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Abstract

In this work we face a variant of the capacitated lot sizing problem, a classi-

cal problem addressing the issue of aggregating lot sizes for a finite number of

discrete periodic demands that need to be satisfied, thus setting up produc-

tion resources and eventually creating inventories, while minimizing the overall

cost. In the proposed variant we take into account lifetime constraints, which

model products with maximum fixed shelflives due to several possible reasons,

including regulations or technical obsolescence. We propose four formulations,

derived from the literature on the classical version of the problem and adapted

to the proposed variant. An extensive experimental phase on two datasets from

the literature is used to test and compare the performance of the proposed

formulations.

Keywords: Tactical Production Planning, Lot Sizing, Lifetime Constraints,

Perishability, Mathematical Models

1Corresponding author. Email: araiconi@unisa.it

1

Electronic version of an article published as Asia-Pacific Journal of Operational Research, Volume 4, Issue 5, 2017, Article number 
1750019 https://dx.doi.org/10.1142/S0217595917500191 © copyright World Scientific Publishing Company. 
Journal URL: https://www.worldscientific.com/toc/apjor/0/0



A. Raiconi et al. Tactical Prod. and Lot Size with Lifetime Constr.

1. Introduction

The tactical production and lot sizing problem aims at satisfying demands

related to one or more products, which are assumed to be forecasted or known

in advance, and are distributed over a time horizon of interest. To this end, it

is required to make choices related to when items should be produced, and the

related setup operations for the production resources performed. Furthermore,

since resources may have limited availability and multiple types of items may

compete for it, pre-production and thus inventory holding might be a favorable

or necessary strategy. Thus the objective is to fulfill all product demands in

a timely manner while minimizing total costs, i.e., setup costs and inventory

holding ones.

Depending on the specific trade-off between setup costs, inventory costs,

and available resources, holding items in inventory for even large portions of

the planning horizon may appear as an attractive strategy. However, in many

real-world cases this might cause products to pass their useful lifetime and

therefore impose high costs due to inventory loss not only in terms of lost value,

but also in terms of utilization of resources employed in vain, e.g., machine

time, raw materials, metals, and energy increasing CO2-levels. This is notably

disquieting, e.g., in the food industry, where significant losses occur during

handling, processing, and distribution of products. Results of a study conducted

for the International SAVE FOOD Congress (Gustavsson et al., 2011) state

that 1.3 billion tons of food per year are wasted on a global scale, which is

around one third of food produced worldwide for human consumption. This is

particularly valid for developing countries, where more than 40% of food losses

are due to processing, whereas total losses in industrialized countries are as high,

but with more than 40% mainly occurring at the retailer and consumer level.

In industrialized countries, unsatisfied customers waiting for their products or

being concerned about quality represent a critical issue as well.

Deterioration has a great influence not only on inventory management, but

on every area of the production and supply chain planning processes where
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items are stocked or forced to wait due to uncertain demand, technical matters,

variability, or disruptions; see Pahl and Voß (2014) and the references therein.

In general, we distinguish deterioration and perishability, where the first refers

to items with an ongoing process of decay while being stored, that continuously

loose their utility (see for example Dave (1986); Wee (1993); Darlington and

Rahimifard (2006)). In contrast, perishable items can be regarded as items con-

strained by fixed, maximum lifetimes. This holds for items that become obsolete

or unusable at some point in time, because of various reasons, e.g., laws and reg-

ulations that predetermine their shelflives (Boukas and Liu, 2001; Ketzenberg

and Ferguson, 2005). The definitions of deterioration and perishability or life-

time restrictions clearly depend on the specification of item quality. This relates

to the physical state of items, their “behavior” over time, customers’ opinions

expressed in demand functions defining the remaining value of items as well as

their functional characteristics; see Pahl and Voß (2014). Functional deterio-

ration and depreciation due to value loss have the same problem source, but

require different actions. For instance, deteriorating food that might develop

toxins should be separated from fresh food inventory while items that loose their

perceived utility can be kept in the same place with items at different lifetime

states.

Apart from engineering issues to enhance the production process, related co-

ordinated planning throughout the supply chain is an important starting point

to this type of problems. Despite a long tradition in the Operations Research

area to integrate deterioration effects in models for planning, there are only a few

approaches that integrate lifetime constraints to develop production and supply

chain plans accordingly, so that wastage and disposal are avoided, minimizing

resource utilization and increasing environmental consciousness and sustainabil-

ity; see also Pahl and Voß (2014).

In this paper, we address this important issue by integrating lifetime con-

straints into formulations for a classical variant of the lot sizing problem, the

capacitated lot sizing problem (CLSP), in which different items have to be pro-

duced by a single production unit (machine) with a limited capacity per time
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period. We test their performance on a wide set of test instances derived from

the literature, taking into account several different settings for lifetime dura-

tions. The aim is to determine which of them are better suited to represent

this class of problems. To the best of our knowledge, such a comparison has

not been undertaken in the literature, and represents an important preliminary

step towards the development of efficient exact approaches.

The rest of the work is organized as follows. Section 2 contains an overview

of the existing literature. In Section 3 we introduce four classical formulations

for the capacitated lot sizing problem, and show how they can be adapted

to incorporate lifetime constraints. In Section 4 we analyze and compare the

performance of the different formulations on some datasets coming from the

literature. Finally in Section 5 we present some final remarks.

2. Literature Overview

The CLSP was shown to be NP-Hard in earlier works such as Florian et al.

(1980) and Bitran and Yanasse (1982). Due to the complexity of the problem,

heuristic approaches for the CLSP and its variants have been proposed in many

works (Dixon and Silver, 1981; Haase, 1996; Meyr, 2000; Alfieri et al., 2002;

Gupta and Magnusson, 2005; de Araujo et al., 2007; Caserta and Voß, 2013).

A survey on meta-heuristics for the CLSP was presented in Jans and Degraeve

(2007).

Exact approaches for the problem have also been faced in several works

(Barany et al., 1984; Eppen and Martin, 1987; Pochet and Wolsey, 1988; Stadtler,

1996; Belvaux and Wolsey, 2000, 2001), which focused on either valid equalities

for the natural formulation of the problem (which we describe in Section 3.1)

or in proposing reformulations. In particular, some works proposed network

flow-based reformulations deriving from the shortest path problem (Eppen and

Martin, 1987; van Hoesel and Kolen, 1994; Alfieri et al., 2002) or the multi-

commodity flow problem (Pochet and Wolsey, 1988) while reformulations based

on plant location problems can be found in Stadtler (1996) and Alfieri et al.

(2002). In Karimi et al. (2003) the authors present a survey on models and
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solution approaches for several CLSP variants. Recently, in de Araujo et al.

(2015) the author studied the CLSP with setup times, modeled as capacity con-

straints, presenting a hybrid approach combining Lagrangean relaxation and

column generation.

An important distinction made in the literature with respect to discrete-time

period models is the classification between big bucket and small bucket models,

where the big bucket ones model rather long time periods, so that the setup

and production for several products can be carried on in a single bucket. Given

the assumptions that will be mentioned in next section, the CLSP belongs to

big bucket models, also known in the literature as macro period models, a name

deriving from material requirements planning (MRP) terminology (see Eppen

and Martin (1987), Billington et al. (1983), Voß and Woodruff (2006) for more

details). Small bucket models, on the other hand, generally include scheduling

information and are used to model factors such as individual product setups and

switch-offs, thus considering more detailed information about the shop floor (see

also Pahl et al. (2011)).

A recent survey on deterioration and lifetime constraints in models for pro-

duction and supply chain planning shows that not many formulations exist to

integrate such issues in optimization models; see Pahl and Voß (2014). More-

over, discrete deterministic dynamic optimization formulations for production

and inventory planning including lifetime restrictions are rare. Mixed-integer

programming (MIP) models including lifetime restrictions have been proposed,

e.g., by Hsu (2000); Förster et al. (2006); Entrup et al. (2005); Amorim et al.

(2011); Pahl and Voß (2010); Pahl et al. (2011).

We note that there are mainly two types of formulations to integrate lifetime

constraints in optimization models in the literature that are relevant to this

research. One is the restriction regarding the number of periods that items can

be held in inventory. It modifies the time index and restricts it by the item

lifetimes, so that it is named index transformation by Pahl and Voß (2014); see

also Inequality (9) on Page 9. This formulation can be used in inventory and lot-

size (I&L) as well as in transportation formulations; see also Stadtler (1996).
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MIPs including the index transformation formulation have been proposed by

Förster et al. (2006); Entrup et al. (2005); Amorim et al. (2011). The other

formulation has been developed by Pahl and Voß (2010) and used in I&L models

such as the ones presented in the work of Pahl et al. (2011); Pahl (2012). It

calculates the amount of perishable items by taking into account the sum of

items produced in a period restricted by their lifetime less the sum of those

items used for demand satisfaction until the current regarded time period as

well as the sum of those that have already been disposed in previous periods.

Different to the index transformation formulation, it allows for perishability

and related disposal whereas the index transformation prohibits it. Moreover,

in case of minimal lot size constraints, the index transformation formulation

might be violated and thus cannot be applied.

3. Model Formulations

In this work, we take into account classical assumptions for the CLSP.

Namely, production is planned for a time horizon divided into a discrete num-

ber of time periods (or time buckets), demands are known in advance, and there

are no constraints related to minimal lot sizes or precedence constraints among

different items. Demands for each time bucket must be satisfied with no delays,

and can be satisfied by items produced in the same time bucket. With respect

to setup costs, they are independent from the produced amount, and they incur

in each time period in which a given item is produced. Regarding inventory,

costs are linear, initial inventory is assumed to be zero, and final inventory levels

are not considered.

For each of the four formulations presented in this section, we start by re-

viewing the formulation related to the basic CLSP, and then show how the

formulation can be modified to incorporate lifetime constraints. We start by

introducing some notation for the parameters of the problem, that will be used

throughout the paper.

Let:
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• N = {1, . . . , N} be the set of the products;

• T = {1, . . . , T} be set of discrete time buckets;

• dnt ≥ 0, ∀ n ∈ N and t ∈ T , be the amount of demand for product n at

time t;

• rn ≥ 0, ∀ n ∈ N , be the amount of resources requested to produce one

unit of product n;

• Rt ≥ 0, ∀ t ∈ T , be the total amount of resources available for production

at time t;

• setn ≥ 0, ∀ n ∈ N , be the setup cost to be paid to produce any amount

of product n in a given time period;

• invn ≥ 0, ∀ n ∈ N , be the inventory cost to store one unit of product n

for a time period;

• ftn ∈ T , ∀ n ∈ N , be the first time period with non-zero demand of item

n;

• Dntq ≥ 0, ∀ n ∈ N and {t, q} ∈ T with t ≤ q, be the total demand for

item n from time t to q (that is, dnt + . . .+ dnq).

• cntq ≥ 0, ∀ n ∈ N and {t, q} ∈ T with t ≤ q, be the total inventory cost

that should be paid if Dntq is produced at time t (i.e. invn(dn(t+1) +

2dn(t+2) + . . . (q − t)dnq))

• θn ≥ 0, ∀ n ∈ N , be the lifetime associated with product n; that is, any

unit of item n produced at time t ∈ T can be used to satisfy demands up

to time period max{t+ θn, T}.

The presented formulations include a natural formulation of the problem,

also referred to in the literature as I&L (Stadtler, 1996; Alfieri et al., 2002), a

multi-commodity flow formulation (Pochet and Wolsey, 1988), a plant location-

based formulation (Stadtler, 1996; Alfieri et al., 2002), and a shortest path-based

formulation (see Eppen and Martin (1987); Stadtler (1996); Alfieri et al. (2002)).
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3.1. I&L Formulation

The I&L formulation makes use of the following variables:

• Snt ∈ {0, 1}, ∀ n ∈ N and t ∈ T , representing the decision on producing

some units of product n at time t, and hence pay the related setup cost;

• Int ≥ 0, ∀ n ∈ N and t ∈ T , representing the number of units of product

n stored in inventory at the end of time t, defining the related inventory

cost;

• Xnt ≥ 0, ∀ n ∈ N and t ∈ T , representing the number of units of product

n produced at time t.

The classical I&L formulation is given as follows:

[I&L] min

N∑
n=1

T∑
t=1

(setnSnt + invnInt) (1)

s.t.

In1 = Xn1 − dn1 n = 1, . . . , N (2)

Int = In(t−1) +Xnt − dnt n = 1, . . . , N, t = 2, . . . , T (3)

N∑
n=1

rnXnt ≤ Rt t = 1, . . . , T (4)

Xnt ≤ DntTSnt n = 1, . . . , N, t = 1, . . . , T (5)

Snt ∈ {0, 1} n = 1, . . . , N, t = 1, . . . , T (6)

Int ≥ 0 n = 1, . . . , N, t = 1, . . . , T (7)

Xnt ≥ 0 n = 1, . . . , N, t = 1, . . . , T (8)

Objective function (1) minimizes the sum of setup and inventory costs. For

each product n the related setup cost is paid once for each time period t where

some production of n is planned, while inventory costs are linear and depend

on the stocked quantities. Constraints (2)-(3) impose inventory balance con-

straints, i.e. consistency among production variables, inventory variables and

demands, for the first time period and the subsequent ones, respectively (recall
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that by definition inventory is empty at the beginning and at the end of the

planning horizon). Constraints (4) impose the limitations on production re-

sources availability, while Constraints (5) bind the binary setup variables with

production variables.

It may be noted that the formulation does not impose the inventory to be

empty at the end of the time horizon, although given an optimal solution with

non-empty final inventory, an equivalent optimal solution without the produc-

tion excess surely exists.

Now, let us consider perishability constraints. In all our formulations, we

assume that items are used on a first-in-first-out basis, meaning that the demand

of each product n at time t is satisfied by using first the units produced in

the oldest previous time period. Recall that, for a given product n, all units

produced at time 1 can be used up to time 1 + θn. More generally, for any

t = θn + 1, . . . , T , the earliest time of production for units of n used to satisfy

the demand dnt is t − θn. Therefore, similarly to other works (see (Pahl and

Voß, 2010)), we impose that for any such value of t, the total production of n

from time 1 to t− θn does not exceed the cumulative demand Dn1t, as follows:

t−θn∑
q=1

Xnq ≤ Dn1t n = 1, . . . , N, t = (θn + 1), . . . , T (9)

For instance, for t = θn+1, and therefore t−θn = 1, these constraints impose

that the production of n in the first time instant (i.e. Xn1) is not greater than

the overall demand of the item up to time θn + 1, since this production cannot

be used to satisfy demand of n at time θn + 2 or later. For t = θn + 2, it is

imposed that the production of n in the first two time instants is not greater

than Dn1(θn+2), and so on.

Furthermore, by a similar reasoning, the right-hand side coefficient in Con-

straints (5) can be reduced by substituting the constraints with
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Xnt ≤ Dnt(t+θn)Snt n = 1, . . . , N, t = 1, . . . , T − θn (10)

Xnt ≤ DntTSnt n = 1, . . . , N, t = (T − θn) + 1, . . . , T (11)

where (11) is related to time periods t such that t+ θn > T .

3.2. Multi-Commodity Flow Formulation

The multi-commodity flow formulation makes use of disaggregated produc-

tion and inventory variables. That is, in addition to variables Snt described in

Section 3.1, it uses the following ones:

• intq ≥ 0, ∀ n ∈ N and {t, q} ∈ T with t < q, representing the number of

units of product n stored at the end of time t to satisfy demand at time

q;

• xntq ≥ 0, ∀ n ∈ N and {t, q} ∈ T with t ≤ q, representing the number of

units of product n produced at time t to satisfy demand at time q.

The formulation is the following:

[MC] min

N∑
n=1

(

T∑
t=1

setnSnt +

T−1∑
t=1

invn

T∑
q=t+1

intq) (12)

s.t.

xn11 = dn1 n = 1, . . . , N (13)

xn1t = in1t n = 1, . . . , N, t = 2, . . . , T (14)

in(t−1)t + xntt = dnt n = 1, . . . , N, t = 2, . . . , T (15)

in(t−1)q + xntq = intq

n = 1, . . . , N, t = 2, . . . , (T − 1), q = (t+ 1), . . . , T (16)
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N∑
n=1

rn

T∑
q=t

xntq ≤ Rt t = 1, . . . , T (17)

xntq ≤ dnqSnt n = 1, . . . , N, t = 1, . . . , T, q = t, . . . , T (18)

Snt ∈ {0, 1} n = 1, . . . , N, t = 1, . . . , T (19)

intq ≥ 0 n = 1, . . . , N, t = 1, . . . , T, q = 1, . . . , T, t < q (20)

xntq ≥ 0 n = 1, . . . , N, t = 1, . . . , T, q = 1, . . . , T, t ≤ q (21)

Objective function (12) assumes the same meaning of (1). Constraints (13)-(16)

impose consistency among the disaggregated production and inventory vari-

ables, and ensure that demands are fulfilled. Constraints (17) model resource

availability restrictions, and correspond to Constraints (4) in the previous for-

mulation, while Constraints (18) are the disaggregated version of the coupling

constraints (5). Indeed, if any production of item n takes place at time t for

some time instant q ≥ t, and therefore xntq > 0, then Snt must be equal to

1. The value of xntq is trivially bounded by dnq; therefore, the disaggregated

constraints allow to use such small coefficients.

Since the additional variables directly express the production period t and

the consumption period q of product units, modeling lifetime constraints for a

given product n simply requires to impose disaggregated production variables

to 0 if q > t+ θn. The related inventory variables can be imposed to 0 as well.

Such constraints are therefore expressed as follows:

xntq = 0

n = 1, . . . , N, t = 1, . . . , T − (θn + 1), q = (t+ θn + 1), . . . , T (22)

intq = 0

n = 1, . . . , N, t = 1, . . . , T − (θn + 1), q = (t+ θn + 1), . . . , T (23)

3.3. Plant Location Formulation

The plant location-based model is basically a reformulation of the multi-

commodity flow one, which does not use inventory constraints. Instead, pro-
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duction variables xntq with q > t can be implicitly used to express and evaluate

inventory levels. As noted in (Alfieri et al., 2002), the model defines a plant

location formulation where plants are located temporally instead of physically.

The formulation is the following:

[PL] min

N∑
n=1

(

T∑
t=1

setnSnt +

T−1∑
t=1

invn

T∑
q=t+1

(q − t)xntq) (24)

s.t.

q∑
t=1

xntq = dnq n = 1, N, q = 1, . . . , T (25)

N∑
n=1

rn

T∑
q=t

xntq ≤ Rt t = 1, . . . , T (26)

xntq ≤ dnqSnt n = 1, . . . , N, t = 1, . . . , T, q = t, . . . , T (27)

Snt ∈ {0, 1} n = 1, . . . , N, t = 1, . . . , T (28)

xntq ≥ 0 n = 1, . . . , N, t = 1, . . . , T, q = 1, . . . , T, t ≤ q (29)

Objective function (24) minimizes the sum of setup costs and inventory

costs as for the previous models. For each production variable xntq expressing

a positive inventory level (that is, such that q > t), the related inventory cost

is obtained by multiplying the unitary storage cost invn for the number of time

periods during which the inventory holding phase takes place (which is (q− t)).

Constraints (25) make sure that all the production of a given item n targeted

to a given time period q is used to satisfy the related demand dnq. Constraints

(26) and (27) are resource and coupling constraints, and are the same as (17)

and (18), respectively.

Lifetime constraints can be imposed by adding Constraints (22), as for the

multi-commodity flow formulation.

3.4. Shortest Path Formulation

The shortest path-based formulation makes use of the binary variables Snt

introduced in Section 3.1. Furthermore, it uses an additional set of variables
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zntq ∈ [0, 1], ∀ n ∈ N and {t, q} ∈ T with t ≤ q, representing the fraction of the

cumulative demand Dntq produced at time t. The formulation is the following:

[SP] min

N∑
n=1

T∑
t=1

(setnSnt +

T∑
q=t

cntqzntq) (30)

s.t.

T∑
t=1

zn1t = 1 n = 1, . . . , N (31)

T∑
q=t

zntq =

t−1∑
k=1

znk(t−1) n = 1, . . . , N, t = 2, . . . T (32)

N∑
n=1

rn

T∑
q=t

Dntqzntq ≤ Rt t = 1, . . . , T (33)

T∑
q=ftn

zntq ≤ Snt n = 1, . . . , N, t = 1, . . . , T (34)

Snt ∈ {0, 1} n = 1, . . . , N, t = 1, . . . , T (35)

zntq ∈ [0, 1] n = 1, . . . , N, t = 1, . . . , T, q = 1, . . . , T, t ≤ q (36)

As introduced in Section 3, cntq values represent the full inventory cost to

produce Dntq at time t. Therefore, objective function (30) represents the sum

of setup and inventory costs for this formulation as well.

The formulation is based on the structure of the single-item lot sizing prob-

lem without capacity constraints. Indeed, in this case, it can be demonstrated

that the optimal solution is composed of full cumulative productions for fu-

ture time periods. Therefore, the zntq variables are binary and the solution is

represented by a shortest path. In this sense, Constraints (31)-(32) can be inter-

preted as flow conservation constraints. Even when zntq variables are relaxed,

these constraints impose the overall amount of produced items to correspond

to the total demand. Let zntq > 0; this means that zntqDntq units of item n

will be produced at time t. The effect of Constraints (31)-(32) is to impose

that
∑T
t=1 zn1tDn1T = Dn1T units are produced for each item n. Consider, for
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instance, the case in which a single item (with index 1) has to be produced

over a time horizon of length 8, and suppose that the following non-zero values

(that satisfy Constraints (31)-(32)) are assigned to z1tq variables: z112 = 0.8,

z135 = 0.8, z115 = 0.2, z168 = 1. It follows that the overall number of produced

units is 0.8(D112 +D135 +D168) + 0.2(D115 +D168) = D118.

Note that in absence of capacity constraints, production of item n in an

optimal solution would start at time ftn and, therefore, Constraints (31) would

be written as
∑T
t=ftn

znftnt = 1 ∀n ∈ 1, . . . , N , as in Alfieri et al. (2002).

Conversely, imposing the flow to start at time instant 1 for each product n allows

production before ftn, which might be necessary due to capacity constraints.

However, it should be noted that in this case zntq > 0 does not correspond to

actual production if q < ftn, and therefore the related setup cost Snt should

not be paid. Therefore, Constraints (34) force Snt to value 1 only if zntq > 0

for some values of q ≥ ftn.

Finally, Constraints (33) are the capacity constraints and therefore are equiv-

alent to (26) for the plant location-based formulation.

To consider lifetime constraints, it is not possible to directly impose zntq = 0

for each q > t+ θn. Indeed zntq values are used to determine the time buckets

in which items should be produced, as well as production levels; in particular, if

zntq > 0 and q is not the final time bucket, then item n will be produced at time

t and again at time q + 1. Hence, sometimes positive zntq values for q > t+ θn

can be required in an optimal solution. Therefore, similarly to Constraints

(9) for the I&L Formulation, we model lifetime constraints by imposing that

for any product n and for any t = θn + 1, . . . , T the amount of production

from time period 1 to t− θn is not greater than Dn1t. Since for any given τ =

1, . . . , (t−θn) the amount of units of n produced in τ is given by
∑T
q=τ Dnτqznτq,

such constraints are expressed as follows:

t−θn∑
τ=1

T∑
q=τ

Dnτqznτq ≤ Dn1t n = 1, . . . , N, t = (θn + 1), . . . , T (37)
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4. Computational Study

For the comparison, we use two different sets of test instances that can be

found in the literature, that is,

• Dataset 1: instances proposed in Alfieri et al. (2002), provided by the

authors;

• Dataset 2: instances proposed in Trigeiro et al. (1989), provided by C.

Sürie2.

Dataset 1 includes 20 instances with 500 products and 15 time periods.

Instances are generated according to three parameters, d−prob, t−cap and tbo.

The d − prob parameter represents the probability of having non-zero demand

during each time period; whenever there is demand, its value was set to a random

value. The t−cap parameter represents the tightness of capacity constraints with

respect to the total demand; t− cap = 0 would correspond to the uncapacitated

case, while with t−cap = 1 the available capacity would be equal to the required

one. Finally, tbo represents the time between orders; it is used to calculate setup

costs as a function of tbo and inventory costs, using relationships deriving from

classical Economic Order Quantity analysis. The authors considered values

d − prob = {0.9, 0.5}, t − cap = 0.9, tbo = 2, 4, and generated 5 instances for

each combination of such parameters, leading to the final set of 20 instances.

The dataset proposed by Trigeiro et al. (1989) is composed of 751 instances.

The authors generated instances containing 6 to 30 items and 15 to 30 time

periods. Average product demands are equal to 100 per period, with several

different coefficients of variation considered, while the capacity used per unit

of production is always set to 1. The ratio of setup to inventory costs was set

to either 0.267 or 1.333. Since most of these instances can be solved within

few seconds, a subset of 35 among the nontrivial ones has been selected to be

2Instances available at the following address: http://www.suerie.de/testsets.htm#

CLSPL_Testset
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part of Dataset 2. More particularly, it is composed of 20 instances with 10

products and 20 time periods (using the naming convention provided by C.

Sürie, instances 0441-0445, 0468, 0470-0473, 0502, 0531, 0561-565 and 0578-

0580), 10 instances with 20 products and 20 time periods (instances 0711-0715

and 0735-0739), and 5 instances with 30 products and 20 time periods (instances

0936-0940).

Since the instances belonging to both datasets did not originally take into

account lifetime constraints, the lifetime of the products had to be defined in

order to run our computational experiments. For both datasets, we considered

five different scenarios. In more detail, for each of the two datasets, we consid-

ered two scenarios in which all products have the same lifetime; in one of the

two cases (called short fixed from now on) the lifetime value was chosen to be

relatively small, while in the other one (long fixed) it was chosen to be at least

half the length of the planning horizon. Moreover, we considered two scenarios

(short variable and long variable) in which each item has a lifetime value cho-

sen between two different alternatives. Finally, we also considered the case in

which perishability constraints are not included. Such a comparison does not

constitute the main focus of this work; however, it is reported for the sake of

completeness.

For Dataset 1, in the short fixed scenario each of the 500 products has a

lifetime equal to 2 time periods, while in the long fixed one it is equal to 8 time

periods. In the short variable scenario, given the set of products {s1, . . . , s500},

the ones with an assigned odd index have a lifetime equal to 3, while the others

have lifetime 2; in the long variable one, these lifetime values are equal to 8 and

4, respectively.

For the instances belonging to Dataset 2, that have much fewer products

and a longer planning horizon, the lifetime is equal to 3 time periods for the

short fixed scenario and equal to 10 time periods for the long fixed one. In the

short variable scenario, items with an assigned odd index have lifetime 5, while

the others have lifetime 3. In the long variable one, these lifetime values are

equal to 10 and 5, respectively.

16



A. Raiconi et al. Tactical Prod. and Lot Size with Lifetime Constr.

Overall, taking into account the five different scenarios, a total number of

100 instances for Dataset 1 and 175 instances for Dataset 2 were considered.

For all formulations, both datasets and all the above described scenarios, we

compared the quality of the solutions found within a time limit using the CPLEX

12.5.1 solver. Furthermore, as will be shown, we also compared the strength of

their linear relaxations. Finally, in order to further investigate the effect of

lifetime constraints in terms of solution value and required computational time,

for both datasets and a single formulation (namely the Plant Location one) we

also considered the case where the lifetime of each product is equal to 0,1,2,3,4,5

or 10.

All the formulations were implemented using the AMPL mathematical pro-

gramming language, and tests were performed on an Intel Xeon 2 GHz work-

station with 8 GB of RAM. A time limit equal to 1 hour was considered for

each run. For all the tests, the relative MIP gap tolerance value was set to 0, as

the default value of the solver resulted sometimes in slightly different optimal

objective function values when the same instances were solved using different

models.

Tables 1-7 and Figure 1 summarize the main findings of our computational

study. In these tables, headings PL, MC, I&L and SP stand for the Plant

Location, Multi-Commodity, I&L and Shortest Path formulation, respectively.

Table 1 reports a comparison on the quality of the solutions returned by the

different formulations for Dataset 1, in the five different scearios. Each table

entry, whose row and column headings refer to formulations, reports how many

times (out of the 20 instances) the formulation indicated by the row heading

found a better solution than the other. Each entry related to a #opt column

heading reports instead how many times a certified optimal solution within

the time limit was found using the formulation indicated by the row heading.

Finally, for each formulation the two entries under the overall column heading

report the sum of the number of times in which the related formulation found

a better solution and an optimal solution over the five scenarios, respectively.

It can be noticed that PL and MC outperform significantly the other two
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Table 1: Dataset 1: Solutions quality comparison
no perishability θn = {4, 8} θn = 8
vs. vs. vs. vs. vs. vs. vs. vs. vs. vs. vs. vs.

#opt PL MC I&L SP #opt PL MC I&L SP #opt PL MC I&L SP
PL 11 — 3 15 4 12 — 1 15 6 11 — 1 15 5
MC 11 5 — 15 3 12 6 — 15 6 10 7 — 15 8
I&L 5 0 0 — 0 5 0 0 — 0 5 0 0 — 0
SP 9 5 6 15 — 9 5 5 15 — 9 5 2 15 —

θn = {2, 3} θn = 2 overall
vs. vs. vs. vs. vs. vs. vs. vs.

#opt PL MC I&L SP #opt PL MC I&L SP #wins #opt
PL 15 — 2 14 9 15 — 4 10 10 114 64
MC 14 3 — 14 9 15 1 — 10 10 127 62
I&L 6 0 0 — 3 8 0 0 — 8 11 29
SP 8 0 0 11 — 8 0 0 4 — 88 43

formulations, by finding overall 64 and 62 optimal solutions out of 100, respec-

tively. Overall, PL and MC find a better solution than some other formulation

114 and 127 times, respectively. Conversely, SP finds better solutions 88 times,

individuating 43 optimal solutions, while I&L finds better solutions in 11 cases

and optimal solutions in 29 cases.

Looking at the five lifetime scenarios, it can be noticed that the performance

of the PL and MC formulations improve when shorter lifetimes are considered,

while the opposite appears to hold when considering the SP one. Indeed, in

the scenario without perishability, SP finds 9 optimal solutions, and the same

holds for both the long fixed and the long variable scenarios. MC and PL find

11 optimal solutions in the case without perishability, 12 optimal solutions in

the long variable one and either 11 or 10 in the long fixed one. When the short

lifetime constraints are considered, the number of optima found decreases to

8 for SP, and further increases to either 14 or 15 for both MC and PL. This

behavior can be understood by considering that lifetime constraints involve a

reduction of the number of variables on which a choice has to be made for

PL and MC (see Constraints (22)-(23)). Clearly, the smaller the θn value is,

the higher is the number of variables which are set to 0. On the contrary,

adding Constraints (37) make the SP formulation harder to solve. The I&L

natural formulation shows overall the worst performance, testifying the need for

stronger formulations. This is an expected result, consistent with the literature

(see Stadtler (1996); Alfieri et al. (2002)). In particular, it is worth noting that
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it never finds better solutions than PL or MC.

Table 2 further analyzes these results. For each scenario, each couple of

formulations appearing in our tables, and each instance x, let val(FC, x) and

val(FR, x) be the objective function values found by using the formulation indi-

cated by the column heading and the row heading, respectively; the percentage

gap among these values is calculated as (100− 100val(FC,x)
val(FR,x) ). We do not consider

the cases in which val(FC, x) = val(FR, x), that is, we focus on the cases in

which the two formulations report different solution values; on this subset of

instances, each entry in the upper part of Table 2 reports the average of the

percentage gaps multiplied by 100, while entries in the lower part of the table

contain the standard deviation for such values. This choice was taken in order

to improve the legibility of the tables, since the gap values are usually very small

with respect to objective function values.

Table 2: Dataset 1: Gaps comparison on solutions with different values
Average values

no perishability θn = {4, 8} θn = 8
vs. vs. vs. vs. vs. vs. vs. vs. vs. vs. vs. vs.
PL MC I&L SP PL MC I&L SP PL MC I&L SP

PL — 0.12 -30.83 0.26 — 0.32 -32.17 0.27 — 0.89 -33.11 0.59
MC -0.12 — -30.90 0.15 -0.32 — -32.32 0.07 -0.89 — -33.59 -0.12
I&L 30.55 30.61 — 30.70 31.86 32.01 — 32.06 32.78 33.26 — 33.18
SP -0.26 -0.15 -30.99 — -0.27 -0.07 -32.37 — -0.59 0.12 -33.51 —

θn = {2, 3} θn = 2
vs. vs. vs. vs. vs. vs. vs. vs.
PL MC I&L SP PL MC I&L SP

PL — -0.03 -11.57 -6.05 — -0.03 -5.39 -14.8
MC 0.03 — -11.56 -6.04 0.03 — -5.38 -14.79
I&L 11.52 11.51 — 7.64 5.38 5.37 — -7.83
SP 6.04 6.03 -7.67 — 14.75 14.74 7.81 —

Standard deviation values
no perishability θn = {4, 8} θn = 8

vs. vs. vs. vs. vs. vs. vs. vs. vs. vs. vs. vs.
PL MC I&L SP PL MC I&L SP PL MC I&L SP

PL — 0.45 43.58 0.47 — 0.32 45.62 0.53 — 1.98 46.36 1.41
MC 0.45 — 43.68 0.23 0.32 — 45.81 0.38 1.98 — 46.98 0.53
I&L 43.17 43.26 — 43.43 45.16 45.35 — 45.50 45.90 46.51 — 46.48
SP 0.47 0.23 43.85 — 0.53 0.38 45.96 — 1.41 0.53 46.95 —

θn = {2, 3} θn = 2
vs. vs. vs. vs. vs. vs. vs. vs.
PL MC I&L SP PL MC I&L SP

PL — 0.09 18.37 7.75 — 0.14 6.02 16.95
MC 0.09 — 18.34 7.75 0.14 — 5.98 16.91
I&L 18.28 18.25 — 16.88 6.01 5.97 — 11.45
SP 7.74 7.73 16.94 — 16.88 16.84 11.41 —
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From our description of the gap evaluation, it follows that entries with neg-

ative values in Table 2 identify the cases in which the formulation related to the

row heading finds on average better solutions than the other, while the opposite

holds for the entries with positive values.

It can be noted that PL and MC report very similar results, since in the cases

without perishability the average gap on instances with different solution values

is equal to 0.0012%. When perishability is considered, it is equal to 0.0003%

in the worst case for short lifetime scenarios and 0.0089% in the worst case for

the long ones. The SP formulation confirms its good performance in absence of

perishability or when long lifetime values are considered. Indeed, in two out of

three cases, it finds on average better solutions than all the others, and in the

remaining one (θn = 8) only MC finds on average better solutions. However, in

the other two cases, it finds on average worse solutions than the others in all

cases except one (where it outperforms I&L by 0.07767% on average).

The I&L formulation is always outperformed by PL and MC in terms of

average gap, with the highest gaps being related to the scenarios without per-

ishability or with long lifetime values. This could be expected given the high

number of suboptimal solutions returned by I&L in this scenario. Unsurpris-

ingly, the standard deviation values show a low level of dispersion when the

best-performing formulations are compared, and larger dispersion values in the

other cases.

Table 3 compares the formulations in terms of average computational time

ratios. For each scenario, each couple of formulations F1, F2 and each instance

x which can be solved optimally using both formulations within the time limit,

let time(F1, x), time(F2, x) be the related computational times. The ratio

among the two values is evaluated as time(F1,x)
time(F2,x) . Each entry in Table 3 with a

ratio row heading reports the average ratio between the computational times of

the two formulations indicated by the related column heading, evaluated on the

subset of instances for which both are solved within the time limit. Each entry

with a # ins row heading and the same column heading reports the size of such

subset.
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Table 3: Dataset 1: Time comparisons among instances with found optimal solutions

MC/PL I&L/PL SP/PL I&L/MC SP/MC I&L/SP
no perishability

# ins. 11 5 9 5 9 5
ratio 0.97 17.76 2.97 15.98 2.87 4.43

θn = {4, 8}
# ins. 12 5 9 5 9 5
ratio 1.13 12.67 4.34 10.98 3.89 2.56

θn = 8
# ins. 10 5 9 5 9 5
ratio 1.15 13.35 3.23 12.90 2.94 3.65

θn = {2, 3}
# ins. 14 6 8 6 8 5
ratio 1.15 12.69 13.07 14.10 14.62 1.23

θn = 2
# ins. 15 8 8 8 8 5
ratio 1.17 14.97 16.15 12.63 13.51 0.99

From the above mentioned average ratio definition, it follows that for the

entries in a given column with heading F1/F2 the F1 formulation is on average

faster if the ratio value is strictly lower than 1, and slower if it is strictly higher.

It can be noted that MP and PL show a very similar performance in terms of

computational time as well, since the ratios are close to 1 for each scenario.

Conversely, solving the problem using the other two formulations appears to

be significantly more time intensive. In all cases in which I&L is compared to

MC or PL, it is at least 10.98 times (and up to 17.76 times) slower on average

than them. The SP formulation also always performs worse than MC and PL;

however, a noticeable deterioration of the performances can again be noticed

in the scenarios with more restrictive lifetime constraints. Indeed, in the cases

without perishability the ratio value is up to 2.97, in the scenarios with long

lifetimes it is up to 4.34, and in those with short lifetimes SP and I&L perform

very similarly on average (it may be noticed that the I&L/SP ratio is close to

1 for θn = {2, 3} and θn = 2).

Looking at results for Dataset 2 (Tables 4-6), similar conclusions can be

drawn. It may be observed that PL, MC and SP can individuate roughly the
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Table 4: Dataset 2: Solutions quality comparison
no perishability θn = {5, 10} θn = 10
vs. vs. vs. vs. vs. vs. vs. vs. vs. vs. vs. vs.

#opt PL MC I&L SP #opt PL MC I&L SP #opt PL MC I&L SP
PL 20 — 2 26 5 24 — 2 23 6 21 — 2 25 5
MC 20 4 — 26 3 24 1 — 22 6 21 2 — 25 5
I&L 2 0 0 — 0 3 0 0 — 1 3 0 0 — 0
SP 18 4 3 25 — 19 1 1 21 — 19 2 1 25 —

θn = {3, 5} θn = 3 overall
vs. vs. vs. vs. vs. vs. vs. vs.

#opt PL MC I&L SP #opt PL MC I&L SP #wins #opt
PL 23 — 2 21 6 26 — 2 15 9 151 114
MC 23 1 — 21 5 25 1 — 16 8 146 113
I&L 2 0 0 — 0 5 1 0 — 4 6 15
SP 16 1 1 20 — 14 0 1 12 — 118 86

same percentage of optimal solutions on both Dataset 1 and Dataset 2. In more

detail, PL and MC solve with success 64% and 62% of the instances for Dataset

1, respectively, and around 65% of them for Dataset 2. The SP formulation

individuates 43% of the optima for Dataset 1 and around 49% of them for

Dataset 2. On the contrary, by using the I&L formulation, 29% of the Dataset

1 instances are solved with success, while the same holds for less than 9% of the

Dataset 2 instances, which suggests that the classical formulation is even more

unfit to solve the problem on instances with longer planning horizons.

Looking at the average gap and standard deviation values in Figure 5, it can

be seen that SP is always outperformed by PL and MC, while I&L is always

outperformed by the other three formulations. Analyzing the average time ratio

values, it is clear that the ratio keeps being very close to 1 for all scenarios

between PL and MC, with the other two formulations being significantly slower

(up to 13 times slower in the case of MC, and over 300 times slower in the case

of I&L).

Table 7 summarizes the comparison between linear relaxation values, for all

the formulations and all the considered scenarios. The MC and PL formula-

tion always have identical linear relaxation values, which are also the strongest

among all formulations. For each scenario, each formulation F1 and each in-

stance x, let valR(F1, x) be the optimal objective function value of the linear

programming relaxation of F1 for x. The percentage gap between the value

provided by the linear relaxation of F1 and the one of MC (or PL) for instance
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Table 5: Dataset 2: Gaps comparison on solutions with different values
Average values

no perishability θn = {5, 10} θn = 10
vs. vs. vs. vs. vs. vs. vs. vs. vs. vs. vs. vs.
PL MC I&L SP PL MC I&L SP PL MC I&L SP

PL — -3.96 -27.75 -4.66 — 4.08 -27.83 -9.84 — -2.77 -18.29 -8.95
MC 3.94 — -26.83 -3.04 -4.12 — -29.74 -11.61 2.76 — -17.84 -8.59
I&L 27.57 26.66 — 27.00 27.64 29.54 — 25.70 18.20 17.76 — 15.71
SP 4.65 3.03 -27.18 — 9.82 11.58 -25.86 — 8.93 8.57 -15.78 —

θn = {3, 5} θn = 3
vs. vs. vs. vs. vs. vs. vs. vs.
PL MC I&L SP PL MC I&L SP

PL — -2.29 -13.38 -1.89 — -1.13 -6.64 -9.63
MC 2.24 — -13.06 -1.06 1.12 — -6.43 -9.26
I&L 13.34 13.02 — 13.35 6.63 6.42 — 1.22
SP 1.87 1.06 -13.39 — 9.59 9.21 -1.24 —

Standard deviation values
no perishability θn = {5, 10} θn = 10

vs. vs. vs. vs. vs. vs. vs. vs. vs. vs. vs. vs.
PL MC I&L SP PL MC I&L SP PL MC I&L SP

PL — 13.18 32.37 11.08 — 18.38 33.29 11.06 — 12.20 23.50 10.54
MC 13.16 — 31.51 4.67 18.41 — 33.65 12.64 12.20 — 22.23 10.94
I&L 32.02 31.15 — 31.51 32.94 33.31 — 31.22 23.32 22.08 — 20.70
SP 11.06 4.67 31.87 — 11.03 12.60 31.50 — 10.51 10.92 20.86 —

θn = {3, 5} θn = 3
vs. vs. vs. vs. vs. vs. vs. vs.
PL MC I&L SP PL MC I&L SP

PL — 22.48 13.85 15.20 — 8.39 7.14 19.14
MC 22.50 — 15.42 1.77 8.39 — 5.81 19.98
I&L 13.79 15.33 — 15.74 7.13 5.80 — 11.96
SP 15.20 1.77 15.83 — 19.02 19.86 11.93 —

x is evaluated as (100− 100valR(F1,x)
valR(MC,x) ). Each entry in Table 7 under a F1/MC,PL

heading is an average over all percentage gaps between the relaxations of F1

and MC (or PL) over all the instances of the considered dataset and scenario

type.

It can be seen that the relaxed SP formulation generally returns solutions

that are close to the ones of MC and PL. Indeed it returns identical results

for the scenarios without perishability and in the long fixed ones. Overall, in

the remaining scenarios, the percentage gap grows up to 1.17% for Dataset 1

and up to 2.41% for Dataset 2. Conversely, the relaxed I&L formulation always

returns solutions that are very far from those of MC and PL, with percentage

gaps between 32.02% and 61.45% for Dataset 1 and between 36.73% and 59.28%

for Dataset 2. Our results agree with the comparison carried out in Alfieri et al.

(2002), who, for Dataset 1 and the case without perishability, reported identical

23



A. Raiconi et al. Tactical Prod. and Lot Size with Lifetime Constr.

Table 6: Dataset 2: Time comparisons among instances with found optimal solutions

MC/PL I&L/PL SP/PL I&L/MC SP/MC I&L/MC
no perishability

# ins. 19 2 18 2 18 2
ratio 1.10 11.10 1.28 11.09 1.21 7.11

θn = {5, 10}
# ins. 23 3 19 3 19 3
ratio 1.00 7.41 1.95 7.85 2.03 3.89

θn = 10
# ins. 20 3 18 3 19 3
ratio 0.98 8.07 1.56 9.06 1.63 5.83

θn = {3, 5}
# ins. 22 2 16 2 16 2
ratio 1.14 12.50 9.35 8.55 9.07 3.26

θn = 3
# ins. 24 5 14 5 14 5
ratio 1.11 320.69 13.31 317.19 12.30 9.63

Table 7: Average percentage gaps for linear relaxations
scenario type Dataset 1 Dataset 2

SP/MC,PL I&L/MC,PL SP/MC,PL I&L/MC,PL
no perishability 0.00 61.45 0.00 59.28
θn = {4, 8} 0.04 53.58 0.12 52.66
θn = 8 0.00 58.92 0.00 57.30

θn = {2, 3} 0.72 36.81 1.24 42.30
θn = 2 1.17 32.02 2.41 36.73

linear relaxation results for PL and SP, and a significant gap between them and

I&L.

Finally, in Figure 1, the results of our sensitivity analysis on the value of

product lifetimes are summarized. As previously introduced, we solved all in-

stances using a single formulation, considering a lifetime θn for each product

equal to 0,1,2,3,4,5 or 10. From the previous tests, it is clear that MC and PL

proved to be the best-performing formulations, with very similar performances

among the two. For this sensitivity analysis, we chose the Plant Location for-

mulation since it was able to find a slightly larger number of optimal solutions.

Figure 1(a) reports the average percentage improvement that can be ob-

tained by switching from each considered value of θn < 10 to the following one.

In more detail, for each dataset, an “a→ b” value on the x-axis corresponding
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Figure 1: Solution gaps obtained for different θn values

to a “num” value on the y-axis means that considering θn = b brings on average

a num% improvement with respect to θn = a. Figure 1(b) reports the standard

deviation for the same percentage improvement values.

The scenario θn = 0, in which items have to be used in the same time period

in which they are produced, is not reported for Dataset 2 since a single instance

(that is, instance 0735) is feasible for this scenario. Also, three instances for

Dataset 1, θn = 0 and two instances for Dataset 2, θn = 1 are not feasible

and therefore averages and standard deviation are evaluated on the remaining

instances when these scenarios are considered. For both datasets, the improve-

ments that can be obtained by considering larger product lifetimes get smaller
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and smaller. For Dataset 1, solutions for θn = 1 are on average 24.88% smaller

than the ones for θn = 0; solutions for θn = 2 are on average 6.47% smaller

than the ones for θn = 1; solutions for θn = 3 are on average 1.78% smaller

than the ones for θn = 2, and percentage gaps are below 1% in the other cases.

For Dataset 2, solutions for θn = 2 are on average 14.08% smaller than the ones

for θn = 1, solutions for θn = 3 are on average 5.7% smaller than the one for

θn = 2, solutions for θn = 4 are on average 2.26% smaller than the ones for

θn = 3, and gaps get below 1% in the other cases. Standard deviation values

follow a similar pattern, going from 10.19 to 0.04 for Dataset 1, and from 7.19

to 0.38 for Dataset 2.

5. Conclusions

In this work, we addressed the CLSP with Lifetime Constraints which con-

siders the case of products becoming unusable after a maximum lifetime, as

opposed to the case of deteriorable items, which gradually lose their utility over

time. One may consider, for instance, the rapid obsolescence of technology

products, due to continuous innovation. Four formulations derived from the

study of the literature on capacitated lot sizing models have been adapted to

face this variant. The four formulations have been tested on a wide set of test

instances, belonging to two well-known and used datasets available in the lit-

erature. The natural I&L formulation resulted to be the worst performing, in

agreement with the literature on the basic version of the problem. The main

finding of our work is that, while their performances appeared to be comparable

to the shortest path formulation for the classical problem, the plant location-

based and the multicommodity fomulations resulted to be consistently the best

performing ones when the perishability constraints are taken into account. A

reason for this refers to the fact that those formulations allow a “natural prepro-

cessing” regarding the used variables (that is, related variables are set to zero).

Moreover, a sensitivity analysis on the product lifetimes revealed that this fac-

tor can greatly influence the solution value, and that therefore it is important

to take it into account to avoid economic and environmental waste.
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Further research will be focused on proposing meta-heuristic algorithms to

find good solutions for complex instances in reasonable time, as well as propos-

ing extensions of the problem taking into account other significant parameters

coming from real-world applications, such as setup times and setup carry-overs

where the latter are employed in aggregate models to already take into account

sequencing of multiple items. A further interesting aspect is the inclusion of

rework options for items that passed their useful lifetime. There already exists

considerable research in this direction (see, e.g., Görler and Voß (2016); Pahl and

Voß (2016)). Nevertheless, formulations and models have not been extensively

tested regarding the solution process performance.
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