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Abstract

In this paper we present a verification methodology, using an action-
based logic, able to check logical properties for full CCS terms, thus
allowing complete generality of the class of reactive systems that can
be specified. Obviously, for some properties we are only able to give a
semidecision procedure. The idea is to use (a sequence of) finite state
transition systems which approximate the, possibly infinite state, tran-
sition system corresponding to a term. To this end we define a partic-
ular notion of approximation, which is stronger than simulation and
is very expressive with respect to liveness and safety properties. We
show some examples of chains based on this notion and built using
different operational semantics. In particular, we define an approx-
imation chain which is very expressive with respect to liveness and
safety properties. In order to reason on the properties that we are able
to prove with approximation chains, we also give a syntactic charac-
terization of different kinds of properties, which allows us to to prove a
set of interesting results. Moreover, we define a criterion, based on the
set of checkable properties, to compare the suitability of approximation
chains to prove properties. We show how the approach has been imple-
mented in the JACK environment, thus extending its model checking
functionalities to the verification of ACTL formulae on non-finite state
LTS’s.

1 Introduction

Many verification environments are presently available which can be used
to automatically verify properties of reactive systems specified by means of
process algebras, with respect to behavioural relations and logical proper-
ties. Most of these environments [9,20,18,28,17] are based on the hypothesis
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that the system can be modelled as a finite state Labelled Transition Sys-
tems (LTS) and that the logic properties are regular properties. That is, no
means are provided to deal with non-finite state LTS’s. In general, given a
process term p, they try to generate a finite LTS corresponding to p, the
verification phase can then start only if this construction has been success-
fully accomplished. Usually, to avoid the nontermination of the generation
phase, a term is required to satisfy some finiteness syntactic conditions: in
the case of CCS, for example, terms where a constant z occurs as operand
of a parallel composition belonging to the expansion of z are not handled.
Although approaches have been proposed to deal with non finite-state sys-
tems, which are not based on LTS’s [2’,7,22 23,24], here we are interested in
LTS based environments.

Relevant properties of reactive systems can be expressed by using an
action-based logic, for example ACTL [16]. In fact, ACTL is sufficiently
powerful to express liveness and safety properties without introducing the
overhead of formulae with fixed points, as happens in p-calculus [26].

In this paper we present a verification methodology able to check ACTL
properties for terms of full CCS with no syntactic restriction, thus allowing
complete generality of the class of reactive systems that can be specified. We
are able to carry on the verification even though the "usual” LTS generation
fails. Obviously, for some properties we are able to give only a semidecision
procedure. The idea is to use a sequence of finite state transition systems
approximating the, possibly infinite state, transition system corresponding
to a term by the standard CCS semantics. In order to characterize these
approximation chains, we define a particular notion of approximation, which
is stronger than simulation and is suitable to define and prove liveness and
safety properties of the process terms. We show some examples of chains
based on this notion. These chains are built using different operational
semantics of CCS and this ensures their correctness. In particular, we
define an approximation chain, denoted as {N;}, which is very expressive
with respect to liveness and safety properties.

In order to reason on the properties that we are able to prove with
approximation chains, we also give a syntactic characterization of different
kinds of properties, which allows us to to prove a set of interesting results.

Moreover, we define a criterion to compare the suitability of approx-
imation chains to prove properties. The criterion is based on the set of
properties for which we have a semidecision procedure which uses an ap-
proximation chain. Following this notion, we can formalize the fact that a
chain is ”better” than another one.



Actually, we differ from the Abstract Interpretation approaches [1,10]
for model checking of transition systems [4,8] because we do not build an
abstract transition system on which the properties are proved, but a chain
of finite transition systems: when we manage infinite systems, this allows us
to choose the approximation level case by case. Moreover, we are interested
in applying the method in practice: in the paper we show how our approach
has been used to extend the model checking functionalities of the JACK
environment [13] to cover the verification of ACTL formulae on non-finite
state LTS’s. JACK is an integrated general verification environment that
offers a large spectrum of functionalities. In particular JACK integrates
the graph and behavioural capabilities of the tool AUTO [28] and the logic
facilities of an ACTL model checker [15]. We have added to JACK a tool
able to generate the approximation chain {N;} cited above. We remark that
the method is non-complete in the sense that in some cases the result of the
model checker will give an undefined answer on the validity of a formula.
Then, interactively, a user can try again, with a more refined approximation.

2 Background
2.1 CCS

We assume that the reader is familiar with the basic concepts of process
algebras and CCS. We summarize the most relevant definitions below, and
refer to [30] and to Appendix 1 for more details. The CCS syntax we con-
sider is the following:

pu=p.p|nid|p+p|plp|p\A| z|plf]

Terms generated by p (T'erms) are called process terms (called also pro-
cesses or terms); z ranges over a set {X,Y,..}, of constants. A constant

is defined by a constant definition 2% P, (p is called the expansion of z).
Constants may be mutually recursive. As usual, there is a set of visible
actions Vis = {a,d,b,b,...} over which « ranges, while p,v range over
Act = Vis U {r}, where 7 denotes the so-called internal action. We de-
note by @ the action complement: if @ = a, then @ = @, while if a = @, then
@ = a. By nil we denote the empty process. The operators to build process
terms are prefixing (y.p), summation (p + p), parallel composition (p|p), re-
striction (p\A) and relabelling (p[f]), where A C Vis and f : Vis — Vis.
Given a term p, an occurrence of a constant z is guarded in p if it is within



some sub-term of the form u.q. Moreover, we say that z is guarded in p if
each occurrence of z in p is guarded. Notice that this definition of guarded
terms is more general than the usual one since we accept also constants
guarded by the 7 action. We assume that

e Vis is finite;

e each constant is guarded in all constant expansions, i.e. for each defi-
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nition z % p, each constant occurring in p is guarded in p;
e all terms are closed, i.e. all constants occurring in a term are defined.

Below we list some known definitions regarding the operational semantics
of CCS.

An operational semantics OP is a set of inference rules defining a rela-
tion D C Terms x Act x Terms. The relation is the least relation satisfying
the rules. If (p,y,¢) € D, we write p-50p g. The rules defining the seman-
tics of CCS [30], from now on referred to as SOS, are recalled in Appendix 1.

A labelled transition system (or simply transition system) T'S is a quadru-
ple (S,T, D, so), where S is a set of states, T' is a set of transition labels,
so € S is the initial state, and D C S x T x S. A transition system is finite
if D 1s finite.

A finite computation of a transition system is a sequence pqpg..pp of
labels such that sg 250p .. S30p Sn.

Given a term p (and a set of constant definitions) and an operational
semantics OP, OP(p) is the transition system (Terms, Act, D,p), where D
is the relation defined by OP.

Let T'Sy = (S1,T1, D1, s0,) and T'Sy = (S2, T2, D2, so,) be transition sys-
tems and let s € Sy and s3 € S5.

s1 and s are strongly equivalent (or simply equivalent) (s1 ~ s2) if there
exists a strong bistmulation that relates s; and s3. B C 51 x 52 is a strong

bisimulation if V(r, s) € B (where p € T1 NT3),

. . m
o 75+ implies 35’ : s 5 s’ and (', s') € B;



T ERT p
e s— s implies 3r' : r =’ and (r',s') € B.

sg simulates sy if there exists a strong simulation that relates sy and s,.
R C 51 x 57 is a strong simulation if Y(r,s) € R (where p € T3 N T3),

Boope w
e r— ' implies 35’ : s> ¢’ and (r',s') € R.

TSy and T'S; are said to be equivalent (T'Sy ~ T'S2) if a strong bisimu-
lation exists for sg, and soq,.

TS, simulates T'Sy (T'Sy < T'S;) if a strong simulation exists that relates
so1 and sg2.

CCS can be used to define a wide class of systems, that ranges from
Turing machines to finite systems [31]; therefore, in general, CCS terms
cannot be represented as finite states systems.

2.2 The action based logic ACTL

We introduce now the action based branching temporal logic ACTL defined
in [16]. This logic is suitable to express properties of reactive systems defined
by means of TS’s. ACTL is in agreement with the notion of bisimulation
defined above. Before defining syntax and semantics of ACTL operators, let
us introduce some notions and definitions which will be used in the sequel.
For A C Act, we let Dy(s) denote the set {s': there exists @ € A
such that (s,a,s’) € D}. We will also use the action name, instead of the
corresponding singleton denotation, as subscript. Moreover, we let D(s)
denote in short D4.:(s) and Dy, (s) denote D gu¢r3(s)-
For A, B C Act, we let A/B denote the set A — (AN B).
Given a LTS TS=(S,T,D,s0), we define:

e a pathin TS is a finite or infinite sequence sy, 83, . .. of states, such that
si+1 € D(s;). The set of the paths starting from a state s is denoted
by II(s). We let 0,0’ ... range over paths;

e a path o € II(s) is called maximal if it is infinite or if it is finite and
its last state s’ has no successor states (i.e. D(s') = 0);

e if o is infinite, then we define |o| = w; if ¢ = s1,59,..., sy, then we
define |o| = n — 1.
Moreover, if |0| > i — 1 , we will denote by o(i) the i** state in the
sequence. 0



To define the logic ACTL [16], an auxiliary logic of actions is introduced.
The collection Afor of action formulae over A is defined by the following
grammar where ¥, X', range over action formulae, and « € Vis:

xs=alxxAx
A\

We write ff for ap ;\/ —p, where ag is some chosen action, and # stands
for - ff. Moreover, we will write x A x’ for =(=x V x’). An action formula
permits the expression of constraints on the actions that can be observed
(along a path or after next step); for instance, a A 8 says that the only
possible observations are & and 3, while # stands for ”all actions are allowed”
and ff for "no actions can be observed”, that is only silent actions can be
performed.

The satisfaction of an action formula x by an action «, notation « [ x,
is defined inductively by:

o af=fiff a=p;
A
e o | —x iff not a E x;
‘ [ A

e alExAX iff‘/g\l-—_‘xandlezx'

Given an action formula x, the set of the actions satisfying x can be
given by the function & : AF(Act) — 24 as follows:

e k(i) = Act,;

o x(b) = {b};

o k(—x) = Act/r(x);

o k(xVx')=k(x)Ur(X).

The syntax of ACTL is defined by the state formulae generated by the

following grammar:

pu=t|pAd|—¢|Ev|Ay
7:::XX¢[XT¢|¢XU¢I¢XUX'¢

where x, x’ range over action formulae, E and A are path quantifiers, X and
U are next and until operators respectively.

Let TS = (S, Act, D,so) be a LTS. Satisfaction of a state formula ¢
(path formula ) by a state s (path o), notation s =75 ¢ (0 FErs 7) is given
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inductively by :

skErst always;
skErs¢oA¢  iff skrs ¢ and s Ers ¢
s Ers —¢ iff  not s =rs ¢;
s l=rs Evy iff there exists a path o € II(s) such that o 715 7v;
s Ers Ay iff for all maximal paths o € II(s), o =15 7;
o FE1s Xy¢ f  |o| > 1 and 0(2) € Dy(y)(o(1)) and o(2) 15 ¢;
ockErs X, ¢ iff |o| > 1 and (2) € D¢ry(0(1)) and o(2) =15 &;
o Ers ¢ U@ iff  there exists i > 1 such that o(i) rs ¢/, and for all
1<j<i—1 o) Ers é and o(j +1) € Dy, (o(3))
o Ers ¢ xUy ¢ iff  there exists ¢ > 2 such that o(i) f=rs ¢’ and
(i) € Dy(yry(a(i — 1)), and for all
1<j<i-2 o(j) Frs é and o(j +1) € Dge), (414)).

Several useful modalities can be defined, starting from the basic ones.
In particular, we will write:

o EF¢ for E(tt 43U ¢), and AF¢ for A(#t 4U ¢); these are called the
eventually operators.

o EG¢ for ~AF—¢, and AG¢ for ~EF-¢; these are called the always

operators.

ACTL can be used to define liveness (something good eventually hap-
pen) and safety (nothing bad can happen) properties of reactive systems.
Informally, liveness properties can be classified as in the following [25,29]:
Termination properties: They state that a good thing happens at some
states of a computation.

Persistence properties: They state that a good thing happens at infinitely

many states of a computation.

~Recurrence property: They state that a good thing happens at all but finitely

many states of a computation.
Safety properties state that a good thing happens at all states of a compu-
tation path. ‘

In a branching time logic both termination and safety properties could be
divided into two classes: universal liveness (safety) properties and ezistential
liveness (safety) properties. The former state that a condition holds at some



(all) states of all computation paths. The latter state that a condition holds
at some (all) states of one computation path.

For the logic ACTL a linear model checker, AMC, was developed [15],
which allows the satisfiability of ACTL formulae to be checked on finite
transition systems.

3 Verification by approximations

In this section we present general results which support our approach. Qur
aim is to provide a methodology to prove (some) logical properties of non
finite state transition systems. To this end we first define a notion of chain of
finite approximations of the transition system of a term p; then, we present
a syntactic characterization, as ACTL formulae, of the logical properties we
will deal with. We end the section with a bunch of results about the prov-

ability of such formulae by using as models suitable approximation chains
of the intended TS.

3.1 Branching complete simulation and Approximation chains

Given a CCS term p, we are going to define suitable approximations of
SOS(p) on which logical properties can be checked. In particular, we define
chains of finite transition systems which more and more accurately simulate
the behaviour of SOS(p). Since each transition system in a chain is finite this
allows us to use proof checking methodologies for finite transition systems.
In order to do this, we introduce a notion of simulation between transition
systems which is stronger than usual simulation. This notion, in contrast
with to simulation, permits the definition of TS approximation chains that
preserve the branching structure, that is, for each approximation, if a node
has been exploded all its branches are developed.

Definition 3.1 (Branching Complete Simulation) Let
TS1 = (51,T1,D1,80,) and TSy = (52,73, Dq, s0,) be transition systems
and let 51 € 51 and s3 € Ss.

s3 BC-simulates s; if there erists a strong BC-simulation that relates
s1 and s3. R C 51 X 52 is a strong BC-simulation if V(r,s) € R (where.
p €Ty NTR)

Boogo . 7
o 7' implies s’ : s > s’ and (r',s') €R.
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Figure 1: Simulation vs. BC-simulation.

m . . . . m
o s—s' implies either r ~ nil or r >’ and (v',s') € R.

TSy BC-simulates T'Sy (T'S1 =< T'S2) if a branching complete simulation
ezists that relates sg; and sg;.

It is easy to see that TSy < T'S; implies T'S; < T'S3, but the converse
is not true in general. For example, T'Sy does not BC — simulate T'S; in
Figure 1.

Analogously to the simulation relation, BC-simulation is a preorder. By
standard construction [21], it can be shown [14] that < induces a complete
partial order on the set of transition systems quotiented by the equivalence
relation, [T'S;] = {'(“ff—'wﬁ{,‘TSj‘gf!TS; 2 TS; ATS; X TSz} and this ensures
the existence of the least upper bound of the chains of this complete partial
order. It is therefore possible to introduce the following notion of approxi-
mation chain of transition systems:

Definition 3.2 (Approximation chain, total and partial TS) Given
a process p, a chain {T;|i > 0} of transition systems is called approximation
chain for p iff:

e for each i, T; is fintte;

o for each i, T; < Titq;



o L{T;} ~ SOS(p).

Each T; in the chain is said to be total if it is strongly equivalent to SOS(p);
otherwise it is said to be partial.

Informally, partial transition systems are those that can be furtherly de-
veloped expanding some states. Note that, if we have a finite approximation
chain {Ti|r > i > 0}, then T, ~ SOS(p). As we have already noted this no-
tion of approximation chain based on BC-simulation preserves the branching
structure of the transition systems all along the chain. This will allow us to
prove properties not provable with an approximation chain based only on
simulation.

3.2 Temporal properties and approximation chains

In order to formally relate the notion of approximation chains to temporal
properties of reactive systems we need to precisely characterize the class of
properties we deal with. We start by giving a syntactical presentation of
liveness and safety properties by means of ACTL formulae.

Definition 3.3 (Finite property) We say that o is a finite property if it
can be expressed by an ACTL formula defined by the following grammar:
ocu=t|cAo|oVo|-o|Ey|Ay

v = Xyo | X0

Definition 3.4 (Positive finite property) We say that 7 is a positive
finite property if it is a finite property without negations.

Definition 3.5 (Liveness property) We say that 1 is a liveness property
if one of the following holds, where m is a positive finite property:
e Yy =AFrm ory = EFw
(termination vroperty)

o Y= AFAGr, v = EFAGr, v = AFEGn or v = EFEGT
(persistence property)

e Y= AGAFT, v = EGAFw, v = AGEFw or ¢y = EGEFn
(recurrence property)

Definition 3.6 (Safety property) We say that 8 is a safety property if
0 = AGm or 8 = EGm and m is a positive finite property.

10



We remark that the given syntactical presentation of liveness and safety
properties does not obviously cover all the liveness and safety properties
expressible by means of all the ACTL operators (e.g. =@, ¢ U ¢', ¢ U, ¢).
We will comment later on the extension of the following results to such
properties.

We have that finite, liveness and safety properties are decidable on a
finite state transition system. In general, while finite properties can be
provable, liveness (including termination, persistence and recurrence) and
safety properties can be undecidable for a non-finite state term p.

We now state two propositions relating approximation chains with live-
ness and safety properties. Let p be a term and {7;} an approximation chain
for p:

Proposition 3.1 If ¢ is a liveness property, we have that:

e if so =1, ¢ for some i, then sg Fsos(p) ¢

Proof sketch By structural induction on the structure of the liveness for-
mulae and taking into account that with BC-stimulation the simulating tran-
sition system is forced to exzactly mantain all (and only) the branches of the
simulated one, if any.

—~"PROOF SKETCH ALTERNATIVO. By structural induction on the struc-
ture of the liveness formulae:

e termination property (AFm EFx): if a positive finite property w is
Jound to hold at a (future) point on the n-th approzimation, then it
will be true at the same point on the n+1-th approzimation, since
approzimations maintain the computations and do not add branches.

o recurrence, persistence: these are infinite properties, that can hold only
on infinite transition systems, that is, transition systems with infinite
paths. Therefore, if one of these properties is found true on an ap-
prozimation, this approximation does contain infinite paths and, in
particular:

1. either the property required the ezistence of a path satisfying a
condition, and therefore such path has been found on the approz-
imation and will be present also in SOS(p),

2. or it requires a condition to hold on all paths, and hence all paths
of the approzimation are infinite: in this case, for the definition
of BC-simulation and of the approzimation chains, the approzi-
mation is total

11
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Obviously, if so fr; @, then nothing can be said about the satisfiability

of ¢ on SOS(p). A

"1t is important to remark that liveness properties are not preserved by
simulation, while they are preserved by BC-simulation. Consider, for exam-
ple, the following liveness property:
(1) Each path contains a state from which all the outcoming arcs are labelled
by a (AF AX,tt)
If we consider the transition systems 7Sy and T'S; in Figure 1 we have that
TS51 < TS, but T'Sy verifies the property and T'S2 does not.

Let us consider a liveness property ¢ and an approximation chain {T};}

for a term p. Proposition 3.1 above ensures that, if we are able to prove ¢
on an element of the chain, we can assert the validity of ¢ on SOS(p). Thus
an algorithm to check the validity of a liveness property is that of checking
it on the elements of the chain, starting from the first one, until we find that
the property is verified. But the converse of proposition 3.1 is not true in
general: if a liveness property ¢ is verified on SOS(p), this does not imply
that it is true on an element of {7;}. Thus, given an approximation chain,
the above algorithm (which checks a liveness property on the elements of
the chain) is not in general a semidecision procedure.
Moreover, different approximation chains for the same term can be used to
check different sets of properties, in the sense that, given a property ¢, it is
possible that the above algorithm is a semidecision procedure for ¢ if using
a chain, while it cannot be used to semidecide ¢ with another chain (we
shall see an example in the following section). This suggests a comparison
criterion on the suitability of approximation chains for proving properties.

Definition 3.7 (Checkable properties) Let be given a term p and an ap-
prozimation chain {T;} for p. We say that a liveness property ¢ is checkable

by {T:} if
e either ¢ is not verified by SOS(p) or
o T, € {T;} exists such that so =1, 6.

The set of checkable properties of p by {T;} is denoted as Pr;(p).

By proposition 3.1, we have that, for each approximation chain {T;}
for p,if a property in Pr,(p) is verified by an element of {7}}, then it is
verified by SOS(p). Thus Pr;(p) includes the properties for which there is
a semidecision procedure using {7;}.

12



Definition 3.8 (Suitability of approximation chains) Let be given a
term p and two approrimations chains {T;} and {S;} for p. We say that”
{T}} is more suitable or equal for p than {S;} if Ps;(p) C Pr:(p). Moreover,
{T:} is strictly more suitable for p than {S;} if Ps,(p) C Pr.(p)

Note that the notion of suitability of approximation chains is different
from a notion considering the ”growing rate” of the chains. Given, for
example, an approximation chain {T;}, let us consider the chain containing
a subset of the elements of {T}}, for example the elements of even position,
ie. {S;} = {To,72,T4,---}. We have that {S;} grows faster than {T}}, but
it is not more suitable than {7;}.

Proposition 3.2 If ¢ is a safety property, we have that:

o if so [ET. Y for some i, then s Ksos@p) ¥
Proof sketch For duality from Prop. 3.1

Prop. 3.2 corresponds, according to the definition of safety properties in
[29,25], to say that if a finite approximation of a term p violates the property,
then p itself violates the property. If there exists a T; such that so =1, ¥,
then nothing can be said about the satisfiability of 1 on SOS(p).

The definitions of checkable properties and of suitability of approxima-
tion chains have been given only for liveness properties: dual definitions
could be given for safety property as well.

Following propositions 3.1 and 3.2, we note that there is no distinction in
proving existential (£...) or universal (A...) properties, due to the fact that
BC-simulation preserves the branching structure of the transition systems.!

Let us now consider finite properties. Obviously, we have a semidecision
procedure for them by using approximation chains. In order to have a de-
cision procedure, we must furtherly constraint our chains. Let us consider,

'Tf the notion of approximation chains were based on simulation instead of BC-
simulation, Proposition 3.1 would hold only for existential termination properties, where
this subclass of properties is so defined: A positive ezistential finite property is a posi-
tive finite property containing only E quantifiers; an eristential termination property is
a termination property composed by an EF or operator and a positive existential finite
property.

13



for example, the following finite property for SOS(p) for some p:

(2) All paths start with the action b and contain at least an action a as
a second action (AX, EX,tt).

Approximation chains are not suitable to give a positive or negative
answer if SOS(p) is infinite: in fact a new path of length 2 may appear in
whatever element of the chain. The property is decidable if, instead, each
transition system T; of the chain grows on all possible paths with respect to
Ti—1. This suggests the following notion:

Definition 3.9 (Transition system path-approximation) LetT'S; and
TS, be transition systems. We say that T'Sy is an n-path-approximation of
TSy (T'S1 =, TS) if TS1 < TS, and the computations of length < n of
TSy and TSy coincide.

Definition 3.10 (Strong Approximation chain) An approzimation chain
{T;} is a strong approzimation chain if for each i, T; <; Ti41

Thus the n-th element of a strong approximation chain have all the
paths of length less or equal to n that are in SOS(p). We can now state the
following

Proposition 3.3 Let w be a finite property of depth n, that is with n nested
next operators, and {T;} a strong approzimation chain for a term p. We
have that:

® 50 =sosp) T iff so T, T

Proof sketch For the guardedness of the CCS terms we have that T, <,
SOS(p). 7 )

i

4 How to build approxin{étions

In this section, we present two ways of constructing approximation chains.
In order to obtain correct approximations for a term p, the idea is to de-
rive p using the operational semantics until some stopping condition, thus
obtaining a partial transition system, which is furtherly expanded to obtain
the successive elements of the chain. The first chain we present is based on

14
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the standard SOS semantics. In order to obtain better approximations, we
then introduce a second chain, which is based on a different semantics, able
to produce "more expressive” transition systems.

4.1 SOS-approximations

In the following, we give an example of a simple approximation chain, based
on the SOS semantics, by means of which some properties can be proved.
Given a CCS term p, a simple way of approximating SOS(p) is the following
chain:

Definition 4.1 ({M;}) The chain {M; = (Si, Act,D;,s0)} is inductively
defined as follows:

o Mo = ({p}, Act,{},s0)
o Mit1 = (Sit1, Act, Diy1,s0) where
— Sit1=SiU{qlp € S; and pu € Act exist such that p 5s05q};
— Diy1 = DiU{(p, 11, 9)|p € Si and p € Act exist such that p 5505 q}.

Informally, M;4q is obtained from M; by adding to the states of M;
all those states reachable from them with only one action and the related
transitions. The following proposition holds:

Proposition 4.1 Given a term p, the chain {M;} defined above is a strong
approximation chain for p.

Proof sketch By induction on the length of {M;}, we prove that, for each
M; it holds M; <; M;y1. Moreover, by construction, each M; is finite and
the least upper bound of the chain is SOS(p).

As an example, let us consider the recursive definition of a bag contain-
ing two kinds of elements:

X = pl.(g1l.nil|X) + p2.(¢2.nil|X)

where p; and p; represent insertions and g; and g9 deletions of the two
kinds of elements, respectively. It is known [3] that X is not finite state and
moreover not even context-free. Some properties can be checked on the bag:
Liveness properties:
1) Termination The bag is not a set, that is, it is possible to have a multiple

15



Figure 2: M1 approximation.

occurrence of the same value in the bag. ( AFAX, EX, ).

2) Persistence property. There exists a state in a computation path from
which it is possible to do infinitely often a put action immediately followed
by a get action ( EFEG(EXp, EXg )it ).

3) Recurrence property. There exists a computation path on which on all
(but finitely many) states it is possible to do put actions ( EGAF(EX,,#tV
BXpt) ).

Fintle property:

4) At the beginning, only put actions are possible on the empty bag (
AXmeit )

Safety property:

5) It is always possible to perform a put action ( AGEX,,# ).

If we consider the chain {M;} for X, we have that My is given by X
itself, while M7 and M3 are represented in Figures 2 and 3 respectively.

If we consider M; we have the following results:
® so fear 1)
® so o, 2)
° so Em, 3)
e so = 4)

® 30 I::MJ 5)
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Figure 3: M2 approximation.

This means that property 4) is verified by Mj, and thus is true for the
bag, as one should have expected, from proposition 3.3. Moreover property
5) is also verified by Mj, but this does not mean that it is true for the bag,
since it is a safety property. The other properties do not hold for My. If we
consider M,, we have:

e so =, 1)
° 50 [fum, 2)
e S0 fen, 3)
® so =, 5)

This means that property 1) is true for M3 and thus is true for the bag,
as one should have expected, for proposition 3.1. Instead, properties 2) and
3) are not verified by M,. It is easy to see that these properties are not
verified by any M;, for each ¢, since their satisfiability implies detecting a
cycle in the transition system: this cycle will never appear in the chain {M;}
for p. Thus, if we use this chain to approximate SOS(p), these properties
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are not semidecidable. Nothing can be asserted instead about property 5),
following proposition 3.2.

4.2 SS Approximations

In this section we present a way of approximating SOS(p) which is more
suitable than {M;} and so it allows us to prove a greater set of properties.
It is based both on a different operational semantics and on a different no-
tion of chain. In [12] the semantics SS was defined, which is more abstract
than SOS, since the SS rules have built in some behavioural equivalence
axioms, i.e. they accomplish some simplifications on the terms during the
derivations, with the purpose of obtaining, if possible, a finite-state transi-
tion system for p. The rules of SS are such that SS(p) is strongly equivalent
to SOS(p). The definition of SS, whose rules are shown in Appendix 2, is
based on the following considerations. Given the CCS syntax, those op-
erators that, in presence of recursion, would give rise to the derivation of
growing terms (and therefore to an infinite number of derivations) are par-
allel composition, restriction and relabelling. For restriction and relabelling,
in a language with finite action set, the unlimited growth of terms can be
prevented by using suitable inference rules. In fact, successive, possibly in-
termixed, occurrences of restriction and relabelling can be reduced to only
one restriction, followed by only one relabelling. Moreover, the parallel op-
erator can be deleted as soon as one of the two arguments terminates, i.e. is
equivalent to nil. For example, it is easy to see that two terms (p|nil)\a\c
and p\{a, c} are equivalent. The SS inference rules accomplish these strong
equivalence preserving simplifications during the derivation.

In [12] it is proved that, if we use the SS rules, the only terms that can
lead to an infinite transition system are those which allow a new unfolding
of a constant z to be performed while some sub-term belonging to the pre-
ceding unfolding of z is still present in the term being derived. This only
occurs when a term of the kind z|p is reached from z. These terms and the
corresponding states are denoted as dangerous terms (dangerous states)
(the precise definition is given in Appendix 3). This suggests to consider
as approximation chain the chain {N;} of transition systems, each obtained
from the previous one by unfolding dangerous states, until other dangerous
states are derived. More formally:

Definition 4.2 ({N;}) The chain {N; = (S;, Act, D;, s0)} is inductively de-
fined as follows:
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Figure 4: N1 approximation.

® NO = ({p}aACt){})SO) ?’i; AIS@“ ‘
® Nit1 = (Siy1,Act, Diy1,50) where - )
~ Siy1 = S:U{dlp € Si and {uy, -+ pa} C Act esist,n > 1,
such that p-‘gsg g1 qn ,’i'-;ssq and q1, - qn are not dangerous}
— Dip1 = D; U{(pyprq)lp € Si and {1, - pn} C Act exist,n > 1,
such that{pﬁf‘—}s‘gg g1 qn Bssqand qq, - - -gqn are not dangerous}

We can prove, by the results shown in [12], acéh} N; is finite state.
We remark that the definition of approximation chain based on stopping the
derivation of dangerous states cannot be applied if we use SOS to generate
the chain (as in the case of {M;}), since in this case the finiteness of the
approximations is not ensured. If we reconsider the bag example, Figure
4 shows N;: we have the two dangerous states g;.nil|X and go.nil|X. In
order to obtain Ny, shown in Figure 5, we expand these states and we stop
the new four dangerous states.

The following proposition holds:

Proposition 4.2 Given a term p, the chain {N;} defined above is a strong
approzimation chain for p.

Proof sketch By induction on the length of {N;} and using the SS seman-
tics definition, we prove that, for each N; it holds N; <; N;y1. Moreover, in
[12] it is proved that each M; is finite. Finally, the least upper bound of the
chain is SS(p), which is stronly equivalent to SOS(p), as shown in [19].

Let us now consider the relations between the chains {M;} and {N;}.
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Figure 5: N2 approximation.

Proposition 4.3 Given a term p, for each i we have M; <; N;.

Sketch of the proof. By induction on the length of the chains. Note
that each state s of N;i1, oblained by a dangerous state of N; has the same
outputs with 5S as with SOS, since all constants are guarded in all constant
erpansions.

As a consequence of the above proposition, we can state the following
propositions:

Proposition 4.4 For each term p, Puy,(p) C Pn;(p), i.e. {N;} is more
suitable or equal than {M;}.

Proof sketch. For each i, if a property ¢ holds on M;, a j exists, j < 1,
such that ¢ holds on Nj.

The following proposition states that the converse of proposition 4.4 is
not true in general.

Proposition 4.5 Given a term p, P, (p) C Pn,(p), t.e. {N:} is strictly
more suitable than {M;}.
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Proof sketch There exist some properties not provable on {M;} which are
provable on {N;}. Let us consider again the recursive definition of the bag.
If we consider N, we have the following result:

® So |=N2 2)
e so =N, 3)
® So ’:Nz 5)

Thus we can assert the validity of 2) and 3) on the bag. We remark that
the validity of 2) and 3) is not provable on the chain {M;} of the previous
section because it was not able to detect the cycle of put and get actions
detected instead by {N;}. Again nothing can be said on property 5). From
proposition 4.4, we have that, for what concerns the properties 1) and 4),
we have the same results as with {M;}.

5 Implementation in the JACK environment

The JACK system [5] is a verification environment for process algebra de-
scription languages. It is able to cover a large extent of the formal software
development process, such as rewriting techniques, behavioural equivalence
proofs, graph transformations, and (ACTL) logic verification. In JACK a
particular description format is used to represent TSs, the so called format
commun fc2, that has been proposed as standard format for automata [27].
The ACTL model checker was built on the basis of an algorithm similar to
that of the EMC model checker [7], so it guarantees model checking of an
ACTL formula on a TS in a linear time complexity [15].

5.1 The construction of {N;}

The JACK environment has been extended with a tool to build the chain
{N;}: the tool uses a non-standard semantics, denoted as N.SS, shown in
Appendix 3, whose rules block dangerous terms when they are derived from
the constants. This is done by using an extended language which takes
into account whether a parallel operator is inside or outside the recursive
unfolding of a constant z: given a non-empty set of constants C, rec.C.p
keeps the information that p belongs to the unfolding of the constants in C
((rec.C) is denoted as recursive prefiz). Thus the term rec.{z}.(z|b.nil) is
no longer derived, while (z|b.nil) can be derived in the same way of SOS.
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Figure 6: First approximation built by NSS.

The behaviour of NSS on a term p is the following: p is derived (using the
same simplifications on ¢\ A, ¢[f] and r|q as with SS) without using terms
prefixed by rec.C, until a constant z is reached; in this case we derive the z
expansion, but prefixed by rec.{z}. If we reach another constant y, we add
y to the prefix, which thus becomes rec.{z,y}. When a constant terminates
an unfolding safely, it is deleted from the prefix. A constant z terminates
an unfolding safely only when either « is reached, possibly restricted and/or
relabelled, or a term is reached from which z is no longer reachable. When
a dangerous term is reached, it is no longer derived. Once N; is obtained in
this way, the successive approximations are built by deleting the rec.{z} pre-
fixes and deriving all dangerous states. For example, the transition system
produced for N; and N, are shown in Figures 6 and 7, respectively.

5.2 Verification of logical properties on non-finite state TSs

In section 4, Propositions 3.1, 3.2 and 3.3 have given a formal support to
a verification methodology for non-finite state transition systems: given a
CCS term p,

first we define an approximation chain for p and then we check properties
on it. We now describe this methodology in proving properties in the JACK
environment. Let be given a CCS term p and a list of ACTL formulae to be
checked on it. A verification session has the following steps:

1. The term is input to JACK. If the term satisfies the finiteness condi-
tion of the transition system generator inside JACK, a corresponding
transition system 7'S is built and the list of ACTL formulae is checked
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Figure 7: Second approximation built by NSS.

on it. The session terminates.

2. If the syntactic finiteness conditions are not satisfied, then we call the
chain generator of JACK. Once obtained the first approximation Ny,
we put T'S := Nj.

3. The list of ACTL formulae is input to the model checker which checks
them on T'S. If T'S is total, the session terminates. If TS is partial,
the results of the model checker are analyzed according to propositions
3.1, 3.2 and 3.3. This means that, possibly, a new approximation is
built, i.e. 7'S := N;;+1 and we repeat step 2.

6 Conclusions

We have presented a method to check logic properties of non-finite state
processes. The method is based on checking the validity of an ACTL for-
mula on finite approximations of the infinite state transition system of the
processes. The method has been implemented in the JACK environment
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Figure 8: Verification by approximation.

thus providing a uniform framework in which analysing finite and non-finite
state systems. We have shown that a particular chain of approximations,
namely, that based on the non-standard semantics NSS, makes it possible
to verify some properties that cannot be verified with other approximation
chains. Moreover, this semantics is able to build a finte-state representation
of some processes which are not recognized as such by the usual verification
environments. ;

In the definition of the verification method we have given a classification
of safety and liveness properties based on their syntactic appearance. This
classification leaves out a number of properties expressed by formulae using
not or until operators of the logic. Nevertheless, we argue that the results
given to support our verification method are general enough to cover all
liveness and safety properties, even if they have been proved only on the well
defined classes: for properties outside these classes, the same results and the
same verification method apply, whenever the user is able to classify them
as safety or liveness ones.

Future work will concern a more deep analisys of classes of logic proper-
ties for which our approach provides a verification method on infinite state
systems.
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Appendix 1. The SOS semantics.

The SOS semantics is shown in figure 9.
bf Appendix 2. The SS semantics

The SS semantics contains the rules shown in figure 10. The following

notation is used in the rules:

27




term(p) =

o true, if p has no derivative with SOS
o false, otherwise

p\4 =

o p\A, if p # ¢\B,p # q[f]

e \AUB,ifp=¢\B

o \fH(Af],if p=gq[fl,g#r\B
o ¢\f(4) U B[f], if p = q\B[/]
plifll=

e plf], if p # qlg]

° q[fog],if p=qlg]

Appendix 3. The NSS semantics

For each rule R belonging to the SS semantics, except S — Con, there is
a rule in the N'SS semantics, which is equal to R, except that it adds to the
premise the condition ”p well-formed”. Moreover, NSS also contains rules:
The following notation is used in the rules above :

Ezxtended CCS syntaz:
pu=b|rec.Cp| plp | p\A | p[f],

where b is a CCS term and C is a non-empty set of constants.

Given a CCS term p, we indicate by p(\A[f]) the set of the terms
{r,p\A,p[f1,P\A[f]|A C Vis, f : Vis — Vis}.

Given a term p of the extended language, we denote by F(p) the CCS
term obtained by deleting from p all the recursive prefixes.

Given a CCS term p, a constant z is potentially-reachable (P—reachable)
by p if:

o p & z(\A[f]); and
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e either z is a sub-term of p or a constant y is a sub-term of p and z is
P-reachable by the expansion of y.

[plc definition. Given a non-empty set C of constants and an ECCS
term p:

o If p # p\A,p # q[f] and p # rec.E.q,let D = {z|z € C and z is
P-reachable by F(p)}. We define [plc = pif D = 0, [plc = rec.D.p
otherwise;

o Ifp # q\A,p # q[f] and p = rec.E.q, then [plc = [qlouE;
° [p\Alc = [plc\4;
o [p[fllc = [plclf]-

Dangerous terms, Safe terms. Let be given a constant z. The set of
z — dangerous terms is the least set defined by the following rules:

e a term plg, where z is either non-guarded in p or/and non-guarded in
g, is x-dangerous;

e p x-dangerous implies p + ¢,¢ + p, plg, ¢|p and p(\A[f]) x-dangerous,
for any q.

A term pis z —safe if it is not x-dangerous. Given a set C of constants,
we say that a term p is C — dangerous if it is x-dangerous for at least one
z € C, and a term ¢ is C — safe if it is x-safe for all z € C.

Well-formedness. A term p of the extended language is well — formed if,

for each sub-term of the form rec.C.q, either F(gq) is C-safe or term(F(q)) =
true.
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p+gSp and g+p 5y
Par pipl
plg-5p'lg and ¢lp 5 qlp’
p=p, ¢5¢
plg>p'le’
L —
Res P—*P,#ﬂ,li g A
P\A—=p\A
By
p—p
(k)
plf1™ = p'[f]

Sum

Com

Rel

Figure 9: The SOS rules
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