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Abstract Medical image classification using convolutional neural networks (CNNs) is promising but often



requires extensive manual tuning for optimal model definition. Neural architecture search (NAS)
automates this process, reducing human intervention significantly. This study applies NAS to [18F]-
Florbetaben PET cardiac images for classifying cardiac amyloidosis (CA) sub-types (amyloid light chain
(AL) and transthyretin amyloid (ATTR)) and controls. Following data preprocessing and augmentation,
an evolutionary cell-based NAS approach with a fixed network macro-structure is employed,
automatically deriving cells’ micro-structure. The algorithm is executed five times, evaluating 100
mutating architectures per run on an augmented dataset of 4048 images (originally 597), totaling 5000
architectures evaluated. The best network (NAS-Net) achieves 76.95% overall accuracy. K-fold analysis
yields mean ± SD percentages of sensitivity, specificity, and accuracy on the test dataset: AL subjects
(98.7 ± 2.9, 99.3 ± 1.1, 99.7 ± 0.7), ATTR-CA subjects (93.3 ± 7.8, 78.0 ± 2.9, 70.9 ± 3.7), and controls
(35.8 ± 14.6, 77.1 ± 2.0, 96.7 ± 4.4). NAS-derived network performance rivals manually determined
networks in the literature while using fewer parameters, validating its automatic approach’s efficacy.
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Abstract
Medical image classification using convolutional neural networks (CNNs) is promising but often requires extensive manual 
tuning for optimal model definition. Neural architecture search (NAS) automates this process, reducing human intervention 
significantly. This study applies NAS to [18F]-Florbetaben PET cardiac images for classifying cardiac amyloidosis (CA) 
sub-types (amyloid light chain (AL) and transthyretin amyloid (ATTR)) and controls. Following data preprocessing and 
augmentation, an evolutionary cell-based NAS approach with a fixed network macro-structure is employed, automatically 
deriving cells’ micro-structure. The algorithm is executed five times, evaluating 100 mutating architectures per run on an 
augmented dataset of 4048 images (originally 597), totaling 5000 architectures evaluated. The best network (NAS-Net) 
achieves 76.95% overall accuracy. K-fold analysis yields mean ± SD percentages of sensitivity, specificity, and accuracy on 
the test dataset: AL subjects (98.7 ± 2.9, 99.3 ± 1.1, 99.7 ± 0.7), ATTR-CA subjects (93.3 ± 7.8, 78.0 ± 2.9, 70.9 ± 3.7), and 
controls (35.8 ± 14.6, 77.1 ± 2.0, 96.7 ± 4.4). NAS-derived network performance rivals manually determined networks in 
the literature while using fewer parameters, validating its automatic approach’s efficacy.

Keywords  Neural architecture search · AutoML · Nuclear medicine · [18-F]-Florbetaben · Cardiac amyloidosis

Introduction

Machine learning (ML) is a discipline that supports radi-
ologists in the development of new biomarkers and better 
analysis of medical images towards accurate diagnosis. 
Among ML techniques, deep learning (DL) provides pow-
erful methods for classification, segmentation, and recogni-
tion of medical images [1, 2]. DL is based on algorithms 
relying on Neural Network (NN) structures, made of several 
interconnected nodes, also known as neurons, that process 
information and automatically extract features from unstruc-
tured data [3].

NN, in general, are comprised of three main types of lay-
ers, each one composed of several nodes: the input layer, 
which receives data and passes it to the rest of the architec-
ture; the hidden layers, which apply non-linear functions to 
the data; the output layer, that provides processing results 
under various formats depending on the task at hand (regres-
sion, classification).

Convolutional neural networks (CNN) are a sub-
type of NN, having as hidden layers three specific ones: 
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convolutional layer, pooling layer, and fully connected layer. 
When using CNNs for classification tasks, convolutional and 
pooling layers extract features and information and feed 
them to the fully connected layers. These final layers, in 
turn, give class scores for the images. Designing and finding 
an appropriate neural network, a CNN in particular, can be a 
challenging task; in fact, most of the advances in neural net-
work models usually require considerable hand-tuning of the 
neural network architecture, which is time-consuming and 
error-prone. Often, modifications to existing architectures 
are made using transfer learning, but their effectiveness is 
very much linked to the experience and knowledge of the 
researcher [4].

In recent years, auto machine learning (AutoML) has been 
developed to fulfill two main goals: automate the learning 
process from data pre-processing to model evaluation and 
make deep learning accessible to non-experts. An example 
of AutoML is neural architecture search (NAS) [5], which 
uses automated algorithms and techniques to find architec-
tures that can achieve high performance while minimizing 
the need for manual trial-and-error. The process involves 
exploring a large search space of possible architectures and 
hyperparameters to find the most suitable configuration for 
the given problem.

The first NAS methods relied on reinforcement learn-
ing [6] and evolutionary learning [7] approaches, which 
achieved the best classification accuracy in image classi-
fication. This novel methodology has been used to accom-
plish some medical tasks, such as classifying skin lesions 
[8] or segmenting medical images for surgery planning and 
computer-aided diagnosis [9].

However, as far as we know, there are no studies 
regarding the application of this technique to the clas-
sification of nuclear medicine images, positron emission 
tomography (PET) in particular. This research aims to fill 
this gap by adopting and implementing the NAS-based 
evolutionary algorithm for cardiac amyloidosis (CA) 
classification from early acquired [18F]-Florbetaben 
PET images. Given a dataset that includes PET images 
from subjects with both light chain amyloidosis (AL) 
and transthyretin amyloidosis (ATTR) sub-types of CA 
as well as control subjects, the NAS methodology used in 
the present work is shown to automatically develop and 
evaluate the optimal network for the classification of the 
three data classes.

A comparison is also made with a CNN network already 
present in the literature, named CAclassNET [10], built with 
the classic methodology of manually finding an optimal net-
work for classification through numerous hand-tuning phases 
of the parameters present in the network.

Materials and Methods

Theory

Neural Architecture Search

NAS focuses on optimizing the topology of an architecture, 
usually portrayed through a directed acyclic graph (DAG), 
where neural network operations label the nodes or edges. 
NAS methods are typically categorized according to three 
dimensions: 1. The Search Space A refers to all possible 
architectures that can be used for a given task; 2. The Search 
Strategy, which explores the search space by selecting a sin-
gle architecture α (∈ A); and 3. The Performance Estimation 
Strategy, that evaluates the model’s predictive performance 
on unseen data and can be done, for example, using the clas-
sic training and validation approach on the data. Figure 1 
gives a synthetic description of the NAS workflow followed 
in this work.

Fig. 1   Visual representation of hidden state and operation mutations 
inside a cell. Hidden state mutation (top): hidden state 2 connection 
to operations is changed; Operation mutation (bottom): the convolu-
tional dilatation operation (OP DIL) is changed into a convolutional 
separable operation (OP SEP), the average pooling (OP AVG) is left 
unchanged
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Search Space

A search space is the set of all architectures that the NAS 
algorithm is allowed to select. Common NAS search spaces 
range in size from a few thousand to over a billion architec-
tures. Let us consider a NN as a function that, by applying 
operations to input variables x, produces output variables y. 
We can formalize it as a DAG with a set of nodes {z(1),z(2),…
,z(k),…} = Z. Let O be a set of operations, each node z(k), 
except for the first one that is considered the input node, is 
a tensor evaluated as follows:

with I(k) inputs form the sets of parent nodes and o(k) (∈ O) 
operation applied to nodes. The main operations, as per 
[11], are convolutions, pooling, activation functions, con-
catenation, addition, etc. Once all the possible operations 
are defined, the search space can be considered either as a 
whole or not, giving, respectively: 1. Global search space 
or 2. cell-based search space. A chain and a hierarchical 
structure are also possible but not of interest for this work. 
In a global search space approach, NAS algorithms find 
all the components required for the entire neural network; 
consequently, the search space is large because the graph 
represents the entire network down to the single operation. 
Instead, in a cell-based search space approach (the one 
used in this work), the network is subdivided into several 
cells [12] with different hyperparameters (e.g., the number 
of filters in the first cell can be different from the number 
of filters in the second one). This second approach was pro-
posed because many handcrafted architectures consist of 
repetitions of fixed structures called cells or blocks, which 
can be represented by a DAG. In this case, the network 
macro-architecture is manually defined [5], while the NAS 
approach is reserved for the micro-architecture inside each 
cell. Usually, two kinds of cells are stacked together repeti-
tively: the normal cell that preserves the dimensions of the 
input; the reduction cell that reduces the spatial dimensions 
of the input.

Search Strategy

A search strategy is an optimization technique used to find 
a high-performing architecture in the search space. Once 
the search space has been defined, it is important to explore 
it using suitable approaches. There are generally two main 
categories of search strategies: the black box optimiza-
tion–based techniques (including multi-fidelity techniques) 
[13, 14], and the one-shot techniques [15]. However, there 
are some NAS methods for which both or neither cate-
gory applies. Once the search space has been defined, it is 

z(k) = o(k)
(

I(k)
)

important to explore it using suitable approaches. The NAS 
problem can be defined as follows [11]: Let D be the space 
of all datasets, M the space of all deep learning models, and 
A the architecture search space, then a general deep learning 
algorithm Λ is defined as follows:

In this setting, an architecture α ∈ A defines the net-
work’s topology, parameters, hyperparameters, and reg-
ularization. Let d ∈ D be a dataset, which is split into a 
training and a validation set (dtrain, dvalidation), the algorithm 
estimates the model mα,θ ∈ Mα by minimizing a loss func-
tion L with a regularization term R:

NAS has the task of finding α∗ which maximizes an 
objective function f (�) of the validation partition dvalidation. 
For example, considering the classification task, f (�) is 
usually the validation accuracy:

Here, the function f is considered only dependent on 
� as all the other settings are considered fixed during the 
NAS procedure. Several approaches exist in literature to 
explore the search space, such as random search, rein-
forcement learning [6, 16], gradient-based optimization 
differentiable ARchiTecture search (DARTS) [17], and 
evolutionary algorithms [7]. Evolutionary algorithms use 
the essential components of a genetic optimizer to find the 
best neural network [7, 18, 19]. The approach described 
in [19] and used in the present work requires the defini-
tion of a set of primary operations and mutation rules; the 
overall macro-architecture is also predetermined. Each 
architecture consists of a sequence of normal cells (in 
a stack of N cells) and reduction cells. For each stack 
of normal cells, the number of convolutional filters is 
equal to F; this number is then doubled after each reduc-
tion cell. The goal of this algorithm is to find the best 
reduction and normal cells (micro-architecture). Then, the 
search strategy works as follows: after an initial selec-
tion of P architectures, each consisting of a repetition 
of normal and reduction cells, the validation accuracy is 
evaluated by training each model from scratch. After, the 
evolution algorithm is applied. With C as the number of 
generations (number of steps of the evolutionary algo-
rithm), a sample of S models is randomly selected with 
replacement. The model with the highest accuracy among 
the S selected samples is then picked as the parent and 
mutated. The following three mutation rules are chosen 
according to [19]:

∧ ∶ D x A → M

∧(�, d) =
arg min

m
�,�

∈ M
�

L
(

m
�,�

, dtrain

)

+ R(�)

�
∗ =

arg max

� ∈ A
f (�)
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1.	 Operation mutation: once a cell and a pair of hidden 
states are selected, one of the two operations is changed 
(probability: 0.475).

2.	 Hidden state mutation: once a cell and a pair of hid-
den states are selected, one of the two hidden states is 
changed (probability: 0.475).

3.	 Identity mutation (in which nothing changes) is also pos-
sible but with a lower probability (0.05).

At each step, a mutation is randomly selected and then 
applied to a specific cell (normal or reduction) (Fig. 2). 
The offspring is then trained, and its validation accuracy 
is evaluated. The oldest model is then removed from the 
population to keep the size P constant.

To speed up the search, the different architectures are 
trained for a smaller number of epochs. Then, only a subset, 
consisting of the best models, is selected, eventually aug-
mented (by increasing N and/or F), and trained for a higher 
number of epochs.

Performance Estimation Strategy

A performance estimation strategy is any method used to 
quickly predict the performance of neural architectures to 
avoid fully training the architecture. For example, while 
we can run a discrete search strategy by fully training and 
evaluating architectures chosen throughout the search, using 
a performance estimation strategy such as learning curve 
extrapolation can greatly increase the speed of the search. 
During the search process, it is necessary to evaluate the per-
formance of the candidate architecture. The easiest approach 
that can be used is training a neural network from scratch 
and evaluating its performance on the validation set. Since 
this approach is computationally heavy and requires a lot of 
GPU time, different approaches are proposed in the literature 
to speed up the performance estimation [5]. One of the most 
used methods that we used in the present work is the lower 
fidelity estimates, consisting of estimating the performance 
of the network from the learning curve trained for fewer 
epochs and from the relevant hyperparameters [20, 21].

Image Data

Cardiac Amyloidosis Diagnosis

CA is a cardiomyopathy associated with the deposition of 
protein fibrils in the extracellular space of the heart [22]. 
Several types of amyloidosis can usually be distinguished. 
The most relevant in cardiac amyloidosis are immunoglobu-
lin light-chain amyloidosis (AL) and transthyretin-related 
amyloidosis (ATTR). The main problem of this disease is 
that the early clinical symptoms can be confused with other 
conditions such as hypertensive heart disease or heart hyper-
trophy secondary to aortic valve stenosis. Moreover, these 
two subtypes of amyloidosis require different therapies: AL 
patients are usually treated with chemotherapy or stem cell 
transplantation, while ATTR patients are subjected to small 
RNA-silencing molecules or stabilizers [23, 24]. There-
fore, it is very important not only to diagnose the presence 
of amyloidosis as soon as possible but also to be able to 
characterize which subtype it is. Nowadays, the diagnosis 
of ATTR in the absence of a monoclonal disease can be 
obtained by scintigraphy with bone-seeking agent labelled 
with 99mTc. Instead, when a monoclonal component in 
serum and/or urine is present or for the diagnosis of AL, a 
histologic approach, often by endocardiac biopsy is required 
[25, 26]. The major drawback of cardiac biopsy is the risk 
associated with the invasiveness of the technique. There-
fore, researchers are trying to use non-invasive methods 
such as medical imaging to obtain the information needed 
for early diagnosis [26, 27]. In PET imaging, characteriza-
tion of the CA can be performed by the evaluation of spe-
cific quantitative indexes such as standardized uptake value 
(SUV) SUVmax, SUVmean and molecular volume obtained 
with [18F]-Florbetaben by acquiring early and late static 3D 
images of the thorax after the injection of the radiopharma-
ceutical [28–30]. Alternatively, a dynamic approach can also 
be taken to evaluate indexes that allow CA diagnosis [31]. 
Being able to make an accurate differential diagnosis from 
a single static PET images acquired in an early phase, i.e., 
after a few minutes from the injection of the tracer, should 
have the double advantage of reducing the waiting time for 

Fig. 2   The Neural Architecture 
Search workflowAQ7
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the examination to be performed (for the patient) and obtain-
ing a better organization for the nuclear medicine laboratory. 
Accordingly, in the present work, a set of cardiac amyloi-
dosis images, consisting of 3D static PET acquired 15 min 
after the injection of the [18F]-Florbetaben, was used to test 
the goodness of the proposed approach.

Subjects and Cardiac PET Data Acquisition

A total of 47 subjects are included in this retrospective 
study, including 28 patients with systemic amyloidosis and 
heart involvement (13 patients with AL and 15 patients 
with ATTR cardiac amyloidosis, respectively) and 19 con-
trol patients with the clinical suspicion of CA, that received 
an alternative diagnosis, such as left-ventricle hypertrophy 
secondary to aortic-valve stenosis, primary hypertrophic car-
diomyopathy, or hypertensive cardiac hypertrophy. Patients 
with ischemic heart disease, chronic liver disease, or severe 
renal failure were not included in the study. Diagnosis of CA 
was based on clinical examination, biomarkers positivity, 
electrocardiogram, echocardiography, bone-scintigraphy, 
cardiac magnetic resonance (CMR), and histological evi-
dence of amyloid deposition according to the most recent 
cardiological evidence and guidelines [32, 33]. Further 
details on patients’ characteristics are described in [10]. The 
study was approved by the institutional ethics committee 
and the AIFA (Agenzia Italiana del Farmaco) committee; 
all subjects signed an informed consent form. The study 

complied with the Declaration of Helsinki. Each subject 
underwent PET/CT examination. A Discovery RX VCT 
64-slice tomography (GE Healthcare, Milwaukee, WI, USA) 
was used for image acquisition. Firstly, a low-dose-computed 
tomography (CT) (tube current 30 mA, tube voltage 120 kV, 
effective dose of 1 mSv), covering the heart, was performed 
for attenuation correction. Then, 40 min of PET data were 
acquired, starting at the time of injection of an intravenous 
bolus of [18F]-Florbetaben (300 Mbq/1 ml) followed by 
a saline flush of 10 ml (1 ml/s). The raw PET list mode 
data file was histogrammed between 15 and 20 min of post-
injection, to create a single static sinogram. Then, 3D static 
PET images were reconstructed using the ordered subset 
expectation maximization (OSEM) iterative algorithm with 
three iterations and 21 subsets. Each 3D volume consisted 
of 47 axial slices with a 128 × 128 pixels matrix.

Image Pre‑processing

From the reconstructed axial slices of each volume, only 
those covering the heart were taken into consideration in the 
study; accordingly, for each patient, the number of images 
considered varied from a minimum of eight to a maximum 
of 19 slices. In addition, image cropping was performed. 
The final dimensions of the images are of 77 × 104 pixels. 
A total of 592 2D images (193 from controls, 240 from AL-
subtype patients, and 159 from ATTR-subtype) have been 
considered in the study. In Fig. 3, examples of reconstructed 

Fig. 3   Example of images from 
the different classes: values are 
in SUV
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and cropped images from AL, ATTR, and CTRL subjects 
are shown. To achieve better performance during training 
and avoid overfitting, data augmentation has been imple-
mented. Following, an affine transformation was used [10], 
being recognized in literature as the most suitable method-
ology for the augmentation of data sets in medical imaging 
[34]. Specifically, each image was randomly translated in 
both row and column directions of a maximum of 10 pixels 
and randomly rotated of maximum ± 10°. The affine trans-
formation was applied ten times for each input image. The 
data augmentation is performed as a one-time preprocess-
ing step and only on the training set. To avoid data leakage 
when evaluating the results, data splitting was performed at 
the patient’s level, avoiding the presence of slices from the 
same subjects both in the training/validation and the test set. 
After data augmentation, the overall dimensions of the sets 
are the following:

•	 The training set consists of 384 images augmented to 
3840 (10 × data augmentation; 1550 AL, 1010 ATTR, 
1280 CTRL).

•	 The validation set consists of 96 images (40 AL; 30 
ATTR; 26 CTRL).

•	 The test set consists of 112 images (45 AL; 33 ATTR; 34 
CTRL).

Hardware and Software Specs

The overall algorithm is run on a PC, with Ubuntu Opera-
tive System 22.04.3 LTS, equipped with a Core i7 4790k 
4-core CPU, 32GB of Ram and an Nvidia Titan Xp GPU 
with 12 GB of VRAM. The algorithm is implemented in 
Python 3.9.13 using the Anaconda environment 22.9.0 with 
the respective libraries. Pytorch 1.13.1 with CUDA 11.7 and 
CuDNN 8.5 was used for the core DL development.

Implementation of the Algorithm and Methods 
Detail

The approach used to classify the datasets is based on the 
method described in “Theory”.

Choice of the Primitive Operations

The primitive operations that can be used to build a normal 
or a reduction cell have been selected based on [9] and [19]. 
To avoid redundancy, convolutions, max pooling, and mean 
pooling were restricted to 3 × 3; indeed, [9] shows that larger 
kernel sizes like 5 × 5 and 7 × 7 can be substituted by stacking 
appropriate 3 × 3 convolutions. In this way, each operation 
possesses distinct properties that cannot be substituted by 
others. The chosen operations are defined through a diction-
ary. Following [12], 1 × 1 convolutions are inserted to ensure 

Fig. 4   Structure of the architec-
ture we are looking for

Fig. 5   Overall performance 
estimation strategy and model 
selection
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equal dimensions of the two hidden input states. Each convo-
lution consists of a sequence of Conv-ReLU-batch normali-
zation. Batch normalization is a popular technique used in 
neural networks to improve performance and stability. This is 
achieved by normalizing the output of a layer to have a mean 
of zero and a standard deviation of one [35]. This allows the 
network to learn more efficiently and prevents overfitting.

Implementation of the Evolutionary Algorithm

To determine the best model for the provided datasets, some 
parameters were set.

•	 The number of filters of the first cell (F) (this number is 
doubled before each reduction cell) was initially set equal 
to 4.

•	 The number of operations for each cell. For example, n 
operations correspond to n-1 hidden states: 2 as inputs, 
one as output, and the remaining n-4 are generated 
by applying the selected operations to the previously 
selected hidden states. The number of operations was 
set to 6.

•	 The number of classes for the classification task: equal 
to 3 corresponding to CTRL class (i.e., control subjects), 
AL and ATTR classes.

•	 The number of input channels is equal to one since the 
PET images are grayscale.

•	 The number of layers of the architecture is 4, as shown 
in Fig. 4.

•	 The number of starting architectures P is 100, with 900 
evolutionary steps C (in each step 1 sample was mutated 
(S)).

An example for the first convolutional operation in the 
normal cell could be:

x = Conv2D(input_tensor, F = 4, kernel_size = (3, 3), 
strides = (1, 1), padding = ‘same’)

x = ReLU(x)
x = BatchNormalization(x)
The NAS algorithm was run five times (Fig. 5). For each 

run, a first training step using 25 epochs was performed on 
a population of 100 evolving individuals, maximizing the 
overall classification accuracy. In the second step, the best 
five architectures underwent a further 175 epochs training. 
Hence, 5 × (P + C) = 5000 individuals were generated in 
the first step and 25 (5 × 5) were more deeply analyzed in 
the second step. In the final step, the best individual (i.e., 
the one with the higher overall accuracy) was identified. 
Once the best model is selected, a stochastic k-fold vali-
dation of the best model is performed using five random 
splits of the training/validation dataset. All the training 
was done using the Adam optimizer, with a learning rate 

Table 1   Hyperparameters for the architecture search algorithm

Hyperparameter Value

Starting number of filters F 4
Per cell operations 6
Number of classes 3
Number of channels 1
Number of layers 4
Number of starting architectures P 100
Number of evolutionary steps C 900
Number of mutated samples per step S 1
Number of training epochs 25
Number of further training epochs 175
Batch size 32
Loss function Cross-entropy loss
Learning rate 1e-3
Optimizer Adam (default parameters)

Table 2   Best five individuals for each of the five runs

Individual # Initial validation 
accuracy
(25 epochs)

Final 
validation 
accuracy
(175 further 
epochs)

1st RUN 5 75.00% 72.92%
250 65.63% 84.38%
421 63.54% 87.50%
688 63.54% 67.71%
990 78.13% 75.00%

2nd RUN 363 76.04% 90.63%
376 68.75% 79.16%
849 80.21% 84.38%
878 85.42% 82.29%
887 81.25% 77.08%

3rd RUN 372 85.42% 82.29%
487 66.66% 89.58%
562 76.04% 85.41%
666 65.63% 80.21%
995 82.29% 83.33%

4th RUN 49 69.79% 69.54%
129 71.88% 77.08%
268 72.91% 78.13%
342 65.63% 80.21%
929 73.96% 85.42%

5th RUN 8 59.38% 80.21%
472 73.96% 67.71%
602 70.83% 76.04%
669 77.08% 79.17%
799 77.08% 65.63%
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of 1e-3, cross-entropy loss, and a batch size of 32. Detailed 
values of the hyperparameters used for the architecture 
search algorithm are shown in Table 1.

Pseudocode for the implemented algorithm is provided 
below. From top to bottom, changing color: initialization, 
initial population setup, evolutionary algorithm, final 
training of the best architectures and output.

CAclassNET as Handcrafted Neural Network 
for Comparison

To evaluate the goodness of the net obtained by the NAS 
methodology, a comparison was made with the CNN, named 

CAclassNET, previously proposed by the authors in [10]. In 
the present work, the CAclassNET was newly implemented 
by using Python and Pytorch facilities (in [10], it was imple-
mented in Matlab), for a better comparison between the two 
networks, and trained with the optimized hyperparameters 
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described in [10]. The training was then repeated five times 
to statistically evaluate the performance of the classifier on 
the provided dataset.

Results

The initial and final validation accuracy results for each 
individual architecture among the best five are reported in 
Table 2 for each run.

Accuracy values were normally distributed (p = 0.485, 
Shapiro-Wilkinson test). One-way analysis of variance 
(ANOVA) detected no significant accuracy difference 
(p = 0.829) in the five final validation runs (Table 2). Tukey 
test has been used to detect anomalous observations in accu-
racy values, and no outliers have been detected. Of the five 
runs, the second run yielded the best validation accuracy, 
achieved by individual 363, with a final accuracy of 90.63%. 
The relevant confusion matrix for the validation set is shown 
in Fig. 6. According to such results, further deep analysis 
was performed on this net (NAS-Net in the following).

The structure of the normal and reduction cells is shown 
in Fig. 7; the first two hidden states, ck−2 and ck−1, represent 
the two inputs of each cell, while ck represents the output 
state.

As shown in Fig. 7, two kinds of convolution are used: 
dilated convolutions (DIL_CONV) and dilated separable 
convolutions (SEP_CONV). Each convolution operation 
consists of a sequence: 1. convolution; 2. ReLU; 3. batch 
normalization (BN). For separable convolutions, these oper-
ations are repeated twice [12]. The NAS-Net was trained five 
times, splitting the training and validation entries differently 

in a stochastic manner to statistically evaluate the perfor-
mance of the classifier. For each run, the parameters were 
reset.

Figure 8 shows the validation and training loss of the 
classifier over epochs; continuous lines are the mean values 
of the five runs, and shadowed regions cover 95% of the 
confidence interval. For each run, the performance of the 
NAS-Net on the test set (unseen data) was also evaluated.

Figure 9 shows two examples of confusion matrices 
obtained during the different runs (the best and the worst 
runs, respectively). Table 3 summarizes the overall classifier 
performances, evaluated in terms of sensitivity, specificity, 
and accuracy. From repeated measurements ANOVA analy-
sis, it results that sensitivity and specificity values in all three 
comparisons (i.e., AL vs. ATTR, AL vs. CTRL, and ATTR 
vs. CTRL) as well as accuracy values in AL vs. ATTR and 
AL vs. CTRL, are significantly different (p < 0.001); no sig-
nificant difference was detected between ATTR vs. CTRL 
accuracy values (p = 0.173). The overall mean accuracy of 
the best classifier for the test set was 76.95% (± 2.13%). The 
time needed for a single run of the evolutionary algorithm 
and to evaluate the 5 best architectures was, on average, 
about 12 h and 30 min. Every subsequent retraining of the 
best model required about 20 min.

Comparison with the Handcrafted Neural Network

The average accuracy of the CAclassNET was 99.38% for 
the training set and 87.35% for the validation set. Table 4 
shows the performance of the handcrafted classifier as meas-
ured by sensitivity, accuracy, and specificity. Similarly to 
the results of Table 3, also for Table 4, the ANOVA analysis 
was performed: sensitivity and specificity values in all three 
comparisons, as well as for accuracy values in AL vs. ATTR 
and AL vs. CTRL, are significantly different (p < 0.001); 
no significant difference was detected between ATTR vs. 
CTRL accuracy values (p = 0.8). The overall accuracy on 
the test set was 79.21% ± 3.4%. The performances in terms 
of sensitivity, accuracy, and specificity are better than those 
of a doctor with more than 10 years of experience in cardiac 
nuclear medicine in fact, they resulted to be as follows [10]: 
sensitivity, specificity, and accuracy equal to 0.533, 0.744, 
and 0.673 respectively for AL patients, 0.314, 0.802, and 
0.665 for ATTR patients, 0.562, 0.667, and 0.627 for CTRL.

Table 5 summarizes the differences between the two mod-
els in four aspects: number of parameters, time to define 
an architecture, training time, and classification time of a 
new image. Regarding accuracy at the subject level, both 
the architecture developed using the NAS method and 
CAclassNET are able to consistently and correctly identify 
8 (3 CTRLs, 3 ALs, 2 ATTRs) out of the 11 (5 CTRLs, 3 
ALs, 3 ATTRs) subjects in the test dataset. Note that ALs 
are always correctly classified.Fig. 6   Confusion matrix on the validation set for the best model
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Fig. 7   Graphs describing the 
architecture of the normal (top) 
and reduction (bottom) cell

Fig. 8   Average training (blue) 
and validation (red) accuracy 
(a) and loss (b) with 95% confi-
dence intervals (shaded areas). 
On the x-axis the epochs
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Discussion

Contribution of This Work

The main objective of this study was to demonstrate 
the effectiveness of the neural architecture search algo-
rithms for medical image classification, early acquired 

[18F]-Florbetaben PET images in particular. The use of 
NAS methods for defining the best model for image analy-
sis has the great advantage of greatly reducing the opera-
tor’s contribution in defining the structure and parameters 
to be used, making these operations almost completely 
automatic. Therefore, the effort required to design the 
deep learning models is reduced, and researchers can 
focus on other aspects, such as data pre-processing and 
model tuning, improving the performance of the models 
found. Unlike ordinary images, in which large databases 
are available online, the analysis of medical images using 
deep learning methods is often challenging due to pri-
vacy concerns and the rarity of certain pathologies. This is 
especially true for PET images, where datasets are increas-
ingly limited. In literature, some attempts have been made, 
and some methods based on the NAS approach have been 
proposed on medical images, mainly for image segmenta-
tion [9], but, as far as we know, there are no studies on the 
classification of cardiac amyloidosis from early acquired 
[18F]-Florbetaben PET images; in fact, we can state that 
only the authors have implemented a CNN that performs 
this task [10], but not using NAS technology.

Methodology

The cell-based search space method was selected in this 
work. This search space consists of architectures com-
posed of repeating blocks of two main types: normal 
and reduction cells. Each cell consists of a DAG that 
describes how the different states are combined to form 
a new state using primary operations. Search space is 
then explored using an aged evolutionary algorithm: the 
oldest individual in history dies at each generation. The 
results obtained after running the proposed NAS approach 

Fig. 9   Best (left) and worst (right) confusion matrices obtained during two of the five runs

Table 3   Performance of the NAS-Net model (%)

Class Sensitivity Accuracy Specificity

AL 98.7 ± 2.9 99.3 ± 1.1 99.7 ± 0.7
ATTR​ 93.3 ± 7.8 78.0 ± 2.9 70.9 ± 3.7
CTRL 35.8 ± 14.6 77.1 ± 2.0 96.7 ± 4.4

Table 4   Performance of the CAclassNET classifier (%)

Class Sensitivity Accuracy Specificity

AL 99.0 ± 1.6 99.6 ± 0.6 100.0 ± 0.0
ATTR​ 76.2 ± 14.0 79.6 ± 3.5 80.1 ± 5.6
CTRL 55.8 ± 11.0 79.2 ± 3.3 89.4 ± 6.2

Table 5   Comparison between the best architecture discovered by the 
NAS algorithm (NAS-Net) and CAclassNET

Features NAS-Net CAclassNet

Number of parameters 2.763 × 103 93.827 × 103

Implementation time  ~ 8 h per 1000 architec-
tures evaluated

days/weeks

Training time
(200 epochs) [s]

224.67 (≃ 3′45″) 187.06(≃ 3′7″)

Classification time of a 
new image [ms]

6.4 3.4
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five times, after 25 epochs had an accuracy from a mini-
mum of 59.38% (see Table 2, fifth run) to a maximum of 
85.42% (see Table 2, second and third run), with a mean 
value of 73.04%. Therefore, already after 25 epochs, the 
NAS approach has given quite promising results. But the 
results obviously improved after a further 175 epochs, 
bringing the accuracy to a minimum value of 65.63% (see 
Table 2, fifth run) and a maximum of 90.63% (Table 2, 
second run) with a mean of 79.24%. The model giving the 
highest accuracy has been considered as the network for 
cardiac amyloidosis classification. The proposed two-step 
approach was designed to obtain a reasonable process-
ing time for individual selection. The structure of the best 
network model obtained by the proposed NAS approach 
(NAS-Net) is shown in Figs. 4 and 7; the behavior of the 
architecture as a graph is evident both for the structure as a 
whole and for the individual cells. The identity operations 
in the reduction cell (Fig. 7) are introduced to maintain the 
network’s depth constant.

Results

The confusion matrix obtained for the network with 
higher validation accuracy (see Fig. 6) demonstrates that 
the determination of the cardiac amyloidosis AL class is 
optimal, with some uncertainty between the ATTR class 
and controls. Training and validation accuracy trends of 
the selected model, shown in Fig. 8, have a typical shape in 
network analysis: both curves increase over epochs as the 
model learns to make more appropriate predictions on both 
sets. A gap exists between training and validation curves 
being training higher than validation; this is expected and 
mainly due to the low number of data available as it hap-
pens to all imaging techniques that require, for example, 
the use of ionizing tracers and/or invasive maneuvers for 
which images are acquired only if strictly necessary. How-
ever, it is worth to note that at 200 epochs the accuracy 
for validation data is anyway quite high, having the mean 
value equal to 98.3% (see Fig. 8). Also, for training and 
validation losses both curves decrease over epochs. This 
is an indication that the model is learning to make more 
accurate predictions for the training and validation set. 
Both confusion matrices (Fig. 9) and sensitivity, accuracy, 
and specificity values (Table 3) show that the network well 
determines AL cardiac amyloidosis patients. In contrast, 
ATTR amyloidosis patients and controls are sometimes 
incorrectly diagnosed, with NAS-Net privileging sensitiv-
ity for ATTRs (93.3%) and specificity for CTRLs (96.7%). 
This is well documented in literature where it is asserted 
that the cardiac PET imaging using [18F]-Florbetaben well 
characterizes the presence of type AL amyloidosis, while 
it is not able to determine the ATTR and to distinguish it 
from other pathologies or from the non-presence of cardiac 

pathology [30]. This is even true when considering early 
acquired images, i.e., at 15 min after injection [10], as it 
is in our study. On the other hand, by reducing the clas-
sification task to AL vs. non-AL subjects, the performance 
of the discovered classifier is optimal, well identifying 
subjects affected by CA of type AL. To demonstrate the 
validity of the proposed approach, that is, it automatically 
generates an optimal network that is comparable with the 
best one obtainable manually, a comparison has been made 
with a state-of-art handcrafted CNN, carefully tuned on 
the same data set. In fact, from Tables 3 and 4, we can see 
that the two networks showed a similar performance pat-
tern, with very good sensitivity, accuracy, and specificity 
values for the AL class and lower values for ATTR and 
CTRL classes. All values were >70% except for the CTRL 
sensitivity value for both networks. Moreover, in Table 5, 
the performances of the two nets are compared, showing 
a 40 times higher value of the number of parameters for 
the CAclassNet, while the training processing time and the 
classification time of a new image are slightly higher for 
NAS-based net. Overall, we can say that the NAS-based 
algorithm found a model whose performance is compara-
ble to that available in the literature. Indeed, it correctly 
discriminates between AL and non-AL images but shows 
intermediate performance in classifying ATTR and CTRL.

Advantages, Disadvantages, and Limitations

The implementation of this approach made it possible to 
clearly highlight both the advantages and disadvantages of 
this technique. A great advantage is that the best architecture 
can be automatically identified that is better suited to the 
specific problem at hand. The disadvantage is the computa-
tional cost since multiple neural networks must be trained 
and evaluated to find the best one. In this work, to reduce 
this weakness, we reduced the number of training epochs 
to speed up the process of exploring search space. Then, 
the best architectures were trained for more epochs to find 
the best-discovered model. However, it is worth noting that 
such optimal parameters search phase, which requires high 
processing times, in conventional methods has still to be 
performed, and it is done with the continuous contribution 
of the operator and, therefore, not automatically. While the 
definition and training of CAclassNET required repeated 
architecture evaluations and, only subsequently, hyperpa-
rameter tuning, the evolutionary algorithm set for the NAS 
network automatically selects the best architecture once 
the hyperparameters are specified (Table 1). In the present 
work, these hyperparameters were set according to empiri-
cal knowledge in NAS literature, reducing the time required 
for hyperparameter search. One hidden cost that could also 
be considered is the human-production cost associated with 
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the implementation of the code used for this work, which, 
however, can be reused as an asset for future model develop-
ment (code once, run forever).

The network generated here with the NAS method is 
aimed at classifying amyloidosis from PET data; in the pre-
sent work, we have not evaluated whether this net can be 
adapted to other image classification tasks. Anyway, we sup-
pose that, either by re-running the evolutionary algorithm on 
new data/with different hyperparameters or with appropriate 
network modifications typical of transfer learning, the meth-
ods shown in this work could be used for the development of 
any convolutional model for the classification of biomedical 
images (or even other tasks, with appropriate modifications).

One limitation in this work is the low amount of data: 
data relevant to 47 subjects are considered, for a total of 592 
2D PET images. This is not a lot of data for deep learning 
analysis, as it is often the case for biomedical images. But 
one of the purposes of this work was precisely to evaluate 
whether the NAS methodology was efficient even when the 
data available is rather limited.

Conclusions

In the present work, the NAS approach was applied to clas-
sify medical images. In particular, the main objective has 
been to evaluate the possibility of automatically finding an 
optimal network for the classification of cardiac amyloido-
sis from [18F]-Florbetaben PET images acquired 15 min 
after injection. The results obtained are very promising, 
being very similar to those available in the literature for 
CNNs designed manually, while for the proposed approach 
this task was carried out completely automatically.
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