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Abstract

Penalty methods have proven to be particularly effective for achieving the required C1-continuity in the context of multi-
patch isogeometric Kirchhoff–Love shells. Due to their conceptual simplicity, these algorithms are readily applicable to the
displacement and rotational coupling of trimmed, non-conforming surfaces. However, the accuracy of the resulting solution
depends heavily on the choice of penalty parameters. Furthermore, the selection of these coefficients is generally problem-
dependent and is based on a heuristic approach. Moreover, developing a penalty-like procedure that avoids interface locking
while retaining optimal accuracy is still an open question. This work focuses on these challenges. In particular, we devise a
penalty-like strategy based on the L2-projection of displacement and rotational coupling terms onto a degree-reduced spline
space defined on the corresponding interface. Additionally, the penalty factors are completely defined by the problem setup and
are constructed to ensure optimality of the method. This method is particularly suited for spline spaces of moderate degrees
p = 2, 3, where the projection is computationally efficient and the condition number related to our choice of parameters does
not yield a significant deterioration of the solution accuracy. To demonstrate this, we assess the performance of the proposed
numerical framework on a series of non-trimmed and trimmed multi-patch benchmarks discretized by non-conforming meshes.
We remark that only water-tight geometries have been considered in this work. We systematically observe a significant gain
of accuracy per degree-of-freedom and no interface locking phenomena compared to other penalty-like approaches. Lastly, we
perform a static shell analysis of a complex engineering structure, namely the blade of a wind turbine.
c⃝ 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

Keywords: Isogeometric analysis; Multi-patch coupling; Trimming; Penalty method; Kirchhoff–Love shells

1. Introduction

The finite element method (FEM) is a well-established technology for the numerical simulation of a wide variety
f engineering applications. It is also well-known that a significant amount of resources is invested into mesh
eneration and geometry clean-up [1]. To alleviate these burdens, isogeometric analysis (IGA) was introduced in
he seminal paper [2]. The main idea of IGA is to improve the interoperability between numerical simulations and
omputer Aided Design (CAD) by employing the same mathematical objects used in the geometry description,
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namely B-splines and non-uniform rational B-splines (NURBS) [3], for the discretization of partial differential
equations (PDEs). This shift in paradigm has paved the way for an extensive amount of research, where the reader
is referred to [1,2,4] for a detailed review of the method and its recent state-of-the-art, while its mathematical
analysis can be found in [5,6].

In particular, IGA has created a major impact on shells research. Historically, thick shell formulations of
eissner–Mindlin type are preferred in the finite element community [7] as they demand only C0-continuity between

elements. Classical formulations like the Kirchhoff–Love shell are governed by fourth-order PDEs, resulting in a
global C1-continuity requirement which poses severe challenges to traditional finite element technologies. These
obstacles are easily overcome within one isogeometric patch thanks to the higher continuity of B-splines, allowing to
discretize higher-order PDEs directly in their primal form. We refer to [8–10] for a review of the method and several
extensions in the scope of isogeometric Kirchhoff–Love shells, whereas other applications to high-order PDEs can
be found in [11,12] for Kirchhoff plates, in [13] for the Cahn–Hilliard equation, and in [14] for the Laplace–Beltrami
equation, respectively. Moreover, several other spline technologies have been successfully applied to the analysis
of Kirchhoff–Love shells, for instance T-splines [15–17], subdivision surfaces [18], PHT- and RHT-splines [19,20],
LR-splines [21], and recently extended B-splines [22].

However, in order to tackle structures of industrial relevance, two main issues need to be addressed. On one hand,
the proper treatment of trimmed surfaces needs careful consideration, see [23] for a review of the state-of-the-art
and open challenges related to trimming. In this manuscript, we build a suitable high-order re-parametrization of
those elements that are cut for integration purposes, by leveraging the tool presented in [24]. This approach shares
some similarities with the methods presented in [25–27] for tackling trimmed shells and in [28] in the scope of
immersed methods.

On the other hand, complex geometries are typically described by multiple, non-conforming patches which, in
turn, calls for a suitable coupling strategy to achieve the required C1-continuity. Similarly to the nomenclature
ntroduced in [29], we distinguish between C0- or displacement continuity and C1- or rotational continuity. The
atter is not restricted to smooth interfaces but will also refer in the following to patches meeting at an arbitrary
ngle, which is preserved during deformation. This scenario is commonly encountered in complex engineering
pplications. In the literature, three methods are predominantly employed to achieve displacement and rotational
ontinuity in a weak sense and they are briefly outlined in the following.

Mortar-type methods have been presented for patch coupling in [30,31] in the scope of Kirchhoff plates and
irchhoff–Love shells, respectively, and have been generalized to arbitrary smoothness in [32]. It is well-known

hat mortar methods introduce additional artificial unknowns into the underlying system of equations to enforce the
orresponding constraints, where the choice of discretization space for these Lagrange multipliers plays a pivotal
ole for the robustness of the method. In particular, the inf–sup stability is a crucial property, see [33] for further
etails.

Another widespread coupling technique relies on Nitsche method, where the reader is referred to [20,26,34]. This
amily of methods is variationally-consistent and, generally speaking, it is more robust with respect to the choice of
arameters compared to classical penalty approaches. However, Nitsche type algorithms are computationally less
avorable as their implementation is problem-dependent and requires the computation of higher-order derivatives.
n the case of shells, we highlight that these derivatives are defined on a manifold, which significantly increases the
omplexity.

Lastly, penalty-like methods are widely spread throughout numerous areas of engineering due to their versatility
nd ease of implementation. A variant thereof named bending strip was firstly studied in [35] in the scope of
irchhoff–Love shells coupled along matching interfaces. Several other penalty-like approaches able to treat non-

onforming discretization have followed, where the reader is referred to [25,36]. However, the performance of these
ethods heavily relies on the choice of penalty parameters. It is well-known that these factors are problem-dependent

nd that finding suitable values is a tedious task, mainly based on a labor-intensive trial-and-error strategy. Moreover,
nding a good balance between the imposition of the constraint, the condition number of the resulting system
atrix and interface locking phenomena is of paramount importance for the accuracy of the resulting solution.
ecently, these issues have attracted the attention of the research community. In [29], the parameters are scaled by

he material properties, the thickness of the shell, the mesh size and by a single, user-defined, problem-independent
actor which has been validated on an extensive series of benchmarks. In a similar manner, [37] introduces an

dditional dependency of the penalty coefficients on various loading and boundary conditions. Concerning the
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interface locking, a possible remedy based on partially condensed Lagrange multipliers and a suitable reduced
integration has been proposed in [38], where the multipliers are discretized by splines of the same degree p as
the solution space. Nevertheless, the development of a fully parameter-free penalty method which is insensitive to
locking phenomena and retains optimal convergence is still in its infancy.

Our contribution seeks to mitigate the aforementioned issues. Inspired by [29] and extending the authors’ previous
work [39] to Kirchhoff–Love shells, we present an algorithm for achieving displacement and rotational continuity
in trimmed shells which is inherently locking-free and where the penalty parameters are automatically defined by
the problem setup, namely material properties, geometry of the structure and underlying discretization. Differently
from [29,38], the aforementioned penalty factors are suitably built to retain the higher-order accuracy of B-splines.
The methodology relies on the L2-projection of the coupling terms along the associated interface onto a suitable
degree-reduced space, where the stable p/p − 2 pairing is employed [40]. We recall that the whole procedure
is motivated by the analysis of the underlying perturbed saddle point problems, which gives us insight into the
selection of appropriate parameters and into a proper way to eliminate the Lagrange multipliers associated with the
constraints. This allows us to formulate the penalized problem only in terms of displacement degrees-of-freedom.
Finally, we highlight that for splines of degree p = 2, 3 the projection is a local operation and therefore it introduces
only a small overhead in the total run-time, making it computationally appealing.

Then, we verify numerically the robustness of the proposed coupling technique on various non-trimmed and
trimmed examples and we compare it with other penalty-like methods. In all cases we observe an optimal
convergence behavior, where no boundary locking effects are present. This yields a superior accuracy per degree-of-
freedom (dof). Finally, we assess the applicability of our numerical framework to complex engineering structures. To
demonstrate this, we perform a static analysis and simplified topology optimization of the DTU 10 MW Reference
wind turbine blade [41].

The paper is structured as follows. Section 2 provides to the reader the basic notation related to B-splines whereas
Section 3 introduces the fundamentals of trimming. Section 4 explains in detail the proposed method, focusing on
how to choose the penalty parameters and on how to mitigate locking. In Section 5 the method is validated on a
selection of non-trimmed and trimmed numerical benchmarks. Then, our approach is applied to the shell analysis
of the DTU 10 MW Reference wind turbine blade, where a simplified topology optimization is performed on the
stiffening webs. Finally, some conclusions are drawn in Section 6.

2. B-splines in a nutshell

In this section, some definitions and fundamentals related to B-splines are reviewed. We refer the reader
to [1,3,42], and references therein, for a comprehensive review of B-splines and NURBS and their role in
isogeometric analysis.

Starting from two integers p, n, a univariate B-spline basis function bi,p of degree p is generated starting from a
on-decreasing sequence of real values referred to as knot vector, denoted in the following as Ξ =

{
ξ1, . . . , ξn+p+1

}
.

t is worth mentioning that the smoothness of the obtained B-spline basis is C p−k at every knot, where k denotes
he multiplicity of the considered knot, while it is C∞ elsewhere. In the remainder of this work, we consider only
plines of maximum continuity, i.e. C p−1, and degree p ≥ 2. The definition of multivariate B-splines Bi,p(η) is
chieved in a straight-forward manner using the tensor product of univariate B-splines as:

Bi,p(η) =
d̂∏

j=1

b j
i j ,p j

(η j ) , (1)

here d̂ denotes the dimension of the parameter space. Additionally, the multi-index i =
{
i1, . . . , id̂

}
denotes the

osition in the tensor product structure and p =
{

p1, . . . , pd̂
}

indicates the vector of polynomial degrees, associated
ith the corresponding parametric dimension η = η1, . . . , ηd̂ , respectively. Finally, we denote by Q0 the Bezier
esh associated with the basis Bi,p. Although omitted here, it is straightforward to extend the notation to NURBS,

or details see [1]. In the rest of the paper, without loss of generality, the degree vector p will be considered equal

n each parametric direction and therefore simplified to a single scalar value p.
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Fig. 1. Example of a trimmed domain. From the untrimmed rectangular domain Ω0 the blue domain Ω1 is trimmed away, resulting in the
final domain Ω . (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

3. Mathematical framework of trimming

In the following section, we summarize the basic mathematical foundation of isogeometric methods defined on
rimmed domains, following closely the notation used in [24,43]. For a detailed review of trimming and the current
tate-of-the-art in IGA we refer to [23] and references therein. Let us define the domain Ω0 ⊂ Rd , where d is the
imension of the physical space of the problem at hand, described by a spline map F : Ω̂0 = [0, 1]d̂

→ Ω0, where
0̂ denotes the parametric domain and we recall that d̂ represents its dimension. In particular, Ω0 is characterized

s a linear combination of multivariate B-spline basis functions and corresponding control points as follows:

Ω0 = F(Ω̂0) with F(η) =
∑

i

Bi,p(η)Pi . (2)

hen, let us introduce Ω1, . . . ,ΩN ⊂ Rd Lipschitz-regular domains that define the trimming regions to be subtracted
rom Ω0. Consequently, the physical domain reads:

Ω = Ω0 \

N⋃
i=1

Ω i , (3)

here an example is provided in Fig. 1 for the case N = 1. We remark that the trimming operation does not change
he underlying mathematical description of the original domain. Therefore, elements and associated basis functions
re defined with respect to the untrimmed domain Ω0. Let us now introduce the B-spline basis of degree p restricted
o the corresponding parametric trimmed domain Ω̂ . This can be built starting from all untrimmed splines b ∈ Bi,p

s:

BΩ̂ =
{
b|Ω̂ : b ∈ Bi,p ∧ Ω̂ ∩ supp(b) ̸= ∅

}
. (4)

imilarly, we define the parametric mesh Q̂ starting from the untrimmed elements Q0 ∈ Q0 as the set of elements
uch that:

Q̂ =
{

Q0 ∈ Q0 : Q0 ∩ Ω̂ ̸= ∅
}

, (5)

here, in the following, we refer to Q as an active cell if Q ∈ Q̂. Consequently, the definition of physical mesh
eads:

Q =
{
F(Q) : Q ∈ Q̂

}
, (6)

inally, we introduce the approximation space formed by multivariate B-splines of degree p restricted to a trimmed
omain Ω as follows:

S p
h (Ω ) = span

{
b ◦ F−1

| b ∈ BΩ̂

}
. (7)
4
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4. The projected super-penalty method

In this section, we extend the method studied by the authors in [39] for coupling non-conforming Kirchhoff plates
o the analysis of trimmed multi-patch Kirchhoff–Love shells. Motivated by the work presented in [40] in the context
f isogeometric mortar methods, our strategy leverages the L2 projection of the coupling terms at the interface,
ypically defined in terms of the degree p of the solution space related to the corresponding patch, onto a reduced
pace of B-splines of degree p−2 defined on the so-called active side of the interface. This procedure mitigates the
ocking phenomena due to the over-constraint of the solution space in the proximity of the corresponding coupling
nterface [27]. We remark that our method shares some similarities with the penalty coupling proposed in [38].

.1. A review of differential geometry

Let us review some fundamentals of differential geometry needed to describe the Kirchhoff–Love formulation,
ollowing closely the notation in [44].

Recalling the spline geometric mapping of the mid surface F : Ω̂ → Ω , the covariant basis vectors aα are defined
s follows:

aα(ξ, η) = F,α(ξ, η) , (8)

here the comma is used to indicate differentiation with respect to the corresponding curvilinear coordinate. Now,
he unit normal vector to the mid surface of the shell a3 is computed as the normalized cross-product of the in-plane
ectors aα:

a3 =
a1 × a2

∥a1 × a2∥
. (9)

Then, let us introduce the covariant metric coefficients as:

aαβ = aα · aβ . (10)

Now, the contravariant basis vectors are defined via the following algebraic relationship:

aα
· aβ = δα

β , (11)

here the corresponding covariant and contravariant metric coefficients are linked by the inverse operator:[
aαβ

]
=

[
aαβ

]−1
. (12)

ith these coefficients the contravariant basis vectors can be obtained as:

aα
= aαγ aγ . (13)

e now define the in-plane normal vector n = nαaα to the boundary ∂Ω , where nα denotes its contravariant
omponents. We highlight that n is contained in the tangent plane to the shell. Finally, we define the transformation
hich maps Cartesian components to curvilinear ones as:

Qi
β = ei

· aβ and Qi
3 = ei

· a3 , (14)

here ei represents the standard Euclidean basis.

.2. The weak form of the Kirchhoff–Love shell problem

For the sake of conciseness, in the following we directly work in the discrete setting. The interested reader is
eferred to [44] for a rigorous derivation. Let us consider as computational domain a manifold Ω ⊂ R3 with a
ufficiently smooth boundary Γ = ∂Ω . Let us split the boundary Γ = ∂Ω into a part associated with Dirichlet-type
oundary conditions ΓD = Γu∪Γθ and a part corresponding to Neumann-type boundary conditions ΓN = ΓT∪ΓBnn

uch that Γ = ΓD ∪ ΓN . It also holds that Γu ∩ ΓT = ∅ and Γθ ∩ ΓBnn = ∅ due to the energetically conjugate
ature of applied displacements ũ and transverse shears or Ersatz tractions T̃, and applied rotations θ̃n and bending

moments B̃nn , respectively. Additionally, let us also introduce the set of corners as χ ⊂ Γ , where this set can be
further split into a Neumann part χ = χ ∩ Γ and a Dirichlet part χ = χ ∩ Γ . Let us also assume given
N N D D

5
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an applied body force f̃ ∈ [L2(Ω )]d , a prescribed bending moment B̃nn ∈ L2(ΓBnn ), a prescribed Ersatz force
˜ ∈ L2(ΓT) as defined in [44] and a given twisting moment S̃ ∈ R for all corners in χN . With these definitions at
and, the weak formulation of the Kirchhoff–Love shell reads, find uh ∈ Vh such that:

a(uh, vh) = f (vh) ∀vh ∈ Vh , (15)

here the choice of discrete space Vh ⊂
[
S p

h

]d depends in general on the boundary conditions of the problem at
and. The bilinear form a and linear form f can be expanded, respectively, as follows:

a(uh, vh) =
∫
Ω

A(uh) : α(vh)dΩ +
∫
Ω

B(uh) : β(vh)dΩ

f (vh) =
∫
Ω

f̃ · vhdΩ +
∫
ΓT

T̃ · vhdΓ +
∫
ΓBnn

B̃nnθn(vh)dΓ +
∑
e∈χN

(
S̃v3,h

⏐⏐⏐
e

)
, (16)

here we recall that the normal rotation θn(u) is given as:

θn(u) = Qi
3ui,αnα . (17)

hen, by leveraging the in-plane projector P = I − a3 ⊗ a3, where I denotes the identity tensor, and the surface
radient ∇⋆, the membrane and bending strain operators can be defined, respectively, as:

α(vh) = P · sym
(
∇

⋆(vh)
)
· P

β(vh) = −P · sym
(
a3 · ∇

⋆
∇

⋆(vh)
)
· P , (18)

here we highlight that the operator sym(·) returns the symmetric part of the input tensor. It is worth noting that the
ending operator β requires a global C1-continuity of the basis to be well-defined. This is readily achieved within
ne patch by B-splines of degree p ≥ 2. Next, we can compute the corresponding stress operators by employing
constitutive law. In particular, if we consider a linear elastic model and we analytically integrate through the

hickness, we can write:

A(uh) = tC : α(uh)

B(uh) =
t3

12
C : β(uh) , (19)

here the fourth-order tensor C for homogeneous materials can be expressed in curvilinear coordinates as:

C = Cαβλµaα ⊗ aβ ⊗ aλ ⊗ aµ with Cαβλµ
=

E
2(1+ v)

(
aαλaβµ

+ aαµaβλ
+

2v

1− v
aαβaλµ

)
, (20)

here E and ν represent the Young’s modulus and Poisson’s ratio, respectively.
If we consider composite materials defined as a sequence of orthotropic plies, the bilinear form in (15) must be

odified as explained in the following. Let us consider a stacking of plies, numbered by an index n = 1, . . . , P ,
here P denotes the total number of plies. For each ply we can define the material tensor Cn , obtained by

ransforming the corresponding orthotropic ply tensor from the local ply coordinates to the shell curvilinear
eference frame, for further details see [45]. Now, following the classical theory of laminates [46], the homogenized
xtensional stiffness A, the coupling stiffness B and the bending stiffness D are computed, respectively, as:

A =
∫ t/2

−t/2
Cdζ =

P∑
n=1

Cntn ,

B =
∫ t/2

−t/2
ζ Cdζ =

P∑
n=1

Cntnzn ,

D =
∫ t/2

−t/2
ζ 2 Cdζ =

P∑
n=1

Cn

(
tnz2

n +
t3
n

12

)
, (21)

here tn indicates the thickness of the nth ply and zn denotes the distance between the centroid of the nth ply and

he mid-plane of the shell, where an example is depicted in Fig. 2.

6
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Fig. 2. Example of a laminate along the thickness direction ζ formed by a non-uniform and non-symmetric ply sequence.

Then, the bilinear form associated with a laminate shell reads:

a(uh, vh) =
∫
Ω

(
A : α(uh)+ B : β(uh)

)
: α(vh)dΩ

+

∫
Ω

(
B : α(uh)+ D : β(uh)

)
: β(vh)dΩ , (22)

where for further details we refer to [45]. Finally, Eq. (15) can be summarized in matrix form as:

K u = f , (23)

where K and f are denoted as the global stiffness matrix and force vector, respectively, and u represents the sought
solution coefficients.

4.3. The multi-patch setting

Following closely the notation introduced in [40], let us split the computational domain Ω into N non-overlapping
subdomains Ω i such that:

Ω =

N⋃
i=1

Ω i , where Ω i
∩ Ω j

= ∅ for i ̸= j . (24)

In CAD terminology, Ω is a B-Rep, i.e. a collection of trimmed surfaces endowed with their topological information.
In this work, similarly to [25], we use the so-called face-edge-vertex B-Rep representation. By leveraging the
topology, we can then define the interface γ ℓ between two adjacent trimmed patches Ωm,Ωn, 1 ≤ m, n ≤ N
as a common edge between their faces, see Fig. 3 for an example on four patches. Note that two surfaces can share
more than one edge. Then, the skeleton Γ is defined as the union of all common interfaces and reads:

Γ =

L⋃
ℓ=1

γ ℓ , (25)

where L denotes the total number of interfaces and ℓ is an ordered index such that 1 ≤ ℓ ≤ L .

Remark 1. By a slight abuse of notation, γ ℓ can represent both a trimmed or a non-trimmed coupling interface.

Further, let us introduce the cross-points cs as the intersection of at least three shared edges and let us label them
with an ordered index cs, s = 1, . . . , S, see again Fig. 3 for an illustration.

emark 2. It is well-known that CAD softwares provide only an approximation of the true common edge γ ℓ which
epends on the chosen tolerance. For the sake of simplicity, in our derivation we assume exactness, or equivalently
atertightness, of the geometric representation. From a computational standpoint, if the B-Rep is not watertight

e perform a closest point projection of the relevant quantities, such as quadrature points and interface knots, onto

7
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Fig. 3. Example of four subdomains Ω i , i = 1, . . . , 4 with their coupling interfaces γ ℓ, ℓ = 1, . . . , 5, highlighted in red, and one
corresponding cross-point cs , s = 1, represented by blue dots. Note that we have separated the subdomains for visualization purposes.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

the coupling edge. For further details we refer to [15]. In general, the proper treatment of flawed CAD models is
an active area of research in the analysis community. For instance, a promising approach based on the Finite Cell
Method is described in [47].

Now, let us denote by um the value of the displacement field restricted to Ωm , and similarly un the value of the
primary field on the neighboring subdomain Ωn .

Then, for each interface γ ℓ the following coupling conditions must be satisfied:

um
− un

= 0 on γ ℓ

θn(um)+ θn(un) = 0 on γ ℓ , (26)

hich can be rewritten by leveraging the jump operator as:

JuK = 0 on γ ℓ

Jθn(u)K = 0 on γ ℓ . (27)

.4. The projected super-penalty formulation

Following the notation presented in [39], let us introduce for each patch Ω i the following space:

Z i,h = span{b ∈
[
S p

h (Ω i )
]d
} . (28)

dditionally, we denote by Vi,h ⊂ Z i,h the finite-dimensional space given by the span of splines associated with
ubdomain Ω i , where the exact definition of Vi,h depends on the set of boundary conditions of the problem at hand.
his allows us to introduce the following finite-dimensional space,

Vh =
{
v ∈ L2(Ω ) | v ∈ Vi,h ∀i = 1, . . . , N and v is continuous in cs, s = 1, . . . , S

}
, (29)

here we highlight the C0-continuity requirement at the cross-points cs . Furthermore, for each interface γ ℓ, we
ℓ
ntroduce the associated knot vector Ξ . The latter is constructed as follows. First, we arbitrarily choose one of

8
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d

Fig. 4. Example of the projection setup on a coupling interface for B-splines of degree p = 2. We arbitrarily select the finer mesh (on Ω1

in this example) to define the projection space S p−2
h (γ ℓ), where the intersections between the parametric coupling curve γ̂ 1(Ω̂1) and the

knot lines of Ω1 are represented by red crosses. Additionally, an intersection mesh at the interface is created only for integration purposes
to properly compute the projected penalty terms in Eq. (33). The p + 1 integration points are schematically represented by blue dots. Note
that we have separated the subdomains for visualization purposes.

the neighboring patches as active. Then, we build Ξ ℓ by intersecting the knot lines of the active patch and γ ℓ. We
highlight that this operation can be performed directly in the parameter space of the active surface, since the B-Rep
structure provides a representation of γ ℓ in the parameter space of both surfaces. For each surface, we denote the
latter representation by γ̂ ℓ(Ω̂ i ), see Fig. 4 for an example.

Remark 3. At this stage, in the spirit of developing a simple and efficient method, we disregard the internal knots
of the coupling curve for the construction of Ξ ℓ. We highlight that the number of these knots depends on the
chosen tolerance in the CAD model, with this number being potentially large. We are aware that this choice could
potentially yield a loss of optimality of the method, but for smooth interfaces this effect is negligible. We verify this
numerically on two trimmed patches in Fig. 5, coupled along a C1-continuous quadratic B-spline curve. Indeed, for
p = 2, 3 the results are practically indistinguishable, whereas only minor differences are present for the case p = 4.
Although outside the scope of this work, finding a simple way to remove this source of sub-optimality constitutes
a future research direction.

Then, we build the isogeometric space S p−2
h (γ ℓ) leveraging the p/p−2 pairing. Assuming B-splines of maximum

smoothness, this space is obtained by removing from Ξ ℓ the first and last two knots, where an illustrative example
is given in Fig. 4 for bivariate B-splines of degree p = 2 and corresponding p − 2 = 0 degree-reduced splines

efined on the interface knot vector Ξ ℓ
= [0 1/3 2/3 1].
9
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Fig. 5. Influence of internal knots of the coupling curve on a two trimmed plates example.

Remark 4. The p/p−2 pairing has been proven to be inf–sup stable in the context of isogeometric mortar methods
n [40] and it has been extended to the coupling of non-trimmed Kirchhoff plates in [39]. Although its stability
or trimmed geometries has not been rigorously studied, we verify numerically its applicability to the coupling of
rimmed Kirchhoff–Love shells.

Consequently, let us define the following space:

Qh =

{
µ ∈ L2(Γ ) |µ ∈ S p−2

h (γ ℓ) ∀ℓ = 1, . . . , L
}

, (30)

which is used to characterize the Lagrange multipliers associated with the coupling conditions. We are now ready to
define the discretized version of the singularly-perturbed saddle point problem associated with the Kirchhoff–Love
shell. Without loss of generality, let us consider homogeneous Neumann-type boundary conditions. Then, the saddle
problem reads: find

(
uh, λ1,h, λ2,h

)
∈ Vh × [Qh]d

× Qh such that:
N∑

i=1

(∫
Ω i

A(uh) : α(vh)+ B(uh) : β(vh)
)
+

L∑
ℓ=1

(∫
γ ℓ

JvhKλ1,h +

∫
γ ℓ

Jθn(vh)K λ2,h

)
= (f, vh) ∀vh ∈ Vh

L∑
ℓ=1

(∫
γ ℓ

JuhKµ1,h −
1

αℓ
disp

∫
γ ℓ

λ1,hµ1,h

)
= 0 ∀µ1,h ∈ [Qh]d

L∑(∫
ℓ

Jθn(uh)K µ2,h −
1

αℓ

∫
ℓ

λ2,hµ2,h

)
= 0 ∀µ2,h ∈ Qh, (31)
ℓ=1 γ rot γ

10
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where we have introduced the parameters αℓ
disp and αℓ

rot corresponding to the displacements and normal rotations,
respectively. For a rigorous derivation of the singularly-perturbed saddle point formulation in the scope of Kirchhoff
plates we refer to [39]. As highlighted in [29,37], these coefficients depend in general on the problem definition,
e.g. the material parameters, the thickness of the shell, the applied boundary conditions, the mesh size and
discretization degree, where a precise definition of our parameters will be provided in a later section. Let us now
eliminate the Lagrange multipliers and rewrite (31) only in terms of the displacement field. In particular, rearranging
the second and third equations we obtain:

λ1,h |γ ℓ = αℓ
dispΠ

ℓJuhK

λ2,h |γ ℓ = αℓ
rotΠ

ℓ Jθn(uh)K , (32)

here, with a slight abuse of notation, Π ℓ stands for the L2-projection, defined on the interface γ ℓ, onto the degree-

educed space
[
S p−2

h (γ ℓ)
]d

related to the displacements and onto the space S p−2
h (γ ℓ) associated with the normal

otations, respectively.
By substituting Eq. (32) into the first line of (31) and leveraging the properties of the L2-projection, we obtain:

ap(uh, vh) =
N∑

i=1

a(i)(uh, vh)+
L∑

ℓ=1

(∫
γ ℓ

α
(ℓ)
dispΠ

ℓJvhK ·Π ℓJuhK +
∫

γ ℓ

α
(ℓ)
rotΠ

ℓJθn(vh)KΠ ℓJθn(uh)K
)

. (33)

hese coupling terms weakly impose the transmission conditions in (27) on the displacements and normal rotations,
espectively.

emark 5. From a computational standpoint, we rewrite the coupling term associated with the rotations in (33)
s defined in [29], where the constraint is recast into two complementary terms. This ensures a non-zero penalty
ontribution for patches meeting at an arbitrary angle. Then, the L2-projection of these terms is performed. Using
he same notation as [29], the entries of the rotational penalty stiffness matrix, for each interface γ ℓ, read:(

K rot
p (γ ℓ)

)
rs =

∫
γ ℓ

α
(ℓ)
rot
[
Π ℓ

(
a3,s(Ωi ) · a3(Ω j )+ a3(Ωi ) · a3,s(Ω j )

)
Π ℓ

(
a3,r (Ωi ) · a3(Ω j )+ a3(Ωi ) · a3,r (Ω j )

)
+

Π ℓ
(
n,s(Ωi ) · a3(Ω j )+ n(Ωi ) · a3,s(Ω j )

)
Π ℓ

(
n,r (Ωi ) · a3(Ω j )+ n(Ωi ) · a3,r (Ω j )

)]
,

(34)

here Ωi and Ω j denote the patches associated with the coupling interface γ ℓ. For further details, we refer to [29]
nd references therein.

Now, let us further characterize the aforementioned projection from a computational viewpoint. Let us consider
generic function u ∈ Vh defined as the linear combination of basis functions and their corresponding coefficients

û as:

u =
∑

i

Bi ûi i = 1, . . . , dim(Vh) . (35)

imilarly, its projection Π ℓ(u) onto the space S p−2
h (γ ℓ) can be written as another linear combination of spline

unctions and their associated coefficients ũ:

Π ℓ(u) =
∑

j

b j ũ j j = 1, . . . , dim(S p−2
h (γ ℓ)) . (36)

he orthogonality of the projection can now be expressed as:∫
γ ℓ

Π ℓ(u)b =
∫

γ ℓ

ub ∀b ∈ S p−2
h (γ ℓ) , (37)

hich can be rewritten in matrix form by substituting Eqs. (35) and (36) into Eq. (37) as follows:

Mũ = F û , (38)

here M denotes the mass matrix associated with the degree-reduced basis and F represents the right-hand-side
p−2 ℓ
atrix corresponding to the inner product between the basis functions in Sh (γ ) and Vh , respectively. In particular,

11
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for the projection of the displacement term introduced in Eq. (32), Fdisp is defined as the inner product between

the splines in
[
S p−2

h (γ ℓ)
]d

and the jump of the basis functions in Vh . Analogously for the rotational term, Frot is

assembled as the inner product between the basis functions in S p−2
h (γ ℓ) and the jump of discrete normal rotations in

Vh . Similarly, we distinguish between the mass matrix M associated with the splines in S p−2
h (γ ℓ) and its vectorial

counterpart M corresponding to the functions in
[
S p−2

h (γ ℓ)
]d

. With these definitions at hand, we summarize the
computation of the projected terms in Algorithm 1.

Algorithm 1 Computation of the penalty terms in Eq. (33).
1: procedure COMPUTATION OF THE PENALTY TERMS
2: for each interface γ ℓ in Γ do

3: Build the spaces S p−2
h (γ ℓ) and

[
S p−2

h (γ ℓ)
]d

4: Build the intersection mesh for integration
5: ũdisp ← solve Eq. (38) with M and Fdisp
6: ũrot ← solve Eq. (38) with M and Frot
7: K = K + α

(ℓ)
dispũ⊤dispMũdisp

8: K = K + α
(ℓ)
rot ũ
⊤

rotMũrot
9: end for

10: end procedure

Lastly, we remark that the solution of Eq. (38) is computationally inexpensive for B-splines of degree p = 2, 3
associated with a reduced space of degree p − 2 = 0, 1, respectively, for which the mass matrix is either diagonal
or can be lumped.

4.4.1. Selection of penalty parameters
It is well-known that the perturbed problem (31) is variationally consistent only if we select αℓ

disp = αℓ
rot →

∞ ℓ = 1, . . . , L . However, the well-posedness of the underlying problem is insensitive to the choice of the
parameters αℓ

disp and αℓ
rot. Therefore, our method is inherently free from boundary locking, independently of the

choice of penalty values, see [39] for further details in the context of isogeometric Kirchhoff plates. This allows
us to select αℓ

disp and αℓ
rot to guarantee the high-order convergence rates achievable by B-splines. Furthermore,

in the spirit of developing a parameter-free penalty method, we modify the choice proposed in [29], scaling the
displacement and rotation penalty parameters by the physical constants of the underlying problem, the local mesh
size, the spline degree and the geometry. For homogeneous isotropic materials they read:

αℓ
disp = (|γ ℓ

|)β−1 Et
(hℓ)β(1− ν2)

αℓ
rot = (|γ ℓ

|)β−1 Et3

12(hℓ)β(1− ν2)
, (39)

here the measure of γ ℓ serves as a characteristic length and the exponent β is chosen solely to ensure the optimal
convergence of the method. Therefore, it must be a function of the degree p of the underlying discretization.
Numerically we have observed that the scaling factor β = p− 1 in (39) is necessary to attain optimal convergence

f the method in the H 2 norm, whereas for a scaling of β = p we noticed optimality in the H 2 and H 1 norms.
inally, a factor of β = p + 1 provides optimality in the H 2, H 1 and L2 norms. If not stated otherwise, we will
se β = p + 1 in all our numerical examples. In case of orthotropic laminates, we adapt the minimum strategy
resented in [29], where the minimum local stiffness between adjacent patches Ωm and Ωn is used. Consequently,
he penalty parameters are defined as:

αℓ
disp = (|γ ℓ

|)β−1
min(maxi, j (A(m)

i j ), maxi, j (A(n)
i j ))

(hℓ)β

αℓ
rot = (|γ ℓ

|)β−1
min(maxi, j (D(m)

i j ), maxi, j (D(n)
i j ))

β
. (40)
(hℓ)
12
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Note that all of these parameters are known and depend only on the problem definition, meaning that no user-defined
factor is required. Moreover, it is straightforward to check that the penalty terms are dimensionally consistent with
respect to their corresponding energy contribution in the weak form (33). Finally, we highlight that the parameters
in Eq. (39) are a special case of Eq. (40) for homogeneous isotropic materials.

Remark 6. Clearly, the choice of β influences the condition number of the associated system matrix. This, together
with small trimmed elements, can potentially yield ill-conditioned systems of equations and, consequently, loss
of accuracy due to numerical round-off errors. In the context of trimmed single-patch shells, a possible remedy
based on extended B-splines has been studied in [22]. Furthermore, in the scope of immersed methods, an ad-hoc
multigrid preconditioner has been developed in [48]. In this contribution, we employ a direct solver where the
stiffness matrix is preconditioned by a simple diagonal scaling. This seems to suffice for the level of accuracy
reached in our numerical experiments. We remark that a thorough study of the condition number in the context of
trimmed multi-patch Kirchhoff–Love shells is beyond the scope of this paper.

5. Numerical examples

In this section we assess the performance of the proposed coupling technique with several numerical examples
defined both on trimmed and untrimmed, non-conforming, multi-patch geometries. All the numerical examples pre-
sented in the following have been implemented in the open-source and free Octave/Matlab package GeoPDEs [49],
where the reparametrization of the trimmed elements for integration purposes is provided by the tool presented
in [24]. The analytical shell solutions are taken from the new shell obstacle course studied in [44], where the exact
manufactured functions are evaluated in the freely-available Mathematica notebook1 with 100 digits of precision.
Moreover, similarly to [44] for every element we employ 25 × 25 quadrature points to properly capture the highly
non-linearity of the quantities of interest. The results of these computations are then imported into GeoPDEs. Also,
in all examples taken from [44], we derive from the manufactured solution and apply on the entire boundary ∂Ω

on-homogeneous Dirichlet boundary conditions for the displacements and non-homogeneous Neumann boundary
onditions for the bending moments.

Finally, throughout this section, we compare our choice of penalty factors to a classical approach where the
arameters are kept constant:

αℓ
disp = 103 E

αℓ
rot = 103 E , (41)

nd to the method proposed in [29]:

αℓ
disp = δ

Et
(hℓ)(1− ν2)

αℓ
rot = δ

Et3

12(hℓ)(1− ν2)
, (42)

here the problem-independent, user-defined parameter δ = 103 has been numerically validated on an extensive
series of benchmarks.

5.1. Four non-trimmed planar patches

The first example is meant to test and verify the implementation of our strategy in a non-trimmed planar setting.
The geometrical setup is taken from [39], where this problem is studied in the context of Kirchhoff plates. In
particular, the domain Ω = [0, 2]× [0, 2] is subdivided into four non-conforming patches Ω i , i = 1, . . . , 4 coupled
long curved interfaces, see Fig. 6. To enforce the non-conformity of the latter, the initial interface knots have been
hifted by the irrational factor

√
2/100. In our problem definition, we set the Young’s modulus E = 106 [Pa], the

hickness of the plate t = 0.005 [m] and the Poisson’s ratio ν = 0.3 [−], respectively. Then, to verify the theoretical

1 https://github.com/wdas/shell-obstacle-course.
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Fig. 6. Problem setup and initial non-trimmed, non-conforming, multi-patch discretization for the four planar patches example.

Fig. 7. Convergence study of the error measured in the L2 and H2 norms in the non-trimmed, non-matching four patches example for
ifferent B-splines of degree p = 2, 3, 4. Comparison of a classic penalty method, the scaled version with respect to the problem parameters
roposed in [29] (scaled) and our projection approach (proj).

rders of convergence, we compute the approximation error in the L2 and H 2 norms with respect to a manufactured
mooth solution of the form:

uex(x, y, z) =

⎛⎝ux

u y

uz

⎞⎠ =
⎛⎝sin(πx) sin(πy)

sin(πx) sin(πy)
sin(πx) sin(πy)

⎞⎠ . (43)

The results are summarized in Fig. 7, where the convergence of the error measured in the L2 and H 2 norms,
espectively, is plotted against the square root of the number of dofs. We observe that our proposed method attains the
xpected order of convergence starting from very coarse meshes, whereas interface locking hinders the convergence
ates of other penalty methods in the pre-asymptotic regime. As a consequence, we observe a substantial gain of
ccuracy per degree-of-freedom of the projection strategy, particularly in the L2 norm. Additionally, we highlight
he suboptimal convergence rates achieved by the method proposed in [29], noticeable in the asymptotic regime
or p = 4. Further, also for p = 4 and the L2 norm, we observe the detrimental impact of our choice of penalty

arameters on the conditioning of the stiffness matrix and, consequently, on the solution accuracy. This effect can be

14
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Fig. 8. Convergence study of the error measured in the L2 and H2 norms for the projection method in the non-trimmed, non-matching
our patches example for different B-splines of degree p = 2, 3, 4. Comparison of various scaling exponent β of the penalty parameters
n Eq. (39).

Fig. 9. Problem setup for the Scordelis–Lo roof example.

mitigated by reducing the exponent β in Eq. (39), knowing that the method will converge sub-optimally, as depicted
in Fig. 8. For this reason, we will focus solely on moderate spline degrees p = 2, 3 in the following numerical
experiments.

Remark 7. In order to retain optimal rates of convergence, whenever a cross-point is present in the geometry, we
must impose a C0-continuity constraint at the cross-point. For further details and a possible implementation, we
refer to [39].

5.2. Scordelis-Lo roof

In this example we assess the performance of our method on the well-known Scordelis–Lo roof, firstly introduced
as part of the shell obstacle course in [50]. The geometrical setup, the chosen parameters and the initial non-
conforming multi-patch design, where the roof is split into six subdomains Ω i , i = 1, . . . , 6, are summarized

in Fig. 9. The structure is supported at both ends of the cylindrical roof by so-called rigid diaphragms, which

15
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Fig. 10. Convergence of the normalized displacement in the z-direction at the middle of the free edge and time needed to assemble the
penalty contributions, Scordelis–Lo roof example.

fix the displacement in the y and z directions, respectively. Moreover, the roof is subjected to a uniform gravity
load, directed in the negative z-direction. As studied in [29], we modify the original thickness of the benchmark
problem. In particular, we set the Young’s modulus, the Poisson’s ratio and the thickness of the structure to
4.32 · 108 [Pa], 0.0 [−] and 0.025 [m], respectively. As typically done for this problem, we study the convergence
of the displacement in the z-direction at the center of the free edge, where the reference value uref

z = −32.01045
is used for normalization. The results are presented in Fig. 10(b) for different penalty methods and also for the
single-patch case. We observe that our approach, the method presented in [29] and the single patch case show a
similar convergence behavior. However, in case when the penalty parameter is only scaled by the Young’s modulus,
interface locking phenomena arise, and they are particularly severe for quadratic B-splines. Moreover, in Fig. 10(a),
we compare the time needed to compute and assemble the penalty terms for the aforementioned approaches, where
the projection method shows its computational efficiency. This is linked to the fact that, although the projection
algorithm requires the solution of an additional system, the corresponding coupling terms involve significantly
fewer dofs compared to standard penalty-like methods.

Remark 8. Although the Scordelis–Lo roof is a classical benchmark for shell analysis, it only provides a reference
value for the displacement in a point. Therefore, it is not suited to quantify the order of convergence of a method,
but it only serves as verification of the latter.

5.3. L-beam

This example is meant to demonstrate the applicability of our approach to couple patches at an arbitrary angle,
where the corresponding rotational constraint keeps the angle fix during deformation. We consider a beam with an
L-section discretized by two non-conforming patches Ω i , i = 1, 2, as depicted in Fig. 11. The beam is clamped on
one side and it is subjected to a point load of 10 [N ], directed in the negative z-direction. Further, we set the Young’s
modulus, the Poisson’s ratio and the thickness of the structure to 107 [Pa], 0.3 [−] and 0.05 [m], respectively. To
check the correct imposition of the rotational constraint, we compute the angle formed by the two patches at the
free corner on a series of uniformly refined meshes. The corresponding results are presented in Fig. 12(a). We
remark that on coarse meshes and for the projection method, the rotational constraint is imposed in a less “rigid”

way compared to other penalty approaches. This allows to mitigate the effects related to interface locking starting
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Fig. 11. Problem setup for the L-beam example and L2 norm of the displacement field obtained with the proposed coupling strategy.

from coarse meshes. Similarly to the previous example, we observe a faster convergence behavior of the vertical
displacement under the point load when our approach is employed, see Fig. 12(b), especially compared to a classical
penalty method.

5.4. Pure bending of three trimmed planar patches

In this example we consider the computational domain Ω = [0, 2]× [0, 1] split into three trimmed subdomains
Ω i , i = 1, 2, 3 as depicted in Fig. 13. We remark that in this particular setup, the middle patch is coupled on both
sides along trimming interfaces, defined by quadratic spline curves. The applied boundary conditions and loading
function are again derived from a smooth solution of the form:

uex(x, y, z) =

⎛⎝ux

u y

uz

⎞⎠ =
⎛⎝ 0

0
sin(πx) sin(πy)

⎞⎠ . (44)

Then, we fix the Young’s modulus and the Poisson’s ratio of the structure to 106 [Pa] and 0.3 [−], respectively. This
example confirms the severity of locking interface phenomena, especially as the shell gets progressively slender.
Indeed, we vary the thickness in the range [0.5 , 0.05 , 0.01] [m], where the results are reported in Fig. 14. Moreover,
we observe that in the trimmed case these detrimental effects are even more pronounced, since more basis functions
are involved in the imposition of the constraints compared to the non-trimmed case.
17
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Fig. 12. Convergence study of the angle between the patches and the displacement uz under the point load in the L-beam example, B-splines
of degree p = 2, 3. Comparison of a classic penalty method, the scaled version with respect to the problem parameters proposed in [29]
(scaled) and our projection approach (proj).

Fig. 13. Problem setup for the trimmed three planar patches example. For the sake of visualization, the patches have been separated.

Remark 9. In the trimmed case, at any point of a coupling interface γ ℓ and for each neighboring patch, we have
(p+1)× (p+1) shape functions providing a non-zero contribution to the penalty matrices. This is in contrast to the
non-trimmed case, where at any point of γ ℓ and for each neighboring patch we have at most (p+ 1), respectively,
2(p + 1) B-splines involved in the computation of the displacement and rotational coupling terms.

5.5. Trimmed astroid

This example is adapted from the shell obstacle course presented in [44]. We consider the computational domain
Ω split into three trimmed subdomains Ω i , i = 1, 2, 3 as depicted in Fig. 15. In the same figure, the two trimmed
nterfaces γ ℓ, ℓ = 1, 2 are defined as quadratic B-spline curves. The domain Ω is characterized by the control points

Pi j , i, j = 1, . . . , 3 as summarized in Table 1, where the indices i, j are ordered as the parametric coordinates ξ, η

represented in Fig. 15. The load function and boundary data are computed from the following manufactured solution:

uex(ξ, η) =

⎛⎝ux

u y

z

⎞⎠ =
⎛⎝( 1

2 − η)ξ 2(ξ − 1)2η(1− η)
(ξ − 1

2 )η2(η − 1)2ξ (1− ξ )

⎞⎠ , (45)

u ξ (1− ξ ) sin(πξ ) sin(πη)

18
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Fig. 14. Convergence study of the error measured in the H2 and L2 norms in the trimmed three patches example, B-splines of degree
p = 2, 3, thickness t = [0.5 , 0.05 , 0.01] [m]. Comparison of a classic penalty method, the scaled version with respect to the problem
parameters proposed in [29] (scaled) and our projection approach (proj).
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Fig. 15. Problem setup and initial multi-patch geometry for the trimmed astroid example.

Table 1
Coordinates of the control points Pi j , i, j = 1, . . . , 3 associated with the astroid
domain.

Pi j 11 12 13 21 22 23 31 32 33

x 0 1/3 0 1/2 1/2 1/2 1 2/3 1
y 0 1/2 1 1/3 1/2 2/3 0 1/2 1
z 0 0 0 0 0 0 0 0 0

where we impose inhomogeneous Dirichlet and Neumann type boundary conditions on the displacements and on
the bending moments, respectively, on the entire boundary ∂Ω . Even though this problem is defined on a planar
geometry, meaning that bending and membrane responses are decoupled, its investigation is still worthwhile since
the solution u is defined as a function of the parametrization. This drastically complicates the derivation of the
exact quantities and their stable computation. The convergence results for the error in the L2 and energy norms for
everal values of the thickness t = [0.1 , 0.01 , 0.005] [m] are depicted in Fig. 16. This example confirms that our

projection method mitigates the detrimental effects linked to interface locking, yielding a significant gain of accuracy
per-degrees-of-freedom. This is particularly noticeable as the thickness of the structure becomes smaller, where, for
other penalty techniques, locking phenomena hinder the optimal convergence in the pre-asymptotic regime.

5.6. Trimmed cylinder

This example is again adapted from the shell obstacle course presented in [44]. We consider the computational
domain Ω split into four trimmed subdomains Ω i , i = 1, . . . , 4 as depicted in Fig. 17. The corresponding trimmed
interfaces γ ℓ, ℓ = 1, . . . , 4 are defined as quadratic B-spline curves. This numerical experiment tests the applicability
of the proposed methodology to the coupling of trimmed multi-patch surfaces in the presence of cross-points.
Similarly to previous examples, the initial internal knots of patches Ω2 and Ω3 have been shifted by a factor

2/100 to achieve non-conforming discretization at the corresponding trimmed interfaces. Then, we set the Young’s
modulus, the Poisson’s ratio and the thickness of the cylinder to 107 [Pa], 0.3 [−] and 0.001 [m], respectively. The
oad function and boundary data are computed from the following manufactured solution:

uex(ξ, η) = −(ξ − 1)2ξ 2η(η − 1)a , (46)
3
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Fig. 16. Convergence study of the error measured in the energy and L2 norms in the trimmed astroid example, B-splines of degree p = 2, 3,
thickness t = [0.1 , 0.01 , 0.005] [m]. Comparison of a classic penalty method, the scaled version with respect to the problem parameters
proposed in [29] (scaled) and our projection approach (proj).
21



L. Coradello, J. Kiendl and A. Buffa Computer Methods in Applied Mechanics and Engineering 387 (2021) 114187
Fig. 17. Problem setup and initial multi-patch geometry for the trimmed cylinder example.

where a3 denotes the covariant vector in the thickness direction. The convergence results for the error measured in
the L2 and energy norms, respectively, are depicted in Fig. 18. Similarly to our previous findings, we observe a faster
convergence behavior of the projection method in the pre-asymptotic regime, where interface locking is avoided
on very coarse meshes. This results in a substantial gain of accuracy per-degree-of-freedom, which is particularly
noticeable for quadratic B-splines.

5.7. The DTU 10 MW Reference wind turbine blade

In our last example, we perform an isogeometric shell analysis of the DTU 10 MW Reference wind turbine
blade [41], whose design was inspired by the NREL 5 MW reference wind turbine [51]. The blade is modeled
by 20 non-conforming cubic spline surfaces. As noted in [29], a multi-patch design allows to accurately resolve
material discontinuities along the patch interfaces. The outer shell of the blade and the internal shear webs are
depicted in Fig. 19. In the same figure, colored regions are used to define the corresponding composite layup,
where each region has a different multi-directional ply stacking sequence and a varying thickness distribution along
the spanwise direction. We summarize the most relevant mechanical properties in Table 2. Moreover, in Fig. 20,
we show the composite layup of the leading panels through the thickness as a function of the spanwise coordinate.
For further details on material properties and thickness profiles we refer to [41]. For the analysis, we consider the
response of the blade under gravity load, where the blade is modeled as clamped on the rotor side. The L2 norm of
the displacement field and the corresponding deflection of the blade are depicted in Fig. 21. The results are obtained
by employing a discretization of quadratic B-splines defined on 89528 elements. Note that we directly import the
geometry used in [41] for the structural analysis.

Remark 10. The latter is true for every patch except for webs A, B and C, which are obtained by linear

extrusion of a generating spline, meaning that one linear element suffices to exactly describe the surface along the
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Fig. 18. Convergence study of the error measured in the L2 and energy norms for the trimmed cylinder example, B-splines of degree
p = 2, 3. Comparison of a classic penalty method, the scaled version with respect to the problem parameters proposed in [29] (scaled) and
our projection approach (proj).

Fig. 19. DTU 10 MW blade geometry and depiction of the circumferential regions used for the composite materials definition.

corresponding parametric direction. Therefore, h-refinement is performed along the latter direction by introducing
50 equidistributed knots.

We remark that all the results on the blade have been obtained by setting the scaling factor β = p in the penalty
terms to limit the impact of the latter on the condition number of the stiffness matrix.

5.7.1. Simplified topology optimization of webs A and B
This example is meant to show the applicability of the proposed methodology to trimmed geometries obtained

by a simplified topology optimization. Note that this numerical test is just a showcase of the flexibility of our
23
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Fig. 20. Composite layup along the radial direction of the leading panels.

Fig. 21. L2 norm of the displacement field on the DTU 10 MW blade subject to gravitational load, B-splines of degree p = 2, 89528
elements, results warped by a factor 5.

Table 2
Mechanical properties of the multi-directional plies.

Multi-directional ply Uniax Biax Triax Balsa

Young’s modulus E1 41.63 13.92 21.79 0.050 [GPa]
Young’s modulus E2 14.93 13.92 14.67 0.050 [GPa]
Shear modulus G12 5.047 11.50 9.413 0.01667 [GPa]
Poisson’s ratio ν12 0.241 0.533 0.478 0.5 [−]
Shear modulus G13 = G23 5.04698 4.53864 4.53864 0.150 [GPa]
Mass density ρ 1915.5 1845.0 1845.0 110 [kg/m3]

computational framework and a realistic topology optimization of the webs is beyond the scope of this work.
Furthermore, the geometric operation described in this section is based on a heuristic engineering approach. We
trimmed away from the original geometry two holes, one close to the center of the structure and another at the end
the web. This design is obtained by adapting the optimized solution presented in [52], where the final geometry is
depicted in Fig. 22. This design results in a reduction of ≈ 20.6% of the original total mass of web A. Similarly, we
perform the same operations on web B. The L2 norm of the displacement field and the corresponding deflection of
24
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Fig. 22. Design of web A after simplified topology optimization. Zoom on the detail at the end of the blade.

Fig. 23. L2 norm of the displacement field on the topologically optimized blade subject to gravitational load, B-splines of degree p = 2,
84,250 elements, results warped by a factor 5.

the blade with trimmed webs are depicted in Fig. 23, where we observe a reduction of ≈ 2.0% in tip displacement
ompared to the results presented in Fig. 21. This effect is related to the loss of total mass of the structure. The
esults are obtained with quadratic B-splines defined on a total of 84,250 active elements.

. Conclusions

In this contribution we have extended the methodology presented in [39] to the coupling of trimmed, non-
atching surfaces in the context of isogeometric Kirchhoff–Love shells. The strategy is based on the L2-projection

f suitable penalty terms at the corresponding coupling interface onto a reduced space of degree p−2 with respect to
he chosen approximation space. On one hand, the projection mitigates the detrimental effects related to interface
ocking starting from very coarse discretization. On the other hand, it gives us insights into the proper scaling
f the penalty parameters based on the underlying discretization. Consequently, the proposed coupling method
etains the optimal rates of convergence achievable by B-splines, as demonstrated by our findings on an extensive
eries of benchmark problems. Moreover, building upon the penalty factors studied in [29], our approach is fully
arameter-free, since the penalty coefficients are completely determined by the problem setup. Similarly to what
as observed in [39], our strategy is particularly suited for spline spaces of moderate degrees p = 2, 3, where

he projection turns out to be computationally efficient and the condition number stemming from the super-penalty
oes not yield a significant deterioration of the solution accuracy. Then, the applicability of our method to tackle
omplex, industrial-like structure has been studied. In particular, we have performed a static shell analysis of the
TU 10MW Reference wind turbine blade [41], whose design is composed by 20 non-conforming cubic patches.
urthermore, since trimming is naturally incorporated into our methodology, we have carried out a simplified

opology optimization of the internal webs. This example demonstrates that the proposed computational framework
s readily applicable to tackle industrial optimization loops of engineering relevance.

To conclude, we have numerically validated the wide range of applicability of the proposed projected super-
enalty approach for coupling trimmed Kirchhoff–Love shells, where the method does not suffer from boundary
ocking and the penalty parameters are automatically derived from the problem setup to attain optimal rates of
onvergence. Finally, in this contribution only a geometrically linear shell formulation and its static behavior have

een considered. Potential future research directions include the extension of the proposed approach to account
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for geometrical and material non-linearities and the assessment of its performance in dynamics. Furthermore, the
capabilities of our method to handle so-called “dirty” geometries should be thoroughly studied.
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