re =
𝜎0 𝜎 𝜎
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Fig. 13. Oscillation of a 2D liquid square droplet. Time histories of the kinetic 𝐾 , surface energy 𝜎 , dissipated energy 𝑑 𝑖𝑠𝑠 and the work of the surface tension
forces 𝜎 (in the legend 𝜎 is denoted as 𝑠𝑡), for the Reynolds numbers Re = 100, 50, 10 and 3.

10, the kinetic energy, 𝐾 , is almost completely damped within the first period of oscillation and the maximum occurs before the
time 𝑡 = 0.

The highest Reynolds number considered for this benchmark is Re = 500. The top plot of Fig. 14 displays the time histories
of the energy balance at the highest resolution, namely N = 400. On the bottom plot of the same figure the dashed–dotted line
represents the damping predicted by the linear theory for a viscous drop in zero-gravity oscillating under surface tension with mode
𝑛 = 4 (see [24]). Since this test is initially highly nonlinear, the linear solution is not valid during the first oscillations, while for
𝑡 > 2𝑇 a good matching between the RHOD-SPH and the analytical solution is obtained.

It is worth noting that, the complex behaviour of the energy components displayed in Fig. 14 in comparison to the time series
discussed for the lower Reynolds numbers is an indication on how the droplet dynamics becomes more complicated when the
Reynolds number is increased. This is further confirmed by comparing the evolution of the pressure field shown in Fig. 15 to that
in Fig. 6 for a lower Reynolds number. Generally, for Re ≥ 100 a suitable numerical scheme is required in order to preserve the
coherence between the surface energy 𝜎 and the work of the surface forces 𝜎 given by the specific CFS model adopted. For this
reason, the test-cases provided in the present work can be useful for testing other numerical schemes.

4.2. Oscillation of a 3D liquid cubic droplet

The analysis performed in a 2D framework in the previous section is replicated here for a cubic droplet.
In the initial condition the liquid drop has a cubic shape with side length 𝐿, with null pressure and velocity fields. The initial

energy of the surface tension is 𝜎 (𝑡0) = 6𝐿2𝜎 and, during the evolution, it is converted in kinetic energy and damped by the viscous
forces and the numerical dissipation.
13 
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Fig. 14. Oscillation of a 2D liquid square droplet for Reynolds numbers Re = 500. Top: time histories of the kinetic 𝐾 , surface energy 𝜎 , dissipated energy
𝑑 𝑖𝑠𝑠 and the work of the surface tension forces 𝜎 (in the legend 𝜎 is denoted as 𝑠𝑡). Bottom: time histories of the kinetic 𝐾 compared with the energy
decay predicted by the linear theory [24].

For 𝑡 → ∞ the drop becomes a sphere with radius 𝑅 = 𝐿 3
√

3∕(4𝜋) and constant pressure field equal to the Laplace pressure
𝑃0 = 2𝜎∕𝑅. For this test-case the energy gap is :

𝛥 = 𝜎 (𝑡0) − 𝜎 (∞) = 2𝜎 𝐿2
[

3 − 2𝜋
( 3
4𝜋

)2∕3 ]

(20)

It follows that the reference velocity for the problem is:

𝑈𝑟𝑒𝑓 =

√

2𝛥
𝜌0 𝐿3

= 𝐾
√

𝜎
𝐿 𝜌0

, 𝐾 = 2
√

3 − 2𝜋
( 3
4𝜋

)2∕3
,

Since 𝐾 ≈ 1.5, the reference velocity 𝑈𝑟𝑒𝑓 =
√

𝜎∕(𝐿 𝜌0) can still be used, hence, the definitions of the Reynolds and Weber numbers
are the same of the 2D case. In the following analysis only Re = 10 is considered in order to limit the time range of the simulations
and reduce the computational costs. In the numerical simulations, the measured oscillation period of the drop is 𝑇 = 1.22 𝑇4,𝜎 and,
again, the initial time is set equal to 𝑡0 = −𝑇 ∕4.

In Fig. 16 the pressure field for six different time instants is shown. Analogously to the 2D test-case, at 𝑡 = 𝑡0, the surface tension
is singular at the eight vertices of the cube, which are suddenly rounded inducing high pressure zones in the neighbourhood. At
𝑡 = 𝑡0 + 𝑇 ∕4 the kinetic energy is close to its maximum value, while in the subsequent instants the droplet shape becomes more and
more spherical. For 𝑡 > 𝑇 the pressure field is almost uniform and equal to the Laplace pressure level 𝑃0.

Different spatial resolutions, namely 𝑁 = 12, 25, 50, 100 and 200, are examined. As a reference, the finest spatial resolution
corresponds to 8 millions particles. As in the 2D test-case, the speed of sound is 𝑐0 = 140𝑈𝑟𝑒𝑓 , and at the maximum resolution
𝛥𝑡𝜎 ≈ 𝛥𝑡𝑐 with 𝛥𝑡𝑐 = 2 10−4 𝑇 . Hence, about 11,000 time steps were required.

The top plot of Fig. 17, reports the time histories of the pressure recorded at the drop centre. This plot highlights the convergence
towards the Laplace pressure 𝑃0 when 𝑡 > 𝑇 The energy balance in time is depicted in the bottom plot of Fig. 17 for the highest
spatial resolution, i.e. 𝑁 = 200. As in the 2D test-case a good agreement between the energy 𝜎 (evaluated through the level-set
function) and the work of the surface tension force 𝜎 (computed by the SPH scheme) is attained.

The left side of Fig. 18, shows precisely the convergence of 𝜎 for five different resolutions. The right panel of the same figure
shows the time histories of the viscous dissipation at different resolutions. A good convergence toward the analytical energy gap
𝛥 is observed.

Fig. 19 displays the relative errors for the pressure at the droplet centre, the work 𝜎 and the viscous dissipation evaluated at
the end of the simulations with respect to the analytical values.
14 



S. Marrone et al. Computer Methods in Applied Mechanics and Engineering 433 (2025) 117473 
Fig. 15. Oscillation of a 2D liquid square droplet: Pressure field evolution for the case at Re = 500. Dash-dotted circle is the final drop configuration expected
at the end of the simulation. The video of the simulation is available at Link Video N◦2.

Fig. 16. Oscillation of a 3D liquid square droplet: Pressure field evolution for the case at Re = 10. Only one half of the domain is plotted to show the pressure
field inside the drop. The spatial resolution is N = 100.
15 
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Fig. 17. Oscillation of a 3D liquid cubic droplet. Top: time histories of the pressure recorded at the drop centre. Five different spatial resolutions are used,
namely 𝑁 = 12, 25, 50, 100, 200. Bottom: time histories of the kinetic energy 𝐾 , surface energy 𝜎 , dissipated energy 𝑑 𝑖𝑠𝑠 and the work of the surface tension
forces 𝜎 (in the legend 𝜎 is denoted as 𝑠𝑡).

Fig. 18. Oscillation of a liquid cubic droplet. Left: time histories of surface tension work. Right: time histories of the viscous dissipation and of the work of the
surface tension force. Five different spatial resolutions are used, namely 𝑁 = 12, 25, 50, 100, 200.

Finally, Fig. 20 depicts the pressure field evolution on the free-surface in the initial stage for the case with Re = 50. A capillary
wave system originates from the twelve edges of the cube, propagates and focuses close to the centres of the cube faces. This
result shows that the increase of the Reynolds number leads the free-surface configurations to evolve in a rather complex way.
Consequently, high spatial resolutions are needed to capture the propagation of the capillary wave system. For this reason, much
16 
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Fig. 19. Oscillation of a liquid cubic droplet. Relative errors at the end of the simulations with respect to the analytical values for the: pressure measured at
the centre of the droplet (left), work of the surface tension forces (middle), viscous dissipated energy (right). Five different spatial resolutions are used, namely
𝑁 = 12, 25, 50, 100, 200.

Fig. 20. Oscillation of a 3D liquid square droplet: Pressure field associated to the capillary waves generated by the 12 edges. The spatial resolution is N = 200,
Reynolds number Re = 50.

higher spatial resolutions are needed to resolve the Reynolds number range investigated in 2D with a considerable increase of the
CPU costs. This topic is, however, left open for future works.

For the cases studied in this section, due to the low Reynolds numbers considered, 𝛼2 = 1 can be adopted for the acoustic damper
(11) with no restrictions on the time steps.

4.3. Large amplitude oscillation of a 2D liquid drop

In this section we simulate the evolution of a viscous drop in zero-gravity oscillating under surface tension with mode 𝑛 = 2. In
the numerical simulations we assume that the drop is initially circular with a drop radius equal to 𝑅. Following the approach by
Lamb [53], the fluid velocity is approximated through the velocity potential 𝜙. Specifically following [24]), for 𝜎 > 8 𝜌0𝜈2∕(3𝑅),
the solution exhibits a damped oscillatory behaviour with a solution in polar coordinates given by:

𝜙(𝑟, 𝜃 , 𝑡) = 𝑎 𝜔 𝑅
2

( 𝑟
𝑅

)2
cos(2𝜃) cos(𝜔𝑡 + 𝜓) exp(−𝛽 𝑡) , (21)

where 𝑎 is the amplitude of the motion and 𝜓 is a proper phase shift that is defined later. The above analytical solution is obtained
through a perturbation expansion based on the assumption that the parameter 𝜖 = 𝑎∕𝑅 is small (i.e. 𝜖 ≪ 1). The damping coefficient
𝛽 and the angular frequency 𝜔 are given by:

𝛽 = 4 𝜈 , 𝜔 =

√

2
(

3𝜎 − 8𝜈2
)

, 𝑇2,𝜎 = 2𝜋 , (22)

𝑅2 𝑅3 𝜌0 𝑅 𝜔
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where 𝑇2,𝜎 is the oscillation period. The velocity components for the damped-oscillatory regime are:
⎧

⎪

⎨

⎪

⎩

𝑢𝑟(𝑟, 𝜃 , 𝑡) = 𝑎 𝜔
( 𝑟
𝑅

)

cos(2𝜃) cos(𝜔𝑡 + 𝜓) exp(−𝛽 𝑡)

𝑢𝜃(𝑟, 𝜃 , 𝑡) = − 𝑎 𝜔
( 𝑟
𝑅

)

sin(2𝜃) cos(𝜔𝑡 + 𝜓) exp(−𝛽 𝑡) .
(23)

The solution for the free surface is:
𝑟𝐹 𝑆 = 𝑅 + 𝑎𝜔𝑅

(𝜔2 + 𝛽2)
cos(2𝜃) [𝜔 sin(𝜔𝑡 + 𝜓) − 𝛽 cos(𝜔𝑡 + 𝜓) ] exp(−𝛽 𝑡) . (24)

Imposing the drop to be initially circular, we find 𝜓 = ar ct an(𝛽∕𝜔).
The expression for the pressure field is not provided in [24] and is derived here by substituting the approximate solution for

he velocity field in the Bernoulli equation. According to Eq. (3), the leading order of the pressure field along the free surface is
imposed to be equal to the Laplace pressure, i.e. 𝑃0 = 𝜎∕𝑅:

𝑝(𝑟, 𝜃 , 𝑡)
𝜌0

=
𝑃0
𝜌0

+ 𝑎 𝜔𝑅2

2

( 𝑟
𝑅

)2
cos(2𝜃) [ 𝛽 cos(𝜔𝑡) + 𝜔 sin(𝜔𝑡) ] exp(−𝛽 𝑡)

+ 𝑎2 𝜔
2𝑅2

[

1 −
( 𝑟
𝑅

)2
]

cos(𝜔𝑡 + 𝜓)2 exp(−2𝛽 𝑡) .
(25)

Note that the pressure field along the circumference at the initial time is not identically equal to 𝑃0 because of the presence of the
viscous stress at the free surface. This latter term, however, is not solved exactly, since the procedure described in [53] just provides
an approximation of the dynamic boundary condition (3).

The above analytical solution is valid only for small amplitudes, i.e. 𝜖 = 𝑎∕𝑅 ≪ 1. In any case, in the present section we consider
 large amplitude condition, namely 𝜖 = 𝑎∕𝑅 = 1, so that a highly non-linear behaviour is expected during the early stages of the

evolution. The comparison of the energy dissipation ratio to the analytical value 𝛽 is still possible on the last oscillation periods
here a linear behaviour is attained.

Eqs. (23) and (25) evaluated at 𝑡 = 0 are used to get the initial conditions for the SPH simulation. To set the simulation, a drop
ith radius 𝑅 = 10.5 mm, density 𝜌0 = 1000 k g∕m3, kinematic viscosity 𝜈 = 1.37 ⋅ 10−5 m2/s and surface tension 𝜎 = 72 mN/m is

onsidered. Since the viscosity is low, Eq. (26) can be approximated as follows:

𝜔 ≃

√

6 𝜎
𝑅3 𝜌0

, 𝑇2,𝜎 ≃ 2𝜋
√

𝜌0 𝑅3

6 𝜎
≃ 0.3253 s (26)

Specifically, for the present problem the Weber and Reynolds numbers are defined as:

We =
𝜌0 𝑎2𝜔2 𝑅

𝜎
, Re = 𝑎𝜔 𝑅

𝜈
.

and, for the chosen parameters, we obtain We = 6 and Re = 155.

4.3.1. Choice of the speed of sound
Differently to the previous test-cases, the present one has no singularities at the free surface. Hence, the estimation |𝜅|𝑚𝑎𝑥 ℎ ≈ 1

an be relaxed in the constraint (4) and the speed of sound can be set by using the maximum pressure variation estimated by the
linear theory, that is about 10𝑃0. It follows that 𝑐0 = 13𝜔 𝑅 is a good compromise for all the spatial resolutions considered here.

We verify a posteriori that the weakly compressible effects maintain small by monitoring that the variation of the energy
ssociated to compressibility, namely 𝛥𝐶 , remains below the 0.2% of the initial kinetic energy 𝑘0. Furthermore, the absence
f singularities at the free surface (as for the test-cases studied in Sections 4.1 and 4.2) reduces the generation of acoustic waves; it

follows that 𝛼2 = 1 is sufficient and, therefore, no restrictions on the time step are required (see Section 3.2).

4.3.2. Results
Fig. 21 shows the pressure field at six different time instants, where the drop firstly elongates along the 𝑥-axis, reaches the

maximum stretching around 𝑡 = 0.24𝑇 and goes back.
At 𝑡 = 0.49𝑇 a ‘‘pinch-off’’ configuration occurs and the surface drop gets the maximum shrinkage at 𝑥 = 0 with a thickness

f 0.026𝑅. For the maximum spatial resolution, namely 𝑁 = 𝑅∕𝛥𝑟 = 400, about 13 particles are present in such a small layer of
luid. It is important to underline that in this time instant, during the pinch-off configuration, a pressure drop of about −4.1𝑃0
s reached. Such a negative value can excite tensile instability leading to a non-physical fragmentation. In this case the pressure

gradient correction proposed in Section 3.1.2 becomes crucial for this test-case.
After this time instants the drop re-expand in the vertical axis, reaching the maximum elongation on the 𝑦-axis at 𝑡 = 0.78𝑇 .

After one period the drop comes back to a more rounded configuration, even if this deviates from the initial circular shape because
of the high non-linearity of the problem.

Fig. 22 sketches the time evolution of the kinetic energy up to 𝑡 = 1.25𝑇 . The different curves refers to different spatial resolutions,
i.e. 𝑁 = 50, 100, 200 and 400. With the coarsest resolution it is not possible to resolve the drop shrinkage, since only one particle
s present in the small free-surface gap and, consequently, the drop numerically breaks-up because of the tensile instability which
annot be prevented in this condition. For N = 100, 200, 400 this non-physical event does not occur and the kinetic energy converges
ith a rate of about 1.1 evaluated with a 𝐿 norm.
1
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Fig. 21. Pressure evolution for a large amplitude oscillation of a 2D liquid drop. The dash-dotted circle is the drop configuration in the beginning of the
simulation. The spatial resolution is 𝑁 = 𝑅∕𝛥𝑟 = 400. Link Video N◦3.

It is worth noting that, if the convergence is evaluated in the time range 𝑡 ∈ [0, 0.45𝑇 ], thus excluding the pinch-off configuration,
the rate of convergence rises to 1.5. This is something expected since the pinch off configuration is an almost singular configuration
where few particles presented in the liquid thin region influence the subsequent droplet dynamics.

At 𝑡 = 𝑇 the second peak of the kinetic energy occurs. The time evolution of the kinetic energy clearly reflects the non-linear
behaviour of the drop evolution in its firsts oscillations. This is also confirmed by the difference observed in the oscillation period
between the numerical outputs and the linear theory. In fact at the beginning of the simulation 𝑇 = 1.77 𝑇2,𝜎 . Conversely, Fig. 23
reports the time history of the kinetic energy for the last 5 periods of oscillations at the finest spatial resolution (N = 400). The time
axis is shifted with the time 𝑡1 which corresponds to 2.25 drop oscillations. The time axis is made dimensionless with the oscillation
period 𝑇 predicted by the linear theory. In this time range the signal has an almost sinusoidal behaviour for with a good matching
2,𝜎
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Fig. 22. Large amplitude oscillation of a 2D liquid drop: initial stages of the evolution of the kinetic energy for different spatial resolutions.

Fig. 23. Large amplitude oscillation of a 2D liquid drop: long-time evolution of the kinetic energy and of the dissipated energy 𝑑 𝑖𝑠𝑠. The spatial resolution is
N = 400.

Fig. 24. Large amplitude oscillation of a 2D liquid drop: long-time evolution of the main energy components for the finest spatial resolution (namely, N = 400).
Note that in the legend 𝜎 is denoted as 𝑠𝑡.

with the damping predicted by the linear theory, i.e. exp(−2𝛽 𝑡), is obtained. A further confirmation of the good matching between
the simulation and the linear theory is given by the period registered for the last oscillation which is 𝑇 = 1.03 𝑇2,𝜎 .

Finally, Fig. 24 displays the long-time evolution of the main energy components for the finest spatial resolution (namely, N =
400) and the comparison between the energy of the surface tension evaluated by the SPH scheme and by the Level-Set function. An
overall good match is observed all over the considered time window.
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5. Conclusions

The present study describes an approach to the modelling of the surface tension through a single-phase method embedded in
he framework of the SPH scheme. The analysis is performed by studying the evolution of viscous drops oscillating under the action

of the surface tension only and inspecting the consistency of the overall energy balance with respect to the contribution of the
surface energy. The surface energy is obtained in two different ways: (𝑖) in terms of the work done by the surface tension forces 𝜎
evaluated with the SPH model presented in [11], (𝑖𝑖) through the computation of the liquid surface 𝑆 with the use of a level-set
unction and evaluating the surface energy directly as 𝜎 = 𝜎 𝑆. Tests in both 2D and 3D are presented, proving for all the cases

the accuracy of the selected SPH model.
In particular, the evolution of initially squared and cubic drops are considered, starting with null pressure and velocity fields

and without external volume forces. Under these conditions, the droplets start their oscillations and exchange the contribution of
surface energy with the kinetic energy, which is gradually damped by both the viscosity and the numerical dissipation. Different
Reynolds number are tested in the 2D framework (i.e. Re = 3, 10, 50, 100 and 500) using different spatial resolutions, while in 3D
he analysis is limited to Re = 10, because of the higher CPU costs.

A detailed convergence analysis is performed for the Reynolds number 100 (2D test-case). Convergence rates for the different
energy components and for the local pressure measured at the centre of the droplet are provided. As an important outcome, it
is shown that the use of a CFS model reduces the order of convergence of the RHOD-SPH scheme from 2 to an order between 1
and 2. More importantly, convergence cannot not be attained when using classical SPH schemes as the Standard, the 𝛿− and the
Riemann-SPH models. The above findings suggest that, for an accurate and robust modelling of the surface tension in the SPH
framework, a number of numerical tools are necessary. In particular, these include the use of the PST, the renormalized pressure
gradient and the diffusive terms.

As for the future perspective, the application and validation of the RHOD-SPH model needs to be extended to problems where
rop coalescence and breakup phenomena occur. A further extension of the model concerns regimes with low Weber numbers (We
1) or regimes with high Reynolds numbers (Re > 500) where numerical issues can arise and enhanced solutions may be required.
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