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ABSTRACT In the last decade, thanks to a widespread diffusion of powerful computing machines, artificial
intelligence has been attracting the attention of the academic and industrial worlds. This review aims to
understand how the scientific community is approaching the use of deep-learning techniques in a particular
industrial sector, the railway. This work is an in-depth analysis related to the last years of the way this
new technology can try to provide answers even in a field where the primary requirement is to improve
the already very high levels of safety. A strategic and constantly evolving field such as the railway sector
could not remain extraneous to the use of this new and promising technology. Deep learning algorithms
devoted to the classification, segmentation, and detection of the faults that affect the railway area and the
overhead contact system are discussed. The railway sector offers many aspects that can be investigated with
these techniques. This work aims to expose the possible applications of deep learning in the railway sector
established on the type of recovered information and the type of algorithms to be used accordingly.

INDEX TERMS Anomaly detection, deep learning, railway, review.

I. INTRODUCTION

In recent years, we have been witnessing the explosion
of a phenomenon called Industry 4.0, the new industrial
revolution leading to a complete digitalization of the
industrial world. We are assisting in a widespread diffusion
of enabling technologies. This is linked, on the one hand,
to scientific progress and, on the other, to increasingly
contained costs. Scientific studies have made it possible
to create increasingly complex and performing systems.
Economies of scale and lower production costs have allowed
the use of these technologies by a large audience of users. All
this is making possible what, until a few years ago, was only
a science fiction utopia.

In the railway sector, safety represents a fundamental
aspect that requires investing huge resources. Business
and research interests are, therefore, very high. Different
companies work in this sector, often with global reaches,
such as Mermec [10], Tesmec [21], and NDT Technologies
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[11], with stakes in developing both hardware and software
solutions and ad-hoc consulting services. All these solutions
need to be based on non-destructive testing and, most of the
time, non-contact technologies, including electromagnetic,
laser, optical, and ultrasonic technologies.

Although railway safety investments have grown exponen-
tially in recent years, there is still room for improvement and
risk mitigation [17]. The solution to this issue is to improve
technological equipment for supporting human operators in
the decision-making process.

Nowadays, rail transport plays a crucial role for passengers
and goods carriage. The railway infrastructure includes the
rail area (Figure 1) and the Overhead Contact System (OCS)
(Figure 2).

The rail area includes the two rail tracks, the sleepers,
which lie between the rails and keep the distance between
them, the joint bars joining two rails, and the railroad
fasteners, which secure the rails to the sleepers. Finally, most
of the rail tracks have the ballast on which the sleepers lie.
Ballast is used to support the sleepers’ weight, encourage
water drainage, and detain the vegetation under the rails. The
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FIGURE 1. Particular of the railway infrastructure, focused on the rail
area.

FIGURE 2. Particular of the railway infrastructure, focused on the OCS.

OCS ensures the power supply to the train: it is composed
of a contact wire to which the pantograph is attached to
give current to electric trains and the catenary, linked to the
contact wire at symmetrical intervals by vertical cables called
droppers.

The anomaly detection of railway infrastructure compo-
nents is a significant challenge today since broken or missing
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parts on the railway track could impact the safety of the entire
transport system.

Several defects can affect railway networks. Following
what has been said previously, the faults can be divided
mainly into two categories: defects of the rail area and
deficiencies of the OCS. The first class includes the defects of
the rail surface caused by the contact of the wheels on the rail
surface or the temperature variations due to the heating of the
track, fasteners’ damage, defects of the ballast, and sleepers.
The second class includes defects of the catenary, droppers,
and insulators, often due to electromechanical forces or
continuous exposure to the elements.

Timely detection of these faults is crucial to ensure
passenger and crew safety and avoid transport delays. In the
past, track inspection was performed by track patrols on foot
or aboard a vehicle, but these operations were dangerous,
expensive, and time-consuming. Nowadays, inspection is per-
formed by specialized diagnostic vehicles, such as ROGER
[40], comprising customized inspection, measurement, and
monitoring systems manufactured to be easily personalized
in every aspect.

Moreover, the data acquired during the human inspection
had to be analyzed manually, and this required the use of
many researchers and a very long time.

In the last decade, to optimize the time and costs for
anomaly detection of railway infrastructure, researchers have
begun to employ artificial intelligence (AI) techniques.
First, they considered Machine Learning (ML), a field of
Al that studies algorithms learning from data rather than
explicit programming. These algorithms, such as Singular
Value Decomposition (SVD), Principal Component Analysis
(PCA), Kernel Principal Component Analysis (KPCA),
or Histogram Match (HM), have the objective of instructing
a machine to perform a task based on specific characteristics
and examples selected by a human user; for example,
in [45] the authors present an experimental study using
different feature extraction techniques. In [15] the authors
suggested a method designed to detect the flaws of partially
worn or completely missing fasteners. The work in [31]
proposes a hierarchical approach with model ensembles to
improve the detection of a large-scale rail defect by observing
the relationship between rail faults and track geometry
anomalies. In [68], the authors identify rail surface cracks
and recognize their edges by means of a bi-layer data-driven
method (BDF). To find the positioning and the size of rail-
head defects, in [29], ML architectures such as wavelet
scattering networks and neural networks are proposed. In [56]
the authors first developed a classification method to inspect
rail surface faults or rail components using acceleration
data acquired from an inspection vehicle. Moreover, they
further propose a Convolutional Neural Network (CNN)
for detecting rail joints or defects. Then a discrete wavelet
function is used too. Finally, a Deep Learning (DL) approach
is employed to detect rail joints or defects, by exploiting
ResNet and a Fully Convolutional Network (FCN). In such
a way, the performance of the classification models is
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improved. The shift in used techniques highlights a general
trend in the last years: researchers are showing increasing
attention to using DL techniques for performing several tasks,
such as classification, segmentation, or detection. DL is a
field of ML that utilizes several architectures composed of
artificial neural networks with many layers that can extract
features gradually at different levels.

In this paper, we present a survey of various articles
in which the authors use DL techniques to perform the
aforementioned tasks on data representing the railway
structure. We give a wide overview of the papers in which the
authors employ DL techniques to classify, segment, or detect
components or defects of the railway infrastructure. However,
our work is not exhaustive of all the works published by
researchers on this subject or of all the features of the railway
infrastructure. We select papers concerning the analysis of
the faults afflicting the railroad, the pantograph, or the OCS,
published in the English language from 2016 to 2021. The
datasets in these works are mainly composed of images, but
signals or point clouds are also considered. These papers are
then classified based on the component analyzed, the kind
of dataset, the task accomplished by the authors, and the
architecture that inspired the model. Finally, we highlight
some advantageous features distinguishing a few works.
In other words, we select articles in which only a limited
dataset is needed to obtain good results in the experiments.
Another “selling point” is whether the proposed model
can be utilized for other datasets or to analyze different
components. Another highlighting criterion is related to the
time cost, considering where techniques to reduce the training
time are exploited. Finally, methodologies able to address
different defects on several objects are worth mentioning.

Although there are other review works in the literature
concerning the analysis of railway infrastructure faults, this
paper aims to examine articles in which the authors use DL
techniques to perform anomaly detection. For example, in [9]
and [53], the authors take into account papers in which a
diagnosis of rail faults is obtained with ML techniques and
data-driven models in general, respectively. On the contrary,
our work is devoted to analyzing deep learning architecture
to absolve the previously described tasks. Nonetheless, there
are some existing surveys concerning DL models applied
to image classification and segmentation, object and edge
detection to examine surface defects in different industries,
without a particular focus on the railway context [44].

The rest of this paper is organized as follows: in Section II,
we describe the criteria used to classify the selected papers.
Section III is devoted to the description of the content of
the papers. This section is split into four subsections, based
on the task absolved by the authors: classification (III-A),
segmentation (III-B), detection (III-C), or other tasks not
included in the previous categories (III-D). Each subsection
is, in turn, split based on the railway infrastructure component
taken into account in the studies. In Section IV, we mention
the evaluation metrics employed by the authors. Finally,
in Section V, we present our conclusions.
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TABLE 1. The component of the railway infrastructure analyzed for
anomaly detection.

Infrastructure | Component References N. of
area papers
Rail Area Rail Surface [31, [2], [26], [14], 29

[62]. [55], [16], [61],
[11, [67], [52], [42],
[64], [66], [28], [63],
[271, [65], [601, [47],
[58], [32], [13], [50],
(4], [54], [19], [20],
[41].

(121,161, [34], [43], | 12
[51], [65], [47], [35],
[491, [13], [19], [20].

Rail Fasteners

Obstacles [46], [24], [57]. 3

Other [39], (411, [59]. 3
No rail Area Pantograph [33], [5]. 2

Catenary [71, [30], [36], [48], 10

(381, [8], [37], [25],
[23], [18].

Il. ARTICLES’ CLASSIFICATION CRITERIA

The literature review, carried out from May 2021 to
November 2021, considers papers concerning the anomaly
detection of the railway infrastructure using deep learning
techniques published from 2016 to 2021.

The breadth of the review work suggested identifying
different classification criteria, enabling to recognition of
different groups of research activities targeting similar
objectives. In some cases, it proved sensible to define
categories and subcategories.

The first classification criterion concerns the railway
infrastructure component taken into account for anomaly
detection (Table 1). First, we gather the papers into two
categories:

1. Rail Area, which includes the articles devoted
to the anomaly detection of the rail components,
identifying the track obstacles, and small objects
on the rail area. In this case, the dataset is often
obtained by a camera positioned under the train, and
the images are frequently dark;

IL. No Rail Area, which includes the papers analyzing
the defects of the OCS and the pantograph’s faults.
If it is not acquired at night, the image that must
be analyzed could be overexposed. Despite the
pantograph being a train component and not an
element of the railway infrastructure, in this study,
we analyze the faults of its components since the
right functioning of the pantograph is essential for
supplying energy to the vehicle.

Successively, the papers of the first category are split into

four groups based on the kind of component considered:

1) Rail surface, including the studies that analyze the
weaknesses of the rail surface such as squats, joints,
corrugations, cracks, fractures, rust, fatigue block,
stripping off block, sunk-inks, and spalling. Moreover,
this category also includes papers concerning faults of
ballast, such as ballast degradation or loose ballast,
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TABLE 2. The type of dataset used to realize the experiments.

Dataset | References N. of
papers

Images [331, [3], [2], [26], [14], [62], [7], 46

[46], [24], [57], [50], [55], [16], [61],

[11, [67], [52], [42], [64], [66], [28],

[60], [27], [6], [34], [43], [51], [65],

[47], [19], [20], [41], [30], [36], [48],

[38], [51, [8], [37], [25], [23], [18],

[58], [35], [49], [32].
Signals [13], [4], [63], [54], [39]. 5
Other [12], [59]. 2

sleepers and railway subgrade defects, the segmen-
tation of rail area, the classification of railway track
materials, conductive objects across the rail joints,
mechanical defects, and electrical noise;

2) Rail fasteners, including the papers considering the
faults of rail fasteners, both for ballast or ballastless
tracks. Examples included skewed or partially fractured
spring bar fasteners and missing element fasteners;

3) Obstacles, containing papers detecting obstacles
placed on the track, such as people, trees, trains, bags,
boxes, helmets, cardboards, or rail-side plastic bags,
which could cause smoke or fire;

4) Others, containing papers in which the authors analyze
several faults not included in the previous categories.
More in detail, here we consider papers in which
the authors analyze vehicle-body vibrations [39], the
railway assets, including switches and signals [41],
or vehicle onboard equipment defects [59].

Papers of the “No rail area” category are then split into two
sub-categories:

1) Pantograph, which includes the recognition of the
pantograph slide plate faults (mild, excessive, groove,
and slide eccentric wear) and the pantograph offset;

2) Catenary, including papers analyzing the faults of the
catenary system, an essential element in the OCS, and
its components.

The second classification criterion is based on the type of
dataset employed in the study (Table 2). We recognize three
categories:

1) Images captured by cameras mounted on an inspection

vehicle, UAV vehicle, or frames extracted by videos;

2) Signals, such as acoustic emission signals, acceleration
signals, current signals, radar signals, or track inspec-
tion data [39];

3) Others, including 3D point clouds, 3D rails profiles
obtained by preprocessing the three-dimensional data
acquired from a laser camera, or vectors of binary
variables.

The third classification concerns the task performed by the

authors (Table 3). We split papers into four categories:

1) Classification, includes documents in which the pro-
posed architecture aims to distinguish between differ-
ent defects or objects. In this category, we have papers
that realize classification directly on the available
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TABLE 3. The task performed in the study.

Task References N. of
papers
Classification | [33], [3], [2], [26], [13], [12], [4], [63], 23
[27], [34], [43], [51], [65], [47], [19], [20],
[48], [371, [25], [35], [14], [49], [32].
Segmentation | [62], [12], [7], [50], [52], [64], [28], [27], 17
[gé], [65], [47], [19], [20], [48], [5]. [18],
[32].
Detection [26], [46], [24], [57], [55], [16], [61], [1], 34
[67], [52], [42], [66], [28], [60], [6], [51],
[34], [65], [47], [54], [19], [20], [41], [30],
[36], [48], [38], [5], [8], [37], [25], [23],
[18], [32].
Other [13], [71, [39], [59], [58], [35]. 6

dataset and reports that classify defects or things after
the use of detection or segmentation identifies them;

2) Segmentation, which contains articles performing seg-
mentation of the rail area, track components, obstacles,
or defects;

3) Detection, comprising papers where the model iden-
tifies a defect or obstacle, providing a bounding box
around them, sometimes including a label with the type
of defect or object;

4) Others, containing papers not included in the categories
mentioned above. For example, studies in which the
authors expand the dataset using generative models
to increase the training set size, papers related to the
enhancement of the images of a rail infrastructure
component, vehicle-body vibration prediction, or the
detection of vehicle onboard equipment defects.

We observe that the majority of the papers performed
multiple tasks. This is, in our opinion, likely due to the
fact that the works attempt to solve real problems in the
field instead of constructing toy ones for “pure” research
purposes. For example, there are several articles in which
the authors first realize segmentation to extrapolate the rail
or the component to be analyzed and then realize detec-
tion or classification on the images previously segmented.
In this way, they reduced noise due to other background
components. Therefore, the same references can be found
repeatedly in the table depending on the papers’ multiple
tasks. Category ‘““Segmentation”, in addition to containing
the works in which the authors segmented the defects or
objects present in the railway network, also includes papers in
which, before carrying out other tasks, the authors proposed
innovative algorithms to position or crop the rails in the
images.

Since this work is DL-oriented, there was an interest in
discovering what were the most common DL architectures
or frameworks employed. The bar chart in Figure 3 contains
a classification of the papers based on the type of neural
network on which the proposed model is based. The
architectures described in the articles are based on these nets,
which are then improved, optimized, and adapted to the case
study. Moreover, we also indicate neural networks used as the
backbone of the proposed model.
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ConvNet
Adaptive SSN
RSF

DLA

GAN
DCGAN
CenterNet
SSD
Deeplabv3+
Autoencoders
RBM
Inception
BVLC Caffe
TensorRT
Dense-SIFT
RetinaNet
UNet

ERB

FPN

ResNet
SegNet
Faster R-CNN
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SqueezeNet
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FIGURE 3. The reference architecture and the backbones inspired the
model chosen by the authors to accomplish the task.

The distribution of the defective components across the
results reached is listed in Table 4. More in detail, we also
identify works achieving particular objectives, such as:

1) Trainable with Limited dataset, containing references
in which all or part of the experiments carried out
require a number of samples less than a predefined
amount, with the limit empirically set to 550 in this
study;

2) Adaptability, meaning that the proposed architectures
are trained and tested on different datasets to accom-
plish the same task ([42], [66], [67]). This category
also contains papers whose model is extended to a
different flaw identification ([67]); on the contrary,
papers in which this adaptability is only mentioned and
not validated by experimental results are excluded;

3) Computational speed, containing papers in which the
researchers highlight the computational speed of the
proposed model in addition to the accuracy achieved,
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TABLE 4. Results observed versus the component analyzed for the
anomaly detection.
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utilizing suitable evaluation metrics, such as FLOPS,
inference time, inspection time, frame per seconds,
average time for image recognition;

4) Reduced Training Time, containing papers in which
the authors used transfer learning, multitask learning,
or other techniques to reduce the training cost;

5) Various defects/objects, including papers in which
defects or detected objects are classified into two or
more categories. As a rule of thumb, documents in
which the authors use the obvious defect classification
as whether normal or faulty are excluded.

Ill. REVIEW RESULTS

This section describes the articles cited in the previous areas,
dividing the analysis according to the task performed by the
authors.

A. CLASSIFICATION

The purpose of this section is a survey of papers in which the
authors realize the classification of the railway infrastructure
components or other classes of objects in the railway area.
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In particular, we split this paragraph into four subsections
based on the railroad element analyzed in the papers. Starting
from the rail area, in Section III-Al, we present papers
in which rail surface, ballasts, and sleepers defects are
classified, and in Section III-A2, we review articles in which
fasteners faults are studied. Concerning the OCS, in Section
III-A3 and Section III-A4, we summarize papers in which
the pantograph and catenary’s weaknesses are classified,
respectively.

1) CLASSIFICATION OF RAIL SURFACE'S DEFECTS
Here we present a survey of papers concerning the classifica-
tion of rail surface, ballast, and sleeper defects.

The wheels’ rubbing and impact over time, contact forces,
and material aging cause several rail surface defects, such
as corrugations, cracks, and squats. These damages could
affect rail safety, and faults such as sunkinks could cause
train derailment. Therefore, automated and fast detection
of rail surface imperfections is fundamental to guarantee
safety and allow timely intervention by the rail patrol.
The images acquired by the cameras arranged on the
inspection train are often affected by uneven illumination
and changes in reflection; moreover, each image could
contain different defects randomly distributed. Detection
and classification of other blemishes are challenging for
researchers who have begun to use deep learning techniques
to address this topic in the last decades. Reference [3] aims
to realize defect detection with high accuracy, combining the
features extracted from two architectures: SqueezeNet and
MobileNetV2. The authors chose these two neural networks
since they are smaller and faster than other networks. The
presented model consists of three steps: first, images captured
by cameras mounted below a locomotive are preprocessed to
reduce noise. In particular, filtering and increasing contrast
are applied to the images; in the second step, the rail is
found and cropped by the rail position algorithm. Finally, the
classification of rail surface defects is made by combining
the two nets and providing the training set to each one of
the deep neural networks, in such a way as to extract the
features by means of 16 residual blocks, a convolution block,
a ReLU, and a global average pooling block. Then, the relief
algorithm is involved to get the weights of these features.
Successively, several features with high weight are selected,
concatenated, and supplied to the support vector machine
(SVM) to classify the objects into four classes: healthy, light
squat, joint, and severe squat. Despite this model being less
accurate than other methods, it does not require a lot of
parameters to set. It allows the classification of multiple rail
surface defects for images affected by irregular illumination
and differences in reflection. In [2], the authors propose a
two-step process to classify railroad imperfections, caused by
abrasion due to the rubbing of the train wheels in the time,
employing two different datasets. In the first step, train tracks
are cropped from images captured in a large area, using Otsu’s
method. Moreover, data augmentation is applied to the NEU
dataset and pre-processing to the author’s dataset to clear

VOLUME 11, 2023

and resize the images. In the second step, the classification
task is realized by means of a hybrid system assembled with
VGG-16 and transfer learning. In the proposed fine-tuning
method, every one of the layers is not frozen and the size
of the entrance image is rearranged before the layers of an
input image are put into frozen transfer learning training,
and the system is entered into the intermediate feed layer.
This model allows us to save time since classification is not
instantly weighted as in transfer learning, without reducing
the success rate. Results are compared between CNN,
Transfer learning VGG-16, and the proposed model success
rate.

To detect fractures, squats, rust, and corrugations, in [26],
the authors propose a multi-robot system. A Raspberry Pi
camera supports the ultrasonic sensors to capture images, and
a CNN model is analogized to ML algorithms. Moreover,
this model is expanded to a multi-robot environment using
the Low Energy Adaptive Clustering Hierarchy (LEACH)
protocol, which helps to minimize energy consumption.
These multiple frameworks use an IoT-based cloud server to
communicate and coordinate the robots. Concerning fracture
and crack detection, first, images are preprocessed to remove
noise pixels. Successively, the Speeded-up robust features
model is employed to extract features, catching feature points
of specific objects in an image that may differ for rotation,
scale, or pixel intensities. Ultimately, the number of key
points is computed and a multi-directional fracture is then
detected. Finally, a CNN realizes the classification. The
same procedure is applied for the squats. Concerning rust
detection, the acquired images are converted into the HSV
color space. Successively, images are classified as rust if
white pixels are greater than a threshold value. Finally, the
processed images are updated on the IoT server. The proposed
method outperforms Artificial Neural Network (ANN), CNN,
random forests, and SVM, trained and validated on the same
dataset, realizing a real-time search of defect detection of the
railroad.

The model proposed in [27], named TrackNet, focuses
on one class of track fault, i.e. rail discontinuity. Here,
images are captured by a visual-based track inspection system
(VTIS) for rail surface, composed of a high-speed camera
mounted under an inspection train. First, a U-Net is applied
to crop rail tracks from the images and locate the Region
of Interest (ROI) to realize the semantic segmentation. After
that, several picture processing tools allow cropping of the
part of the probable faulty region in the images. The images
obtained in such a way are saved and then fed to a neural
network that categorizes the images into either True or False
alarms. Concerning the classification step, the weights of the
DenseNet and ResNet are initialized from an architecture
trained on the ImageNet dataset, and the network model
is trained using stochastic gradient descent. The last fully
connected layer gives the two classes corresponding to the
true or false alarm. Data augmentation and K-fold cross-
validation are also used. The ROI segmentation of the first
step allows the network to focus on a small portion of the
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track, reaching better performance. Nevertheless, this work
analyses only one class of defects of rails.

In [47], the authors present a real-time fault detection
method for the track elements. The suggested model consists
of two stages. First, an improved lightweight instance
segmentation network is offered for the segmentation and
location of fasteners and rails. Second, an approach based on
geometric features is proposed to detect fastener defects. This
method alleviates the scarcity of defective fastener images
and overcomes the problem of the subtle differences between
classes. The architecture consists of four modules: instance
segmentation of track components, fastener defects detection,
rail defects detection, and TensorRT acceleration. A modified
YOLOACT network is exploited to extract the track elements.
Concerning the weaknesses of fasteners, pixel lengths are
evaluated to establish if the fastener is faulty or not. For
the rail defects, an instance segmentation network is applied.
MobileNetV2 is used to classify the defect type of rail surface
if there is a defect. Finally, TensorRT is utilized to accelerate
the instance segmentation. The proposed method ensures
high detection accuracy and fast inference speed. However,
its robustness could be improved by analyzing rare defect
classes.

In [14], a CNN is presented to classify the images
of the rail surface captured by a camera mounted on a
measurement vehicle into six classes: regular, weld, light
squat, moderate squat, severe squat, and joint. Here, three
deep convolutional neural network (DCNN) performances
are compared. These DCNNs, named small, medium, and
large, differ for various combinations of parameters, such as
the dimensions of filters, the number of feature maps, the
number of layers, and the number of nodes of fully connected
layers. To solve the problem of class unbalancing, the authors
apply undersampling to the standard type. The proposed
architecture guarantees feature extraction effortlessly, which
is essential due to the huge quantity of images. These data are
labeled manually by the authors: to improve the automatic
detection of defects, the employing of autoencoders could
be considered in future works. In [32], the authors utilize
a two-stage deep learning method. The first step consists
of rail detection and the second step includes the detection
and localization of five rail surface faults: abrasions, scars,
cracks, corrugations, and normal. Concerning the first step,
the detector uses an anchor-free module to find rails in the
raw images acquired by a line-scan camera at the bottom
of the rail inspection vehicle. It comprises a backbone
network, ResNet, and two subnetworks: the first one is a
small Fully Connected Neural Network (FCN) that realizes
a binary classification into rail and background part on the
backbone’s outcome; the second one indicates the width
offset of the rail bounding box. In the second step, the authors
apply ConvNet with a sliding window characterized by a
specified size and step in the image containing only a rail.
The authors chose this architecture since the proportions of
rails are substantial, and the defects on the surface have
various shapes: abrasions are not vast but very long; on the
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contrary, scars occupy a few tens of pixels. ResNetl8 is
used to classify five types of defects. Finally, to localize
the faults, the authors exploit the class expected in each
window and the location of each window. In particular,
they merge the neighboring imperfections of the same class
in the longitudinal orientation and attach the cracks in the
horizontal orientation. Results obtained using other backbone
networks are compared. Despite the different shapes of the
defects analyzed, the proposed approach guarantees a robust
performance. However, the model could fail to detect minor
faults located at the boundary of the sliding window.

In the papers mentioned above, the datasets analyzed are
composed of images. In other studies, samples consisting
of signals different from images (electric signals, acoustic
signals) are employed to classify rail surface defects.
In particular, in [63], the authors propose a method founded
on CNN and probability to detect rail defects, analyzing
multiple acoustic emissions (AE) obtained by a test system
composed of a test sample, a tensile testing instrument, and an
AE data acquisition device. AE techniques are more precise
and accurate, guaranteeing dynamic detection in real time.
A CNN based on a single event is not able to consider
the relationships among numerous AE occurrences. On the
contrary, several successive dangerous AE signals can be
obtained when a fault occurs in the rail. By exploiting
the probability of various events, the authors improve the
classification accuracy and annihilate the error rate of a single
event. The first stage of the architecture proposed in this
paper consists of a classification task realized by a CNN:
first, the AE signals are preprocessed by the Fast Fourier
Transform, and the resulting data is the input of a CNN.
In the second stage, the probability of each sample belonging
to a category is obtained. In this work, the strong point is
represented by the integration between a CNN and an AE
system, the limit, as in many cases, is the specific application
contest, ie that of monitoring the state of the rails. Reference
[4] deals with recognizing rail imperfections such as cracks,
joints, cracked sleepers, defective fasteners, hanging sleepers,
and local irregularities (mud spot) of the track, exploiting
the wavelength variations that occur in the presence of
short-wave defects. Also in this article, as in the previous
one, the objective is to monitor the state of the rails, the
limitation is represented by the fact that the tests have always
been conducted in the same configuration, meaning speed,
direction of the vehicle, starting point for measurement and so
on. An oval track-vehicle scale model, including cracks, rail
joints, mud spots, and the entrance/exit to a bridge, is used to
simulate a railway. When the train passes a fault, the sensor
perceives a growth of vertical acceleration. The produced
signal is analyzed to identify and classify eight different
classes of defects: braking of the vehicle, acceleration of the
vehicle, no-fault (train stopping), no-fault (train moving), rail
crack, rail joint, entrance/exit to the bridge, and mud spots.
A recurrent Neural Network (RNN) is involved to increase the
cardinality of the dataset. The proposed architecture contains
two LSTM layers, a dropout, and a final classification layer.
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This model is finally compared with the Bagged Decision
Tree.

Often, deep learning algorithms show higher accuracy
than traditional machine vision algorithms, but they cannot
realize real-time detection and defect localization. To solve
these problems, in [16], the authors propose a novel object
detection algorithm that uses as backbone network MobileNet
(MobileNetV2 and MobileNetV3) and additional detection
layers with multi-scale feature maps inspired by You Only
Look Once (YOLO) and Feature Pyramid Network (FPN).
The images are acquired by the line scan cameras placed on
the inspection train. This model can detect and classify three
kinds of defects, fatigue block, corrugation, and stripping off
the block, which are respectively identified by a green, red,
and blue bounding box. This work aims to monitor the state
of the rails for increased safety issues, but the task it faces is
to return the information retrieved in real-time. This aspect is
obvious for vision systems but not for those of DL. Obviously,
as can be imagined, the limit of this system is that the data
must necessarily be collected accurately and labeled.

We end this subsection by describing two papers in which
the authors classify ballast and sleeper defects, such as
crumbling and chipping on a tie. In [19], the authors propose
an FCN composed of four convolutional layers to classify ten
classes of materials, including ballast, rough, wood, concrete,
smooth concrete, medium concrete, chipped concrete, crum-
bling concrete, rail, lubricator, and fastener. The ground truth
data is annotated using a custom annotation tool that allows
assigning a material category to each tie and its bounding
box. The tool also allows for defining polygons enclosing
crumbling, chips, or ballast regions. To indicate whether an
image includes a damaged tie, the scores for each class, chip,
or crumbling, and then for the whole picture are computed.
The detectors report an alarm if the score calculated exceeds
the detection threshold. Finally, by considering the label
corresponding to the highest score, the segmentation map is
obtained. The accuracy of the proposed model is computed
by dividing each tie into four pictures and evaluating the
score on each image independently. The use of DCNN
ensures a better performance than shallow machine learning
since these architectures can acquire more elaborate patterns,
reducing overfitting despite a limited training dataset. In [20],
the authors, in addition to detecting defects of sleepers
using the same architecture in [19], classify rail fasteners
(Section ITI-A2).

2) CLASSIFICATION OF RAIL FASTENERS' DEFECTS

In this subsection, we proceed with a survey of the papers in
which deep learning architectures are employed to classify
fasteners’ defects (Figure 4).

In [19], the authors use the result of the fastener detection
model to classify fastener defects (Section III-A1). Reference
[20] deals with the detection of defects on sleepers and rail
fasteners. The focus of this work is the inspection of the
fasteners of the sleepers to the rails. By using a network
that simultaneously performs multiple tasks, it has been
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FIGURE 4. Particular of the fastening system, focused on the tie plate.

possible to benefit from the scalability of convolutional
neural networks. In fact, despite having a limited dataset,
a common problem when using these algorithms, we have
taken advantage of the use of intermediate characteristics.
In particular, they split the problem into two parts: fault
detection (good, broken, and missing fastener) and semantic
segmentation (crumbling and chipping concrete ties and
different material classes). The dataset images are collected
by a moving vehicle, and the proposed architecture is an
FCN based on [19]. There are four convolutional layers for
the material classification task into ten classes. In addition,
the fastener detection task includes five convolutional layers
which accomplish two tasks: coarse level and fine-grained
classification. The fasteners images in the training set are
divided into five rough classes: the first one contains missing
and broken fasteners, the following three categories include
PR-clips, e-clips, and fast clips, and the final class includes
everything else. The classifier divides fastener vs background
at the coarsest level and includes missing fasteners. Once the
fasteners’ location is detected, the fasteners are classified into
good and broken and then organized into the fastener type:
PR clip, e-clip, fast clip, c-clip, and j-clip. The second task is
based on the SVM maximum margin principle. Combining
the outcome of the binary classifiers, a single score is
generated. This value indicates how correctly the system is
able to determine if an image contains a fastener without
defects.

In [34], rail track images, including supporting frames,
video recorder, and lightings, are collected, and the YOLOv3
model has been used to classify eleven types of fasteners.
After describing the existing literature concerning rail
inspection, the authors propose using Artificial Intelligence
(AI) in conjunction with the back-end server to reduce the
burden of rail workers. The pictures captured by a video
camera, that allows night vision, are transmitted to the
back-end DL server, which accepts the front-end image data
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and identifies and archives them. Moreover, this device is also
able to record the speed, time, and GPS information. In order
to reduce the positioning error provided by GPS, the authors
suggest using a hundred-meter virtual detection circle (VDC)
and they choose YOLOV3 since it is lightweight and efficient.
The images used are captured by railway workers and labeled
as normal/defective under the supervision of these experts.
In this article a DL-based automatic system for the inspection
of rail fastening systems is proposed, the limitation in this
case is represented by the need to manually label the data.

The information system used to monitor fastener defects
in [43], is mounted on the detector vehicle and supplies
fastener inspection in real-time. Four video cameras, which
continually take photos of the tracks, are placed on the base
of the car. Successively, a workstation processes the video
stream. In the obtained pictures, parts with fasteners are
recognized, formed into data packets, and fed to a variant of
the VGG network, composed of six convolutional layers and
five max-pooling layers. The results for the classification are
sent to the operator’s decision support system (DSS), and the
information about the track condition is sent to the Railway
Diagnostic Center. Six categories of rail fastener defects are
classified, and data augmentation is utilized to expand the size
of the training set, in such a way as to alleviate the scarcity of
defective data.

In [51], two essential steps are necessary for the detection
of fastener faults. The first one consists of precisely
setting the fastener’s location in the pictures captured by a
camera. The second step consists of classifying complete,
broken, and missing fasteners. Concerning the first one,
the location of the fastener is achieved by searching the
track’s edges and the concrete rail bed. The method used
allows segmenting the fastener from the other components
by exploiting the spatial relation of the fastener, the track,
and the backing plate. Concerning the second step, the
authors present an algorithm that guarantees the extraction of
local features, the Dense Scale Invariant Feature Transform
(Dense-SIFT). Then, Dense-SIFT features extracted from
each picture are mapped to the Bag-of-Visual-Word (BOVW)
and used to classify fasteners, by constructing their bag of
visual words. Moreover, spatial pyramid decomposition is
introduced to overcome the image’s lack of spatial location
information. In the second part of the paper, to facilitate the
fastener classification method, a VGG16 network is used.
Finally, faster R-CNN is employed to increase the detection
rate and efficiency for fastener defect detection. This work
gives an exhaustive comparison of several methods to
classify fasteners’ weaknesses, reaching a high classification
accuracy in a reduced time. Reference [49] aims to classify
railway fasteners to reduce the high false-positive rate due to
ballasts covering the fasteners or non-uniform illumination of
the images. The pictures captured by a camera mounted under
the train are first resized and normalized, and then fasteners
are extracted and annotated. The dataset has been acquired
from two passengers and a freight railway line. The authors
use two deep learning architectures, pre-trained on ImageNet,
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AlexNet, and ResNet, to classify fasteners as normal,
normal with ballast occlusion, normal with non-uniform
illumination, and abnormal. More in detail, the authors create
four models, two for each architecture: in the first, they freeze
the convolutional layer and realize the finetuning of the last
two fully connected layers and the classification layer; in the
second, they unfreeze the convolution layer and tune all the
parameters. These models are trained, evaluated, and tested
on the images captured on the first railway line; successively,
the trained model is applied to the pictures of the second
line to test the generalization ability. Undersampling of the
standard fasteners is used to balance the two classes, normal
and abnormal. Finally, the model is compared with the other
four architectures. ResNet with unfreezing layers reaches the
best classification on each category and a good generalization
result on the new test set. Since the proposed model is tested
on the second line, this work guarantees applicability to other
datasets.

Reference [65] aims to detect rail and fastener defects
simultaneously. Firstly, the authors utilize a modified
YOLOVS architecture to localize fasteners and rail in the
images collected from a camera mounted on a particular
inspection train. The method proposed here uses different
networks simultaneously to perform different tasks. This is
a fast and non-destructive method but its accuracy needs to
be improved.

This model involves a Ghost bottleneck [22] that opti-
mizes the original cross-stage partial (CSP) backbone
network of the YOLOVS, reduces the computational cost,
and increases the inference speed of the network. The Mask
R-CNN is a network that realizes object detection in two-
stage, localizing and segmenting the area of the defects.
Finally, an architecture based on ResNet is used to classify
the fasteners into regular, loosening, and broken.

Reference [12] develops a real-time inspection system
to classify three kinds of fastener defects, skewed spring
bar, missing components, and partial fracture spring bar.
A structured-light-based fastener examination procedure,
called Intelligent Rail Checker (IRC), is employed to obtain
fasteners’ dense and precise point clouds. Data are sent to
the deep learning module, where the point cloud of fasteners
is segmented into different parts and transmitted to the data
storage module. More in detail, a point cloud extraction
algorithm, which consists of a sliding-window-based method,
is suggested to extract the point cloud of the fasteners from the
initial point cloud. Then, an automatic annotation technique
based on region growth is suggested to construct a dataset
composed of a ballast rail fastener point cloud. The authors
expand the dataset by data augmentation. The performance
of three deep learning point cloud segmentation networks,
POINTNET++, POINTSIFT, and POINTCNN are com-
pared on the semantic segmentation dataset. POINTNET++,
which achieves the best performance, has been embedded
in the Deep learning module of IRC to find defective
fasteners. This point cloud-based inspection model looks
very promising because it can be completely automatic but
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unfortunately, we do not yet have well-balanced datasets with
the right presence of broken and intact components.

The class of defective and defect-free fasteners is often
imbalanced, and there are infrequent real defective fasteners
on the railroad. This dataset feature can worsen the per-
formance of the architectures employed to classify faulty
fasteners. To unravel this problem, in [35], the researchers
apply a deep learning approach named four discriminators
cycle-consistent adversarial network (FD-Cycle-GAN) to
augment the number of faulty fasteners. The proposed
approach that improves the existing GAN is composed of
two generators and four discriminators. The two generators
produce fake defect fastener pictures and fake defect-
free images. Concerning the four discriminators, DX1 and
DX2 differentiate authentic defect-free fastener images from
the generated defect-free pictures, while DY1 and DY2
aspire to distinguish real defect fastener pictures from the
generated image. After generating defects, the fasteners are
classified into defect-free, missing, and damaged, training
the VGG-16 network with a dataset composed of generated
defect fasteners and authentic images. This article addresses
a widespread problem, the lack of balanced datasets by
generating images of defective objects in a synthetic way,
but the problem that persists is that the system is trained with
synthetic data and not with real data.

To ensure safety during the inspection of railway tracks,
it is critical to establish if trains occupy sections of a railway
track. Therefore, a detection system is designed to report
the railway section as occupied in case of fault. Reference
[13] proposes an artificial recurrent neural network (RNN)
called the long-short-term memory (LSTM) for imperfection
diagnosis in railroad track circuits. A track circuit utilizes the
rails in a track area as conductors that link a transmitter at
one end of the part to a receiver at the other end. When a
train enters the area, the short circuit caused by the wheels
generates the current flow via the receiver. Where the relay is
not energized, the current decreases to a level and the section
is indicated as occupied. The faults evaluated in this paper
are conductive objects, insulated joint faults, mechanical rail
defects, electrical nuisance, and ballast degradation. Since
there is data available to train the network, a generative model
is proposed in the paper. Faults are diagnosed from temporal
and spatial reliances by considering the signals coming from
multiple track circuits in a geographic region. To evaluate the
spatial reliances, the input is given by the electrical current
signals coming from five different track circuits. An LSTM
is used to inspect temporal dependencies since it can discover
long-term time reliances by presenting several memory cells
into the model.

3) CLASSIFICATION OF PANTOGRAPH'S DEFECTS
In the previous subsections, we analyzed defects of the
rail area. On the other hand, this subsection provides an
exposition of the paper concerning the classification of the
flaws of the pantograph, a critical component of the railway
infrastructure supplying power to the locomotive.
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In [33], the authors analyze the damages that afflict the
pantograph sliding plate due to strong electromechanical
effects. In the paper, the images of the sliding plate captured
by several cameras mounted in the tunnel are first normalized
in size and color and then preprocessed using the deep
learning framework CAFFE. Data are split into five classes,
including regular, mild, excessive, groove, and slide eccentric
wear. To classify the sliding plate defects, the authors first
exploit the deep learning architecture AlexNet, since it
ensures an increased accuracy rate in the extraction of the
features. Then, to improve the accuracy obtained, the authors
optimize AlexNet, setting the structure parameters and hyper-
parameters. Finally, a CNN architecture, PanNet, is proposed
based on AlexNet and deeper in the hierarchy to reach the
best accuracy. The proposed architectures can detect different
classes of defects with good performances. However, parame-
ters are set based on many experiments; therefore, this model
could be improved by finding a theoretical way to individuate
parameters with limited training data.

4) CLASSIFICATION OF OCS DEFECTS

Here we review papers concerning the classification of OCS
defects. Firstly, we consider the catenary a critical component
of the OCS. Catenary support instruments are important to
ensure energy for high-speed trains, and their features must
be worked. In particular, the split pin is a protective element
of the catenary and dramatically influences the functioning
of the catenary during the train ride. In [48], the authors
classify the faults of this component, analyzing catenary
pictures acquired by HD cameras on a detection vehicle
photographed at night. Since split pins are small components
compared with the whole picture, a two-stage localization
approach is utilized: thimble-up (7 _UP), mast bracket (MB),
thimble-down (T_DOWN), and clevis are first located, and
then, split pins are identified in the pictures. The improved
YOLOV3 algorithm localizes the joint components in the first
localization, suchas MB, T_UP, T_DOWN, and clevis. Since
the split pin is relatively tiny in the image and the picture is
unclear after localization, a deblurring module is integrated
into the model to increase the accuracy of following semantic
segmentation and classification. Successively, split pins are
extracted carefully. The deeplabv3+ algorithm is used in this
localization phase to realize semantic segmentation. Con-
cerning the classification stage, the split pins are separated
into three based on their different shapes and positions in
the catenary. Each split pin type is categorized into three
conditions: loosening, missing, and normal. The authors
carry out several experiments in order to verify the model’s
adaptability under other environmental conditions and the
proposed method reaches an elevated accuracy, although split
pins are very small components of the OCS.

Typically, the regular functioning of the OCS relies on
the right sliding connection between the pantograph and the
catenary, and the dropper ensures adequate sliding contact.
In [37] the authors propose a dropper defect detection method
established on depthwise divisible convolution, analyzing
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the images of the OCS captured in different and complex
backgrounds by several cameras mounted on the top of
the train. The technique consists of two steps: a dropper
progressive location network (DPLN) and a dropper fault
recognition network (DFRN). DPLN used to enhance the
pantograph consists of a pantograph location network (PLN)
and a dropper location network (DLN). It utilizes MobileNet
to create an OCS picture feature extraction block. This archi-
tecture can identify numerous droppers in the OCS images.
The dropper closer to the photo camera is chosen as input
for the procedure based on depthwise separable convolution.
DFRN can identify the dropper as normal, broken, slack,
and missing. The problem is that the limited amount of data
available does not allow for superior performance compared
to other methods [25] deals with the detection of fault
droppers and current-carrying rings. The data set comprises
images extracted from videos obtained from the inspection
vehicle. The deep learning method proposed consists of three
steps: first the detection of current-carrying rings, second
the match of rings, and third the classification of droppers.
First, a modified CenterNet identifies the defective and the
standard current-carrying rings. Here, the feature pyramid
network (FPN) block is implanted in the DLA network to
adapt to the miscellaneous scales of rings. In the second
step, the regular current-carrying rings are chosen and divided
into top and bottom rings. Therefore, the bottom and the top
rings are checked via the relative position, and the dropper
region judges the region between the matched rings. The
third step consists in classifying with ResNet-34, ResNet-50,
ResNet-101, and a DenseNet-169, the dropper as normal or
faulty (absent, loose, or broken). The most promising results
in classification accuracy have been achieved by ResNet34
and ResNet-50.

B. SEGMENTATION

Here we describe papers whose aim is to segment defects
of the railway infrastructure components or the components
themselves. We also include in this subsection papers in
which the authors propose an innovative rail positioning
algorithm before carrying out other tasks. According to
Section III-A, we split this section into four subsections based
on the element of the railroad segmented in the research.
In particular, Section III-B1 and Section III-B2 are devoted to
the segmentation of rail surface imperfections and fasteners,
respectively. Concerning the “no rail area”, Section I1I-B3
and Section III-B4 deal with the segmentation of pantograph
and catenary components, respectively.

1) SEGMENTATION OF RAIL SURFACE'S DEFECTS

To realize an efficient rail inspection is fundamental to detect
rail surface defects accurately. These faults take up a small
section of the images captured by the inspection vehicle, and
therefore their segmentation is necessary to accomplish other
tasks. Reference [62] aims to identify the no-service rail with
three categories of rail surface defects: spot-shaped, strip-
shaped, and block-shaped. To this end, the authors propose
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a method with image-level labels that highlight defect
characteristics such as area and shape. The segmentation
method consists of two steps: First, a classification network is
equipped with a pooling convolution module, which exploits
various pooling functions based on different defect categories
and generates the sub-category maps. Then, the pseudo-
pixel-level tags are acquired by the sub-category activation
maps and the preliminary size information (area and shape).
Finally, in the second step, a fully supervised segmentation
network, MCnet, is trained using the pseudo-pixels-level
labels generated in the first step. Most of the pictures in the
data set are artificial, and few are natural images. In this
work, a pixel segmentation system for the defects of the
railway surface without service is the segmentation system.
The limitations of the application are represented by the use
of many synthetic images.

In [52], the authors propose a deep learning architecture
to segment and identify rail surface defects (RSDs) on the
images caught by a camera installed on an unmanned aerial
vehicle (UAV). The proposed method addresses the following
issues: position, size, and angle of the same rail would not be
identical for all the pictures due to the UAV being affected
by airflow; the rail surface takes up a large area, and the
edge of the rail surface is analogous to the web; finally, the
reflection of rail surface fluctuate a lot. The authors propose
a hybrid system that integrates FCN and image processing
(IP) algorithms to realize rail surface segmentation and RSD
inspection. Firstly, the RBGNet exploits the relationship
between rail edge and rail object information for rail
surface segmentation. Successively, defects are detected
by an IP-based architecture combining local Weber-like
contrast (LWLC) and the Maximum Entropy algorithm. The
proposed architecture reaches a high detection rate, and it
guarantees adaptability to different environments. Moreover,
the accuracy has been improved, integrating information
acquired by the rail track object and rail edge.

Reference [64] provides a deep extractor (DE) that
integrates FCNs and conditional random field (CRF). More
in detail, first the DE employs CNNs to acquire a high-level
feature map and successively utilizes conditional random
fields (CRFs) inference to refine coarse and weak pixel-level
label predictions and realize fine-grained segmentation.
A bilateral FCN (biFCN) with two constituents is suggested
in the first stage. The two components are an inverse
FCN (FCN) and a regular FCN (tFCN). rFCN employs
a standard encoder-decoder approach to extract high-level
features from the whole picture. In contrast, iFCN utilizes
a decoder-encoder process to increase missed defect infor-
mation. The output of two feature maps is joined to obtain a
high-level feature map. The architecture is tested on publicly
available datasets: the Rail Surface Defect Dataset (RSDD)
consists of two data sets captured on express railways and
common/heavy haul rails. This approach bypasses offline
post-processing and realizes end-to-end deep learning. This
guarantees better performance than models exploiting low-
level features.
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Reference [28] proposes a rail inspection system (RIS)
based on a deep multimodel architecture that combines a
segmentation stage and a Faster Recurrent Convolutional
Neural Network (Faster RCNN) for objective location. This
deep multimodel RIS (DM-RIS) realizes an end-to-end
parallel model with high detection speed, robustness, and
precise segmentation. Finally, the investigation is executed on
extensive and various rail samples, divided into six categories,
depending on the physical structure of the rail. The proposed
parallel architecture DM-RIS consists of an upward path,
FRGMM, and a downward path, a Faster RCNN. The first
path segment defects using the Gaussian Mixture Model,
a method founded on pixel sample statistics, and a Mixture
Model Based on MRF, which incorporates local information.
On the other hand, Faster RCNN indicates the position of the
fault in a bounding box. Integrating spatial information, the
model gives the defects edge with high accuracy. In addition,
it is robust under different environmental conditions when the
images are affected by an imbalance reflection, inadequate
illumination, exterior noise, or rust.

An efficient railroad faults detection method is presented
in [50]. In this work, a rail area detection system is proposed.
The model consists of two phases. The first step comprises
the extraction of the rail area using a convolutional neural
network (CNN) that can realize a pixel-level classification
of the rail picture. The dataset consists of multichannel
pictures obtained by the onboard camera at different times.
The network’s output is a binary image containing the
rail and non-rail areas. The suggested architecture consists
of an encoder-decoder model inspired by SegNet. The
encoding part includes the convolutional layers utilized
to obtain the rail area features in the feature map. The
cascade sampling layers are employed to down-sample
the picture to lower the resolution of the feature map
and extract more additional global features. The authors
propose a dilated cascade connection to solve the problem
of the loss of information during the upsampling process,
achieving a multi-scale feature extraction and reasonable
accuracy. Therefore, decoding includes deconvolution layers
to upsample the encoder’s feature maps to reach the input
resolution. As the edge of the rail area is not precise,
the second step is devoted to optimizing the boundary of
the railroad by the improved polygon fitting method. The
limitations of the system are the speed of the algorithm and
the not-so-good performance in far areas.

Concerning the above-mentioned papers devoted to the
classification of rail surface defects, we remember that in [19]
(Section ITI-A1) and [20] (Section III-A2), the authors realize
segmentation of sleepers defects in addition to accomplish the
classification task. Moreover, [65] (Section III-A2) and [47]
(Section ITI-A1) perform the segmentation of the area of rail
defects; [27] (Section III-A1) carry out the segmentation of
the rail track. Finally, in [32] (Section III-A1), an anchor-free
detector is proposed to crop the tracks in the original images,
and then rail surface defects are located and classified.
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2) SEGMENTATION OF RAIL FASTENERS' DEFECTS

In [12] (Section III-A2), the fasteners point cloud is
segmented before the classification and in [51] (Section
I1-A2) and [47] (Section III-A1) fasteners are also segmented
from the other parts of the images.

3) SEGMENTATION OF PANTOGRAPH’S DEFECTS

The optimal contact between the pantograph and the power
grid is essential for the proper operation of rail transport.
Among all the imperfections, the pantograph offset strongly
reflects the state. Reference [S] aims to reconstruct the shape
of the pantograph, replaced with a line between the left and
right horns, in a 3D world coordinate system. The first step
is locating the pantograph horn region: a DL method named
Single Shot MultiBox Detector (SSD) is proposed. The SSD
model is based on a forward-propagation CNN, producing
several predefined rectangular boxes, possibly including
object examples in each rectangular box. The last predicted
value will be acquired by non-maximum suppression. The
second step consists of corner-point extraction: first, the
detected region is half-cropped, and image processing is
applied. The images are then divided into two classes based
on their background pixel value, and the edge of the horn is
extracted. Then, Harris corner detection will locate possible
corner points in the edge map. Among them, the correct
point is that with the largest ordinate. After acquiring the
coordinates of the 2D corner points in the pictures taken by
the left and the right cameras, the binocular stereo vision
method is evaluated to reconstruct 3D coordinates. Therefore,
the authors used a 3D coordinate line of the left and right
horns to illustrate the pantograph and the angle between
two spatial lines to calculate the pantograph offset: if the
pantograph offset is beyond the threshold set before, the
program will report the anomaly.

4) SEGMENTATION OF OCS DEFECTS

Concerning the inspection of the OCS, video and images
captured from the inspection vehicle are often affected by
low visibility due to fog, haze, and other natural factors.
Reference [7] proposes an enhancement technique for the
catenary images with scarce visibility. First, the authors use
a network to estimate the haze transmission map in the
atmospheric scattering model. The architecture comprises
two branches: multi-scale feature extraction and multi-feature
fusion. The first one is the full convolution operation and the
dilated convolution, which can apprehend multi-scale context
via various dilation rates. The branch of multi-feature fusion
combines multi-scale features to evaluate the transmission
map. Finally, three concatenated layers connect the initial
haze image with additional feature maps and compensate
for the loss of information. The second step consists of
obtaining the restored image. To this end, the improvement of
the transmission map is achieved, and the atmospheric light
value is estimated after multiple segmentation of the sky and
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non-sky regions. Therefore, the restored catenary image has
an improvement in clarity.

In the OCS, the cantilever is employed to preserve the
contact wire height and stagger. The cantilever comprises
the catenary suspension system and the contact wire support,
connected through the swivel clevis (SC). Reference [18]
offers an imperfections detection process that integrates
an adaptive SC segmentation network (Adaptive SSN) and
local operators, intending to inspect two kinds of flaws,
including the split pin looseness and the SC crack. This
approach alleviates the problem of scarcity of defective
samples and shifts in data distribution. This strategy includes
three main phases: critical components localization, adaptive
SC components segmentation, and fault detection. Con-
cerning the first step, the Faster R-CNN is employed to
localize the OCS parts, including the SC. The second step
involves a two-stage segmentation pipeline (adaptive SSN).
Firstly, a fully convolutional regional proposal network
(RPN) accepts the picture as input and generates region
proposals that may include the target objects. Successively,
the lightweight heads are employed to indicate the bounding
box coordinates, classification scores, and segmentation
masks for the region proposals. The network heads and the
RPN have ResNet50 as the same backbone network. The
authors suppose that the segmentation outcome is unreliable
if the geometric features obtained by the segmentation
masks are inconsistent with the previous geometric features.
Successively, the human annotator is invited to annotate the
unreliable SCs, add them to the training set, and finally,
the architecture is retrained employing the new training
set to adjust to the data distribution. Once obtained, the
segmentation masks and geometric features can be exploited
to detect SC defects. This model could be applied in the future
to other components of the OCS.

Finally, in [48] (Section III-A4), the semantic segmentation
of split pins is realized before classifying missing, loosening,
and standard split pins.

C. DETECTION

This section provides an exposition of papers in which the
proposed models aim to realize the detection of defects or
objects on the railroad. More in detail, here we list the
architectures that identify the defects or the objects and
enclose them into a bounding box. Often, this task is followed
by a classification step, in which defects or objects are ranked
into several categories. Also, this part of our paper is divided
into subsections according to the component of the rail
area (Section III-C1 and ITI-C2) or the OCS (Section III-C4
and III-C5) detected in the reviewed article.

1) DETECTION OF RAIL SURFACE'S DEFECTS

Automated rail surface defect detection ensures passenger
safety and low maintenance operations costs. The model
proposed in [55] is based on YOLOv3 architecture. More
in detail, it consists of two steps. The first one concerns
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image acquisition, which happens through a camera equipped
with a device to improve the light source and annihilate the
interference of other light origins. The second step is image
processing: once the images have been acquired, they are sent
to a server in which the YOLOV3 algorithm realizes the defect
detection. This architecture comprises a feature extraction
layer (Darknet-53) and a processing output layer, similar to an
FPN network. In this algorithm, the images are divided into
multiple cells, and the bounding box is obtained starting from
the coordinates of the center point using a clustering method.
Finally, a binary cross-entropy loss is utilized to indicate the
category of the object contained in the bounding box. This
architecture can detect minor rail surface weaknesses with
high accuracy in a reduced time. Nevertheless, some issues
linked to the learning rate could be solved in future works.

The best mean average precision has been reached using
MobileNetV3 as the backbone.

Reference [61] is devoted to a novel rail surface defect
(RDS) for restricted samples with a line-level tag. More in
detail, since defective image contains thousands of pixels,
they can be regarded as sequences of pixels, and then it is
possible to classify pixel lines. In such a way, few images are
sufficient to collect and label lines of pixels and simplify the
labeling work. Therefore, binary classification of pixel lines
is applied to two sub-datasets: one captured from express rails
and the second from common/heavy rails. In particular, the
authors utilize the OC-IAN method to realize the RDS on the
express rail. It consists of five modules: a one-dimensional
CNN as a feature extractor, a long and short-term memory
(LSTM) network as a context information extractor, an atten-
tion mechanism applied to process information, linear layers
used to classify, and a filter module that purifies noise. On the
other hand, OC-TD is used to detect heavy or common rail
imperfections, and it consists of four modules, the same as
OC-IAN, without the attention module. In such a way, the
architecture can classify defect-line and defect-free lines.
The authors also compare the proposed method with other
models, showing that their architecture gives better outcomes.
However, this approach presents some deficiencies, such as
the false recognition of defects, missing detection of minor
faults, and not recognizing some portions of the flocculent
defects.

In [1], the authors propose an automatic method of
identifying defects on the tracks to complement the manual
methods to increase safety. The proposed model consists
of two steps: first, the images are processed, resized,
and denoised. Successively, segmentation is applied; it is
followed by morphology, which collects image structures.
Then the images will be filtered with the necessary features,
and cracks will be segmented. The photos are classified into
defective and non-defective. The limitation of this system is
represented by the small dataset used for training.

Reference [67] identifies five classes of rail surface
defects, such as shelling, corrugations, squats, faults, and
grinding marks. The limitation of this method is linked to the
dataset. In fact, every image shows only a specific defect.
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This task is realized by analyzing railway images captured
by a camera installed on the test train. Since each image
contains only one flaw, the identification of the rail surface
multi-flaw consists of a multi-class classification scheme.
The suggested framework comprises a rail extractor and a
cascading rail surface defect identifier. The rail extractor aims
to extract the rails from the image, reducing the background
noise. The extraction step is obtained by two methods,
a generic global threshold and Otsu’s method. The cascading
rail surface defect identifier first uses the unhealthy rail
detector (URD), which filters the standard rails in the set
of extracted rails, exploiting as a backbone DenseNet-169.
Successively, rails recognized as unhealthy are given to the
rail flaw classifier (RFC), which identifies the defect class,
merging a feature reduction module and a feature joint
learning module.

Two types of rail surface imperfections, cracks, and
spalling, are detected in [42], analyzing images captured
by the monorail image acquisition system (MIAS). The
proposed framework, named CCEANN, realizes offline
multi-scale defect detection. Firstly, a histogram-based
railroad extractor cut the rail ROI to screen background
elements. The defect detection on the cropped rail images
employs two steps: CSFA-Hourglass and CASIoU-CHEM.
The first is used to extract multi-scale features of faults and
then combines these features as the input of the second part.
In the second stage, imperfections are located by adaptable
bounding boxes based on center-point estimation merged
with CASIoU-guided fine coordinate compensation, in which
the gradient propagation tool and CASIoU loss will be
highlighted. The limits of this system are the slowness and
the computational complexity.

To detect the crack of rail surface, in [66], the authors
propose a deep transfer learning framework (DTL) that
combines two pre-trained networks. First, they define the
crack-size threshold to differentiate the ground-truth cracks
from the noises in railway pictures. The authors underline the
impact of this value on detection performance. Successively,
the images are preprocessed to enhance contrast, manually
tagged with bounding boxes, and the bounding boxes are
filtered based on the crack thresholding. YOLOv3 and
RetinaNet are trained on the training and validation set
filtered at the previous step. Finally, the filtered test data
set is given to the pre-trained network, and the detection
ensemble is applied. This ensemble scheme selectively
integrates detected boxes of YOLOvV3 and RetinaNet models.
Exploiting transfer learning, this strategy requires a restricted
number of training images. In addition, recall and average
precision obtained are satisfying.

To identify three types of rail surface defects, includ-
ing corrugation, tripping off block, and fatigue block,
in [60], the authors propose a deep convolutional network
named MOLO, whose backbone exploits MobileNetV2
and combines YOLOvV3 multi-scale architecture with the
notion of regression. MOLO comprises a conv2d layer,
a bottleneck module, and an upsample layer, and it includes a
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single-scale input/multi-scale output structure. MOLO refers
to YOLO, turning target detection topics into target regres-
sion issues. The prediction information contains the target
object type, confidence, and the bounding box’s width-height
corresponding to the target object and the center coordinates.
Data augmentation is applied to improve the training. This
model achieves better robustness and accuracy compared to
YOLOV3.

Concerning the detection of railway subgrade imperfec-
tions, [54] deals with a modified Faster R-CNN to recognize
subgrade settlement, mud pumping, ballast fouling faults, and
water abnormality. A vehicle-mounted ground penetration
radar obtains the dataset (GPR). At first, the original radar
data are processed to reduce the noise signal due to the
interference generated by the catenary and other signals. The
authors improve the classic Faster R-CNN by employing
four techniques to realize automatic defect detection. The
feature cascade merges the outcome features of swallow
convolutional layers with those of deep convolutional layers
to create a new multisized feature; the Adversial Spatial
Dropout network generates complex positive instances which
are problematic to classify since the sample’s dimensionality
is restricted, and the shape and proportions of faults
are diverse; the Soft Non-Maximum Suppression (Soft-
NMS) suppresses redundant detection boxes, reducing the
cardinality of false-positive outcomes and improving the
performance; finally, data augmentation is applied to unravel
the problem of the limited instances in the dataset. The
authors chose VGG16 as the primary network. The proposed
model achieves better performance than the SVM+HOG
architecture and the Faster R-CNN. Moreover, the robustness
is guaranteed by the applicability to the detection of different
fault classes.

In [41], the authors use transfer learning to detect railroad
imperfections (loose ballast, sunkinks) and railway assets
(signals and switches) (Figure 5). They proposed a fully
automatic defect detection system trained with specially
recorded data. Unfortunately, the limitation of this method
is due to the lack of sufficient data to train the system on
a large scale. The dataset comprises track videos recorded
from a camera installed on the roof of a few locomotives.
The article is divided into two parts: the first deals with
track imperfections detection, and the second is railway assets
mapping. To detect sunkinks and loose ballast, ResNet-50,
and Inception v3, pretrained on ImageNet data, are compared
after replacing some layers in the original models. The
models are chosen in such a way as to avoid false negatives
for sunk-inks detection and false positives for loose ballast.
Concerning the second task, the switch place allows the
operator to pay attention, and signal color detection onboard
can be used in the operator assistance system. The same
procedure as the sunkink architecture has been tested in the
switches dataset. In this case, Inception v3 is preferable.
The Faster R-CNN model and Single Shot Detector (SSD),
trained on the COCO dataset, are used for signal detection.
Finally, a track health index has been evaluated to observe
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FIGURE 5. An example of railway switch.

the warnings for various railroad faults for a whole track in
an area.

Finally, we recall that in [16], [19], [20], [26], [28], [32],
and [52] summarized in the previous sections, detection is
performed in addition to other tasks.

2) DETECTION OF RAIL FASTENERS' DEFECTS
Reference [6] compares several machine learning and deep
learning methods utilized to inspect rail fasteners’ defects.
HD Cameras mounted on an unmanned aerial vehicle (UAV)
capture the images, and three categories of objects are used
to train the models: standard fasteners, fractured fasteners,
and missing fasteners. The authors first use traditional visual
methods, such as the HOG feature with SVM classifiers, but
they obtain unfulfilling results due to heterogeneous back-
ground, external light influence, and minor components. The
authors compare different deep learning methods to improve
the results: YOLOv3, an improved YOLOV3 obtained by
deleting the feature maps suitable for large target detection,
the Faster R-CNN, and the FPN. Faster R_CNN archives
good performance.

Also in [19], [20], [34], [47], [51], and [65], detection of
rail fasteners is obtained.

3) RAIL TRACK OBSTACLES DETECTION
In this subsection, we focus our attention on deep learning
models that realize the detection of obstacles or small objects
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on the railway track: automatic real-time detection of these
objects can support manual driving and allow the timely
intervention of the emergency system.

Several methods for obstacle detection founded on com-
puter vision and DL are described in the existing literature,
but they require high memory for onboard devices. In [46],
the authors observe that to overcome this problem is appropri-
ate to use an edge-computing-based method that improves the
cloud-based solutions previously used. This system includes
edge nodes responsible for model training, cloud nodes
accountable for storing and labeling data sets, and edge
devices in the train, which capture the original images, send
the photos, and acquire the results from the remote serves.
A YOLOV3 architecture is adapted, concatenating a feature
fusion module with a detection module to detect obstacles.
The authors chose this network to ensure real-time and
accurate performance.

Identifying obstacles in the railway area is crucial to ensure
safety, particularly for the train driverless. Accordingly,
a high-speed detection approach is essential to realize
obstacle detection since many picture details need to be
analyzed during driverless train runs. On the other hand,
high accuracy is necessary since false detection will induce
loss of life. In [24], the authors adopt a modified Faster
R-CNN named Mask R_CNN. First, ResNet101 is employed
as the backbone feature extractor, and, successively, Mask
R_CNN utilizes a two-stage approach. In the first step,
the region proposal network proposes promising objects
bounding boxes. Mask R_CNN produces a binary mask for
each ROI while indicating the category in the second stage.
Finally, data augmentation and transfer learning are applied.
The authors chose this model for its increased accuracy as
a two-stage approach and its ability to color the detected
target. The data are obtained by selecting the frame from
a video acquired in the subway. The obstructions are split
into two types: movable obstructions (people) and immovable
obstructions, such as helmets, bags, cardboard, and boxes.
This approach presents a higher precision rate and a more
rapid inspection speed with respect to one-stage methods.
However, the inspection speed of this architecture could be
additionally improved.

During the quick run of high-speed trains, an exterior
substance such as plastic bags on the rail side can enter
the bottom bogies and cause smoke, short-circuits, or fires.
Since the manual examination is time-consuming, expensive,
and not very precise, in [57], the authors employ an
automated inspection strategy formed of a high-speed linear
camera, high-speed array camera, and a processing unit.
This automated system recognizes the abnormal parts of
the images, but there is a high error rate. To overcome
this issue, the researchers suggest an improved inspection
approach based on YOLOV3. Firstly, DenseNet is utilized
as the backbone network instead of the classic Darknet-53
to strengthen feature propagation. In addition, three spatial
pyramid pooling (SPP) architectures are added to the feature
pyramid network. Moreover, a normalization phase after each
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SPP layer is added to improve the convergence and stop
overfitting. The three prediction layers are added at the end
of dense blocks. Finally, transfer learning that exploits the
ImageNet data set and data augmentation technologies are
exploited to reduce training time and extend the data set.

4) PANTOGRAPH FAULTS DETECTION
In [5], the detection of the corner points is applied in addition
to the segmentation task.

5) OCS FAULTS DETECTION

In this subsection, we review several papers concerning
the detection of the OCS’s components faults, such as the
insulator, the bird damage prevention, and fasteners of the
current-carrying ring, the catenary, and the catenary clevis.

The insulator is a critical element of the catenary which
guarantees the insulation between the catenary and the earth.
Before inspecting the insulator surface, it is fundamental to
localize the insulator from the complex background of the
images. Therefore, the method proposed in [30] consists of
two phases: object detection and defect detection. The first
task is obtained using a Faster R-CNN, which allows the
extraction of six crucial parts, including insulators of the
catenary images acquired by the inspection vehicle. Since
the grey-scale levels of the insulators are comparable to
other catenary components and the defective samples are
fewer than the standard images, the authors suggest a deep
multitask neural network (DMNN) founded on autoencoders.
The DMNN includes a deep material classifier (DMC) and a
deep denoising autoencoder (DDAE). The DMC allows for
segmenting the insulators; on the other hand, the purpose
of the DDAE is to detect imperfections in the insulator
picture, reconstructing overlapping patches of the insulator
images. Once the DMNN slides via the insulator photo, the
DMC produces a classification score map and the DDAE a
reconstruction error map. When the anomaly score computed
in a particular patch exceeds a predefined threshold, the patch
is classified as abnormal. By comparing the proposed method
with other DL detection models, the authors show that the
Faster R-CNN VGG16 achieves higher average precision
than that achieved by other methods, except for stable arm
support.

In [36], the authors present an improved Faster R-CNN
network to detect the defects of bird-preventing and fasteners,
which guarantees the cantilever’s connection to the catenary
support. Currently to monitor the state of the catenary
countless images are viewed by human operators who may
be subject to eye strain. The pictures of the catenary support
device are acquired by the inspection train at night; hence,
they need to be brightened or darkened, depending on the
circumstances. Moreover, the dimensions of bird-preventing
and fasteners vary significantly, and fasteners are usually tiny.
To solve these problems, the authors propose to add a top-
down-top feature pyramid fusion system to a Faster R-CNN.
The bottom-up pathway is a feed-forward computation of the
backbone ConvNet; the top-down architecture is used to build
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the semantic features by upsampling spatially coarser feature
maps from the higher pyramid levels. On the other hand, the
down-top pathway propagates the low-layer information. The
defects classified by the proposed structure are divided into
eight categories. Obviously the system needs to be tested and
evaluated on datasets of general use to express all its potential.

Brace sleeve screws are indispensable components in the
catenary supporting apparatus of high-speed railways: the fall
of the brace sleeve screw could cause several safety problems.
In [38], a modified Faster RCNN is presented to realize a
high-precision anomaly detection for this critical component,
whose dimensions are too small. The dataset is composed
of pictures of the support of the catenary acquired by the
inspection vehicle. The improved Faster CNN proposed by
the authors is executed with VGG-16 and ResNet-101 as
a primary network model. This improved network includes
two concepts: the proposal map, utilized in the method of
region proposal map (RPN), which generates object bounding
boxes, and the discriminant map utilized to define the kinds of
objects in the proposal region. This proposed method is very
important for many little components but has been tested in
different conditions.

Due to the different aspects, the current-carrying ring
could be broken, and the defective ring would impact the
energy supply of the catenary. Reference [8] proposes a
defect diagnosis approach founded on improved RetinaNet
to detect the ring. The improved model architecture has
two embedded blocks: the spatial attention map block
(SAMB) and the channel weight map block (CWMB). The
modules are embedded in the feature network and feature
pyramid network (FPN) stages. The multi-scale feature
maps produced by FPN are arranged into the CWMB to
improve the essential features in channels. Since the defective
current-carry ring is small and the background and obstacles
are diverse and abundant in the picture, the SAMB is
employed to enhance the local features of each feature map in
the spatial attention. In the FPN, the channels of feature maps
from each layer are condensed with the depth of the network,
which has different information in each channel. The CWMB
weighs the variable significance of channels and exploits
helpful details among the global feature maps. Pictures are
chosen randomly from the videos captured by the inspection
train. The backbone networks are VGG19, ResNet50, and
Res2Net50.

In [23], an automated visual inspection approach is
suggested to find the rupture of the cross-link clevises of
the high-speed railway catenary. The images of catenaries
are acquired by CCD cameras installed on the top of
an inspection vehicle. The methodology of clevis fracture
inspection can be split into two phases, clevis extraction
and fracture detection. First, the clevises are captured from
the catenary photo employing a method founded on the
Faster R-CNN network. Here, ResNet101 pre-trained on
the ImageNet dataset is assumed as the backbone of the
Faster R-CNN. The model of the original faster R-CNN is
changed by extending the ROIs by the regional proposal

114653



IEEE Access

M. D. Summa et al.: Review on Deep Learning Techniques for Railway Infrastructure Monitoring

network to a more extensive scale. Successively, the detection
of fractures is founded on the detection of cracks. It is
performed by acquiring the edge information of the clevis
sub-image using the region-scalable fitting (RSF) structure,
which can segment pictures with intensity non-homogeneous.
Cracks are detected by computing the wavelet entropy
inside the crucial zones and applying morphological filtering.
To evaluate the performance of the proposed model in clevis
extraction, the authors compare the improved Faster R-CNN
with other deep learning networks, showing that it achieves a
higher average precision. However, there are some situations
in which the model fails to extract clevis. This occurs when
other fittings occlude some clevises, or when the component
is underexposed, due to defective activation of cameras.

We end this subsection by recalling that [18], [25], [37],
and [48] realize the detection of catenary elements faults as
described before.

D. OTHER
This section deals with a review of papers in which the
authors apply deep learning techniques to analyze the railway
infrastructure elements, realizing tasks not included in the
previous categories. In particular, here, we consider papers
in which the authors use generative models to increase
the datasets, such as discovering the enhancement of the
catenary images [7], predicting the vehicle-body vibrations,
or inspecting the vehicle onboard equipment defects.
Researchers must unravel the issue of the shortage of
rail surface faults in track inspection images for a suitable
application of deep learning techniques. To this end, in [58],
the authors propose an approach founded on a Deep
Convolution Generating Adversarial Network (DCGAN) to
extend and enhance the defects sample, consisting of images.
The DCGAN is given by a CNN and a Generative Adversarial
Network (GAN), which improves the GAN. In this paper,
first, the authors prove that DCGAN does not unravel the
issue of the vanishing gradient completely; successively,
after applying a noised-guided optimization, they show
that the real sample distribution and the developed ones
have a non-negligible overlapping and the Jensen-Shannon
divergence makes the two distributions closer until they are
totally coincident. In [13], a generative model is proposed to
increase the sample size, and in [35], the authors create new
samples to alleviate the problem of classes unbalancing.
Predicting vehicle-body vibrations is advantageous for
finding railroad imperfections, and the expected accelerations
can be utilized as an additional index for evaluating track
quality. Reference [39] provides an approach to indicate
vehicle-body vibration established on DL: by integrating
CNN and long short-term memory (LSTM), a CNN-LSTM
architecture is suggested. While CNN-LSTM creates a
point-wise prediction, it requires as input a part of track
geometry. Here, this information allows CNN to acquire
shape features. The three input channels are given by average
alignment, average longitudinal level, and cross-level, and
they are validated to reach the best performance among all
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possible mixtures. The lateral and the vertical vehicle-body
acceleration (VVBA and LVBA) include the two-channel
outcome. CNN-LSTM assumes the format of alternating
convolutional and pooling layers. Each LSTM cell conforms
to an individual pair of VBAs. After LSTM layers, two
fully connected layers are assumed as a classifier, which
finally creates the predicted VBA. In addition, the authors
show that the CNN-LSTM model achieves higher accuracy
than the fully-connected neural network assumed in the
performance-based track geometry (PBTG) technology and
the basic LSTM.

Reference [59] deals with a deep learning architecture
to detect onboard vehicle equipment (VOBEs) defects for
high-speed trains. VOBEs are fundamental components for
high-speed railways (HSRs) since they transmit to the
trains important information such as the length of the
track circuits, speed limits, and running speeds. The fault
diagnosis of VOBE consists of finding out the reasons,
called fault reasons, that force the train to break down.
The fault reasons are based on fault evidence detected
by onboard drivers. The authors define two vectors: the
fault evidence vector and the fault reason vector. The first
one is given as input to the suggested architecture, and
the outcome is the detect fault reason vector. The model
consists of a Deep Belief Network (DBN) composed of many
stacked restricted types of Boltzmann machines (RBM). The
performance reached by the proposed architecture exceeds
the k-nearest neighbors algorithm and the artificial neural
network with back propagations, improving the accuracy of
defects diagnosis for VOBE.

IV. EVALUATION METRICS

Comparing the performance of papers devoted to solving
different problems using different data is challenging and,
perhaps, even trivial in a few cases. Nonetheless, it might help
in pointing out the kind of results that are achievable with
these modern neural network architectures.

To evaluate the performance of the proposed methods,
the authors exploit different metrics based on the task
accomplished. More in detail, the most used metric for
classification is accuracy (A), given by the ratio between the
number of samples correctly classified and the cardinality of
the dataset. In particular, if data are classified into two classes,
the following formula gives the binary accuracy:

B TP + TN
" TP+ TN +FP+FN’

where TP and TN denote the true positive and true negative,
i.e., the number of positive and negative samples correctly
classified. On the other hand, F'P and FN indicate the number
of positive and negative samples misclassified as belonging to
the other class.

Moreover, pixel accuracy (PA) and mean intersection
over union (mloU) are often used to evaluate segmentation
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TABLE 5. The metrics most employed to evaluate the models’ performance.

Task Dataset Ref. Metrics
Classification | Authors’ dataset [3] A=971%
NEU! 2] A =99.27T%"
Authors’ dataset: FUB A =98.33%
Authors’ dataset: Crack [26] A = 98.57% (training)
A = 95.04% (validation)
Authors’ dataset: Rust A = 90.32% (training
A = 82.76% (validation)
Authors’ dataset: pan5-sG256 [33] A = 90.625%
Authors dataset [14] A = 92.93% (small DCNN)
A = 92.77% (medium DCNN)
A = 93.04%? (large DCNN)
Authors dataset [13] A =99.7%
Authors dataset [12] A =99.74%
Authors dataset (4] Accuracy N.A.
Authors dataset [63] Accuracy N.A.
Authors dataset 271 A =90.34%
Authors dataset: Line-1 [49] A =97.6%"
Authors dataset: Line-2 A =94.23%
Authors dataset [32] A =96.55%
Authors dataset [34] Accuracy N.A.
Authors dataset [43] A=972%
Authors dataset [51] A = 99.26%
Authors dataset [65] A = 98.65%
Authors dataset [47] A =93.5%
Authors dataset [19] A =93.35%
Authors dataset [20] A =95.02%
Authors dataset [48] A =98.72%
Authors dataset [35] A =93.25%
Authors dataset [37] A = 94.92%
Authors dataset [25] A =99%
Segmentation | Authors dataset: NRSD-MN [62] PA =71%
Man-made mloU = 37%
Authors dataset: NRSD-MN PA =70%
Natural mloU = 42%
Authors dataset [12] PA N.A.
mloU N.A.
Authors dataset [7] PA N.A.
mloU N.A.
Authors dataset: BH-rail-dataset [50] MPA = 99.15%
mloU = 98.46%
Authors dataset [52] PA N.A.
mloU N.A.
RSDD Type I° [64] PANA.
mloU N.A.
RSDD Type 117 PANA.
mloU N.A.
Authors dataset [28] PA N.A.
mloU N.A.
Authors dataset [32] PAN.A.
mloU N.A.
Authors dataset [65] PA = 99.72%
RSDD mPA = 94.37%

VOLUME 11, 2023

114655



IEEE Access

M. D. Summa et al.: Review on Deep Learning Techniques for Railway Infrastructure Monitoring

TABLE 5. (Continued.) The metrics most employed to evaluate the models’ performance.

mloU = 87.52%
Authors dataset [27] PAN.A.

mloU N.A.
Authors dataset [51] PA N.A.

mloU N.A.
Authors dataset [47] PAN.A.

mloU N.A.
Authors dataset [19] PA N.A.

mloU N.A.
Authors dataset [20] PA N.A.

mloU N.A.
Authors dataset [48] PA = 91.26%

mPA = 81.54%

mloU = 77.92%
Authors dataset [5] PAN.A.

mloU N.A.
Authors dataset [18] PAN.A.

mloU = 89%°

Detection Authors dataset: Crack [26] mAP N.A.

Authors dataset: Rust mAP N.A.
PASCAL VOC 2012 [46] mAP N.A.
COCO 2017
Authors dataset [24] mAP = 95.7%
Authors dataset [57] mAP = 94.5%
PASCAL VOC [55] mAP N.A.
Authors dataset [16] mAP = 87.40% (M2-Y2)

mAP = 82.91% (M3-Y3)
RSDD - Type 1 [61] mAP N.A.
RSDD - Type II mAP N.A.
Authors dataset [1] mAP N.A.
Dy industrial partner [67] mAP N.A.
Dj; open-source
Authors dataset [52] mAP N.A.
Authors dataset [42] AP = 92.45%
RSDD AP, = 76.74%’
NEU RSDDS-113
RSDD Type I [64] mAP N.A.
RSDD Type II mAP N.A.
Authors dataset™ [66] AP = 78%T
RSDD Type I
Authors dataset [28] mAP N.A.
Authors dataset [60] mAP=87.4%
Authors dataset [32] AP=99.99%1"
Authors dataset [6] mAP = 95.78%"
Authors dataset [34] mAP = 84.08%
Authors dataset [51] mAP = 97.9%
Authors dataset [65] mAP = 99.68%
Authors dataset [47] mAP = 96.13%
Authors dataset [54] mAP N.A.
Authors dataset [19] mAP N.A.
Authors dataset [20] mAP N.A.
Authors dataset [41] mAP N.A.
Authors dataset [30] mAP N.A.
Authors dataset [36] mAP = 81.2%
VOC2007 mAP = 80.1%
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TABLE 5. (Continued.) The metrics most employed to evaluate the models’ performance.

Authors dataset [48] mAP = 95.26%™
mAP = 99.06%"°
Catenary-5000 [38] mAP = 85.34%
Authors dataset [5] mAP N.A.
Authors dataset [8] mAP = 70.4%
Authors dataset [37] mAP = 89.10%"°
Authors dataset [25] AP =92.7%
Authors dataset [23] AP = 94.42% (left)!”
AP = 93.72% (right)
Authors dataset [18] mAP N.A.
Other Authors dataset [13] t — SNE
Authors dataset [71 E =6.9602™
AG = 4.9448"
e = 5.8148%
r = 3.7983!
Authors dataset [39] MAE /g = 0.0062*
RMSE /g = 0.008%
PCC = 0.898%
Authors dataset [59] A~ 90%
Authors dataset [58] IS =1.96%
Authors dataset [35] FID = 77.539%° (damaged fastener)
FID = 134.886 (missing fastener)
1 Northeastern University Dataset.
2 Best accuracy value obtained with respect to batch size and every epoch training time.
3 Best accuracy value obtained with respect to the activation function.
4 Best mean accuracy value reached by the “ResNet_all” model and obtained by the average of four class accuracy.
5 Obtained by DFRN.
6 Express rails.
7 Common/heavy rails.
8 Achieved by “Adaptive SSN” at Stage 3.
9 Average Precision on large defects.
10 From the China Railway Corporation.
11 Best result obtained by DLT method with respect to different confidence and crack size threshold.
12 Best precision at intersection over union (/OU) reached by ‘“‘ResNet50-FPN”" with threshold 0.8.
13 Best accuracy reached by FPN with respect to other models. This is a comparative study.
14 First localization.
15 Second localization.
16 Obtained by DPNL.
17 Average Precision for clevis extraction.
18 Information Entropy

19 Average Gradient
20 Rate of New Visibility

21 Mean of Visual Edge Gradient
22 Mean Absolute Error

23 Root Mean Square Error

24 Pearson Correlation Coefficient
25 Inception Score

26 Fréchet Inception Distance

algorithms. The following formulas give them:

TP
PA=—,
G

and
TP
G+T—TP
where TP denotes the number of true positives (correct

prediction pixels for foreground). G and T indicate the
number of pixels in the foreground of the ground-truth and

mloU =

VOLUME 11, 2023

prediction map, respectively [62]. Moreover, mean pixel
accuracy (MPA) is also used in [50].

Finally, mean average precision (mAP) is employed to
evaluate the performance of the detection algorithm. More in
detail, the average precision (AP) over 11 spaced recall levels
[0,0.1, ..., 1] is given by:

P interp

1
AP = — Z

re{0,0.1,...,1}
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and
sum(AP)
N

is the average AP in the classes [24].

Many articles also contain evaluation metrics for each class
of defects analyzed or different values for each experiment
realized. For example, the researchers provide additional
values for each batch size or activation function choice.

Finally, we observe that papers on the same task analyze
datasets differently. Therefore, the performance of the
proposed architecture is influenced by the characteristics of
the data, such as cardinality, the unbalancing between classes,
the image quality, and the shape or size of the defect or object
analyzed.

In Table 5, we present some relevant metrics described by
the authors, highlighting the task accomplished (first column)
and the kind of dataset (second column). Concerning the
values assumed by the metric, we chose the best performance
reached from the model. Concerning the papers in which
the proposed method is used to accomplish different tasks,
we split the metrics based on the study.

For layout needs, in Table 5 we shorten “not available™
with “N.A.’ and the *“Classification”, ‘“Segmentation”
and ‘“‘Detection” tasks with “Class.”, “Seg.”, and “Det.”,
respectively.

mAP =

V. CONCLUSION AND FUTURE WORK
In this work, an in-depth analysis of artificial intelligence
techniques was carried out, focusing on identifying anomalies
in the railway infrastructure. The study showed that the
scientific community has increasingly relied on deep learning
techniques compared to machine learning ones. This growing
interest in deep learning techniques has been caused by
the fact that deep learning is able to operate on raw
and, sometimes, unstructured data. In fact, the peculiar
characteristic of an approach established on DL is to identify
by itself the distinctive features suitable for performing a
specific task without the need for training by a human
operator. On the other hand, an aspect that should be
highlighted is that the deep-learning ability to extract features
without guidance is a double-edged sword: they are indeed
like black boxes within which it is not possible to trace the
selection path that the learning process selected. Therefore,
in strategic and highly complex sectors such as railway safety,
the presence of a human user is still central and must not
be completely replaced by a machine. In fact, the experience
acquired by the human being provides an ability to perceive
events, that are difficult to emulate by the machine. For this
reason, it is essential to exploit both the advantages of using
Al-based techniques that can assist experienced operators
in this context, with the aim of developing semi-supervised
solutions. In fact, in this context, deep learning is proving to
be the most reliable solution currently available.

The review is focused on the monitoring of the railway
infrastructure for preventive maintenance purposes.
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Comparing the papers shows that most analyzed compo-
nents relied on the rail area (Table 1), particularly on the site
where the train is moving. This is probably due to the fact
that anomalies concerning the rail surface or the fastening
system could mainly affect transport safety, causing severe
accidents and even derailments in particular. Another possible
explanation concerns the fact that the rail track is more
prone to friction and rubbing, and this causes broken or lost
components. Table 2 shows that most of the datasets analyzed
are images rather than video or signals, and Table 3 shows
that the attention of researchers is devoted to the detection
task. In addition, Table 4 suggests that researchers do not pay
much attention to the parameter “adaptability’’: only a few
works test the proposed model on a different dataset.

Nonetheless, 46 of the 53 papers analyzed achieved
remarkable objectives, as listed in Table 4. Finally, from
Table 5, two fundamental aspects are deduced. First, it is
impossible to draw a unique comparison between all the
papers taken into account since no particular dataset was
analyzed. Still, the authors own most of the dataset. Second,
not all documents exploit the same metrics, although they
report high values regarding performance evaluation. There-
fore, possible future work in this area would be achieved
by creating a unique reference dataset that the scientific
community could use.

The conducted systematic analysis allowed us to identify
multiple common functional clusters, thanks to the context
awareness achieved by deep learning models, useful for
different research objectives. The obtained result is an
in-depth overview of the solutions to real-world problems
approached with deep learning in the railway sector. All
this represents the basis for subsequent studies in which
the best-performing approaches will be selected based on
the context specifications, and these same algorithms will
be tested and compared to understand the advantages and
disadvantages of the most promising techniques. Once the
most suitable algorithms have been identified to solve
specific tasks in the railway sector, the goal is to integrate
them into more complex systems, for example, virtual and
augmented reality systems, with the aim to increase and
improve support for a human operator.
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