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A B S T R A C T

For more than a decade now, academicians and online platform administrators have been
studying solutions to the problem of bot detection. Bots are computer algorithms whose use
is far from being benign: malicious bots are purposely created to distribute spam, sponsor
public characters and, ultimately, induce a bias within the public opinion. To fight the bot
invasion on our online ecosystem, several approaches have been implemented, mostly based
on (supervised and unsupervised) classifiers, which adopt the most varied account features,
from the simplest to the most expensive ones to be extracted from the raw data obtainable
through the Twitter public APIs. In this exploratory study, using Twitter as a benchmark, we
compare the performances of four state-of-art feature sets in detecting novel bots: one of the
output scores of the popular bot detector Botometer, which considers more than 1,000 features
of an account to take a decision; two feature sets based on the account profile and timeline;
and the information about the Twitter client from which the user tweets. The results of our
analysis, conducted on six recently released datasets of Twitter accounts, hint at the possible
use of general-purpose classifiers and cheap-to-compute account features for the detection of
evolved bots.

. Introduction

In a pioneering study on social media manipulation it is shown that, on the eve of the 2010 Massachusetts election, a handful of
utomated Twitter accounts spread misinformation about the Democratic candidate (Mustafaraj & Metaxas, 2010). Although Twitter
uickly banned those accounts, the damaging information had already circulated beyond the platform. The bots had managed to
reate a viral cascade, and even Google search results were reporting the false news. Despite advancements in techniques for bot
etection and search-engine filtering and ranking, automated accounts still represent a menace for societal and political debates.
ots have played an important role in every significant event: from elections (see, e.g., the 2016 and 2020 US elections Sharma,
errara, & Liu, 2020 and the Brexit referendum) to the spreading of propaganda and misinformation on hot topics like immigration
nd pandemics (Caldarelli, De Nicola, Del Vigna, Petrocchi, & Saracco, 2019; Caldarelli, De Nicola, Petrocchi, Pratelli, & Saracco,
021). Unfortunately, in the last ten years, skills of bots have improved dramatically (Cresci, Di Pietro, Petrocchi, Spognardi, &
esconi, 2017; Ferrara, Varol, Davis, Menczer, & Flammini, 2016), in that fake accounts are able to create a network of friends,
hat with genuine accounts without betraying their nature, and act in a coordinated fashion. Their actions are no longer individual:
ynchronisation and coordination characterise teams of bots that, if considered individually, can be hardly detectable by state-of-
he-art classifiers. Quoting a pioneer in the field, ‘There is no shortage of research challenges, even 10 years later, to try to identify
his kind of manipulation’ (Sonic Research Group, 2020).
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Motivations: Bots have evolved over the years: from rather simplistic accounts to sophisticated ones, whose behaviour and online
interactions are almost indistinguishable from those of genuine accounts (Cresci et al., 2017; Ferrara et al., 2016). This paper
grew out of a curiosity the authors had when reading a 2019 paper about online manipulation during the 2016 US presidential
elections (Bovet & Makse, 2019). Specifically, in order to estimate how many bots had participated in the online political discussion
on Twitter, the article proposed to check the Twitter client from which tweets were posted (intuitively, unofficial clients are used
by professionals to automate some tasks). Intrigued by this simple approach, we wondered to what extent the features and methods
used years ago to detect early bots are still effective, and if so, to what extent they can be used for detecting new bots.

Research objective: The challenge is therefore to develop general-purpose bot detection systems, that, even if not targeted at
etecting specific disinformation and spam promotions, are still able to offer good performances in detecting multiple types of bot
ccounts, including those belonging to strategic campaigns (Yang, Varol, Hui, & Menczer, 2020b). The main objective of our research
s thus to conduct an exploratory study on the efficacy – in terms of performances – of general-purpose bot detectors, also for bots
hat operate in a coordinated manner. We will use Twitter as a benchmark.
Methodology: To achieve this objective, we consider well known learning algorithms to see how different feature sets are effective

hen applied to recently released Twitter accounts datasets, in which it is known a priori the nature of the accounts (either bots or
enuine ones). As a first feature, we consider one of the score provided by Botometer (Varol, Ferrara, Davis, Menczer, & Flammini,
017; Yang, Varol, Davis, Ferrara, Flammini, & Menczer, 2020a), the popular bot detector developed at Indiana University. This tool
xamines more than 1000 features of a Twitter account (concerning, for example, properties related to the network, the timeline,
nd the profile of the account), and returns, as output, a set of scores indicating the level of ‘boticity’ of the account. The second
eature set is retrievable from the profile of the account. The third feature set instead relies only on features related to the timeline
f the account. Both sets disregard the features that are known to be the most expensive to compute (mainly in terms of time needed
or data gathering), namely those concerning the account’s relationships (friends and followers). The fourth feature is the Twitter
lient used for tweeting. It has been leveraged by Bovet & Makse in Bovet and Makse (2019) to analyse a dataset of tweets concerned
ith the US 2016 presidential elections and filter tweets posted by bots.
Contributions: The main contribution of this manuscript is an investigation of the performances of well-established learning

lgorithms, trained with different sets of features, on six recently released datasets of bots and human-operated accounts whose
omposition is known a priori. The main findings of this analysis are as follows:

• For some of the training sets, the inspection of the Twitter client is sufficient to discriminate between bot accounts and genuine
ones. However, we have to say that we have been considering bots that are very easy to recognise: they are self-declared bots
whose nature their programmers have no intention of hiding;

• Considering the features based on the profile and timeline of the account, they work well both for bots acting individually
and for bots acting in teams. This is quite surprising. It is not the first time that so-called ‘low cost’ features have been proven
to work well for bot detection (see, e.g., the work by Cresci et al. on fake followers detection Cresci, Di Pietro, Petrocchi,
Spognardi, & Tesconi, 2015, that focused on bots acting only in isolation).

• We test very recent, novel bots. The good performance obtained in the classification phase suggests that it is possible to
counteract the evolution of bots by leveraging well-known features already tested on less evolved versions.

• Overall, the evaluation results lead us to argue that a general-purpose bot detector, not specifically created to recognise
particular types of accounts only, can be used to skim anomalous accounts, and, subsequently, specific techniques can be
applied to uncover coordinated behaviour among these accounts.

Roadmap: The remainder of the paper is organised as follows. Section 2 discusses recent related work, positioning our study
mong relevant state-of-art papers. In Section 3, we introduce the datasets we use for the analyses. Section 4 provides the description
f the feature sets and the experimental setup. Section 5 shows the experimental results. In Section 6, we discuss the main findings
nd the limitations of our investigation. Finally, Section 7 draws the conclusions.

. Literature review

This literature review first highlights the different trends that have characterised bot detection over the years. Then, it considers
ecent works and compares them with ours.

We would like to highlight the trends by comparing them to the historical cycles coined by the Neapolitan philosopher
iambattista Vico, who lived at the turn of the 17th and 18th centuries. He developed a unique theory of human history. He
as convinced that history was characterised by the continuous and incessant repetition of 3 distinct cycles (Vico, 1744): (1) the
ge of the gods, in which human beings believe they live under divine rule; (2) the age of the heroes, in which they form aristocratic

republics; (3) the age of mankind, when all finally recognise themselves as equal, because they all belong to mankind. When we
talk about bot detection, we are talking about research carried out in the last 10–11 years (indeed, the first work appeared around
2010 Mustafaraj & Metaxas, 2010; Yardi, Romero, Schoenebeck, & Danah Boyd, 2010). We are certainly not talking about centuries,
as in the case of Vico’s cycles. But, it appears surprising how the theory seems to apply to the field of bot detection, at least with
respect to the existence of three distinct phases. In fact, in the first years of bots hunting ( 2010-2013/14), researchers mainly focused
on supervised machine learning and on the analysis of the single account: ‘classifiers were separately applied to each account of the
group’, to which they assigned a bot or not label (Cresci, 2020). This first period can be seen as the Vico’s age of the gods, where
2

the ‘deus ex machina’ comes and solves the brand new research question.
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Approximately in the last five years, say up to 2019, instead, a number of research teams independently have proposed
ew approaches that aim at detecting coordinated and synchronised behaviour of groups of automated malicious accounts, see,
.g., Cresci, Di Pietro, Petrocchi, Spognardi, and Tesconi (2016), Viswanath et al. (2015) and Yu, He, and Liu (2015). Thus,
esearchers no longer took the individual account and classified it as bot or not. Instead, they considered a group of accounts,
nd their common characteristics, i.e., those that may show that some of them have been programmed for the same purpose (and
herefore, for example, they behave online in the same way). One of the proposed techniques consists in measuring the similarity of
he traces left by the accounts in their online activities (Cresci, Di Pietro, Petrocchi, Spognardi, & Tesconi, 2018): by composing the
ccount’s Digital DNA (i.e., a string of characters that encodes the actions of the account), it is possible to leverage string mining
ools and bring out from the crowd accounts that behave in the same way. This second period can be seen as the Vico’s age of the
eroes, who have travelled new paths to the detection of teams of bots.

Surprisingly, after 2019, we have witnessed the confluence of the two research strands: obtaining so-called general-purpose
lassifiers, i.e., classifiers that are not specific to the type of bots, but which are also able to spot bots belonging to teams which
efore could be detected only as part of a team and not as individuals. This third period can be seen as the Vico’s age of mankind,
here researchers join their various efforts.

In the following, we shall describe recent contributions to general-purpose bot detectors, while highlighting differences and
imilarities with ours.

The recent work by Sayyadiharikandeh, Varol, Yang, Flammini, and Menczer (2020) starts from the observation that different bot
lasses have different sets of informative features and, thus, the authors build specialised supervised models for distinct bot classes.
he specialised models are aggregated into an ensemble and their outputs are combined through a voting scheme. Our work does
ot propose a new approach for bot detection, as the one in Sayyadiharikandeh et al. (2020). On the contrary, we adopt general
echniques and features already used in the past literature. However, we see similarities because both tend to test if a classifier can
dentify more than one kind of bots. On the tested datasets, the performance results are comparable and thus encouraging.

With the goal of testing the generality of traditional detectors on different types of bots in mind, Yang et al. (2020b) propose a
ighly scalable framework that enables them to handle the full stream of public tweets on Twitter in real time. Key recipe of the
nalysis is to use account features that have a very low cost in terms of the data needed to compute them. In particular, the authors
se features related only to the account profile. This type of features was used by the second author of this manuscript to detect fake
witter followers (Cresci et al., 2015) in 2015, i.e., 5 years before the publication in Yang et al. (2020b). This makes us confident
hat the adoption of ‘old’ features for bot detection are worthy of study, for the same purpose, nowadays. It would be interesting
o verify the sustainability of the approach of Yang et al. (2020b) to perform real time analysis when considering account features
elated to the timeline. In this manuscript, we consider, e.g., mentions, hashtags, and URLs in the account tweets.

Schuchard and Crooks (2021) consider a large corpus of Twitter posts related to the 2018 U.S. Midterm Election. They do
ot consider different sets of features on the same training set but run three state-of-art models, namely Botometer in the version
resented in Varol et al. (2017), DeBot (Chavoshi, Hamooni, & Mueen, 2016) and Bot-hunter (Beskow et al., 2018) to test their
greement. Among the accounts responsible for a volume of more than 40 million tweets, about 254k accounts were identified
s bots (bots are identified as such if at least one detector classifies it as a bot). The concordance of classifiers was poor, in fact,
mong the aforementioned 254k accounts, rather incredibly only 8 were labelled as bots by all 3 detection methods. The latter also
iffered in classifying bots according to how much they interacted with human accounts. This led the authors of Schuchard and
rooks (2021) to recommend a mix of detection methods to apply when hunting bots in the wild.

Ferrara (2017) explores the most significant features considered in the literature to detect bot accounts and thus rely on the
ser profile, on the geolocalization of the account and its activity (like the number and frequency of tweets, and the ratio between
weets and retweets), to create a simple, yet effective, bot detection system by using a variety of algorithms available in Scikit-
earn (Pedregosa et al., 2011). We see similarities with Ferrara (2017) and our work, because they both consider, for the classification
rocess, features that are relatively easy to compute, in terms of time necessary for data gathering. Thus, it would be interesting to
valuate the features in Ferrara (2017) on our datasets, which are much more recent.

El-Mawass, Honeine, and Vercouter (2020) propose a mixed approach to reduce the false positives rate in traditional supervised
ystems, thus increasing recall without deteriorating precision. They rely on a classifiers cascade, and use the output of supervised
lassifiers as prior beliefs in a probabilistic graphical model framework. This framework allows beliefs to be propagated to similar
ocial accounts. Classification results show a significant increase in recall and a maintained precision.

The work described so far is based on the classification of the individual account (the classifier takes as input the account, and
ays if it is a bot or not). In the following, we would like to briefly mention work that belongs, for the most part, to the second period
f bot detection, in which a group of accounts is analysed for its ‘team’ characteristics (for example, by comparing the creation time
f the accounts, or by comparing their online behaviour). Hui, Yang, Torres-Lugo, and Menczer (2020) propose BotSlayer, a tool
ased on an anomaly detection algorithm that let coordinated campaigns emerge from the crowd by highlighting hashtags, links,
hrases, and trending media. Other techniques are based, for example, on anomalies in synchronicity and normality (Giatsoglou
t al., 2015; Jiang, Cui, & Faloutsos, 2016), detection of loosely synchronised actions (Cao, Yang, Yu, & Palow, 2014), distance
etween distributions of reputation scores (Viswanath et al., 2015), and similarity between sequences of actions (Cresci et al.,
018).

Finally, Sharma et al., in Sharma et al. (2020), move away from the research trend of detecting teams of bots on the basis
f features concerning coordination and synchronous behaviour between such accounts and propose an approach to automatically
3

ncover coordinated group behaviours from account activities and interactions between accounts, based on temporal point processes.
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Table 1
Description of the original datasets.

Dataset Description #bot #human Year

Verified Verified Twitter accounts 0 2000 2019
Celebrity Celebrities 0 5970 2019
Botwiki Self-declared bots 704 0 2019
Rtbust Genuine accounts/coordinated bots 391 368 2019
Stock Genuine accounts/coordinated bots 18 508 7479 2018
Vendor Fake followers 1 088 0 2019

3. Datasets

We consider six publicly available datasets1 that have been chosen on the basis of the date of the accounts’ creation, namely we
chose those dated 2018 or 2019. This was done to understand whether the approaches used in our comparative analysis allow for
the detection of bots more sophisticated than those created years ago. The datasets are the following:

Verified first introduced in Yang et al. (2020b), consists of 2000 verified human accounts. Twitter offers the possibility (upon
request of the account owner) to obtain an official certification of account’s authenticity. Certified accounts are tagged as
verified and on the official portal have a blue circle, with a white tick at the centre.

Celebrity first introduced in Yang et al. (2020a), consists of 5970 celebrity accounts collected as authentic users.

Botwiki consists of 704 publicly declared bots from https://botwiki.org. The Botwiki organisation has the goal to preserve
‘examples of interesting and creative online bots, providing tutorials and other resources to folks interested in making them’.
The Botwiki Twitter accounts are easily recognisable bots, by, e.g., the word ‘bot’ in the username or in the account
description. These bots do not hide their automatic nature or their malicious intentions.

Rtbust built by Mazza, Cresci, Avvenuti, Quattrociocchi, and Tesconi (2019) by processing all the (9,989,819) Italian retweets
shared between 17 and 30 June, 2018, by 1,446,250 distinct users. After reducing the number of considered users, using the
number of their retweets ratio, 759 accounts were labelled either as human-operated or bot-operated.

Stock first introduced by Cresci, Lillo, Regoli, Tardelli, and Tesconi (2019) consists of both genuine and automated accounts
tweeting so-called cashtags, i.e., specific Twitter hashtags that refer to listed companies. Part of the automated accounts
have been found to act in a coordinated fashion, in particular by mass retweeting cashtags of low capitalisation companies.

Vendor introduced in Yang et al. (2020a), consists of 1088 fake followers, namely fake account employed to inflate the number
of followers of a target account.

Table 1 reports the name of the datasets, their brief description, and the number of accounts they originally feature; the year
represents the average of the creation years of the accounts that belong to the dataset. It is worth noting that the original datasets
only include the IDs of the accounts, plus the tag defining their nature. Therefore, through the Twitter public APIs and the Tweepy
library (http://www.tweepy.org/), we retrieved the data we needed for the experiments shown in this manuscript. Thus, Table 2
reports statistics about the same datasets, at the time of the current study (July, 2020). The table contains the number of bots and
humans that have at least 0, 100, 200, 300, and 400 tweets in their timelines — we always consider the most recent 100, 200, 300,
and 400 tweets posted by the accounts. We can notice that the number of accounts per dataset changes by considering a minimum
number of tweets in the timeline of each account. In particular, by considering only accounts with at least x tweets in their timelines,
the number of accounts per dataset decreases when x increases. This aspect is important to evaluate the performance of a classifier.
In the Discussion section, to assess the robustness of our results, we will compare how the classification performance is affected by
the number of tweets (and, consequently, the number of accounts) we consider.

For the sake of completeness, we highlight also that, if we focus on considering at least 500 tweets, instead of 400, we lose
between 2% and 5% of accounts, depending on the dataset. The loss is not drastic and, on the one hand, we could have analysed
accounts with a larger number of tweets in their timeline. On the other hand, we prefer to fix the minimum number of tweets to
consider equal to 400, to maintain a good trade-off between number of tweets and number of accounts.

4. Feature sets

In this section, we consider four different feature sets that can be given as input to learning models for the detection of bot
accounts. First, we consider as feature one of the scores output of Botometer Varol et al. (2017), the popular bot detection tool
developed at Indiana University. Then, we describe two feature sets, firstly introduced by Cresci et al. in Cresci et al. (2015), that
require low computational resources for data gathering. Finally, inspired by Bovet and Makse (2019), we take into account the type
of Twitter client (official/unofficial) from which the account tweets the most.

1 Bot Repository Datasets: https://botometer.iuni.iu.edu/bot-repository/datasets.html.
4
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Table 2
Number of accounts with a number of posts ⩾ a given threshold. Timelines were crawled on July 2020 through the Tweepy library.

Dataset #post ⩾ 0 #post ⩾ 100 #post ⩾ 200 #post ⩾ 300 #post ⩾ 400

Bots Human Bots Human Bots Human Bots Human Bots Human

Verified 0 1974 0 1965 0 1952 0 1928 0 1919
Celebrity 0 5649 0 5180 0 4902 0 4621 0 4375
Botwiki 664 0 654 0 649 0 646 0 642 0
Rtbust 315 317 315 315 315 314 309 310 303 308
Stock 6842 5880 6594 5021 6201 4390 5914 4043 5619 3888
Vendor 699 0 298 0 243 0 229 0 217 0

4.1. CAP_UNI Botometer score

Botometer v3 (Yang et al., 2020a) is based on a supervised machine learning approach employing Random Forest classi-
iers (Breiman, 2001a). Given a Twitter account, Botometer extracts, via the Twitter API, over 1000 features about the account,
ncluding measures of sentiment, time of day, tweets content and Twitter network.

The immediate output of Botometer is the bot score 𝑆 ranging over {0, . . . 1}, which however does not represents the probability
hat the considered account is a bot. The value has to be compared with other scores within a group of accounts, to come up with
plausible ranking. To interpret the output of Botometer as a bot probability, i.e., to answer the question: ‘is this account a bot

r not?’, the Complete Automation Probability 𝐶𝐴𝑃 has been introduced in (Yang et al., 2020a): it represents the conditional
robability that an account is a bot, given its bot score 𝑆. This conditional probability is calculated by applying the Bayes’s rule:
(𝐵𝑜𝑡|𝑆) = 𝑃 (𝐵𝑜𝑡) 𝑃 (𝑆|𝐵𝑜𝑡)𝑃 (𝑆) . In Varol et al. (2017), an assumption has been made that the prior probability (probability that any

andomly-chosen account is a bot) is 𝑃 (𝐵𝑜𝑡) = 0.15. However, if one knows the background level of bots in the sample (and this is
ur case, since the datasets are tagged), 𝐶𝐴𝑃 can be adjusted with a corrective factor: 𝐶𝐴𝑃 ∗= 𝐶𝐴𝑃 𝑃 𝑑 (𝐵𝑜𝑡)

0.15 where 𝑃 𝑑 (𝐵𝑜𝑡) is the
ctual probability that in the domain 𝑑 under investigation there is a specific number of bots. We know in advance the nature of
ur datasets, so it is possible to compute 𝑃 𝑑 (𝐵𝑜𝑡).

There are two types of 𝐶𝐴𝑃 , the 𝐶𝐴𝑃 _𝐸𝑁𝐺 and 𝐶𝐴𝑃 _𝑈𝑁𝐼 : the former exploits textual features regarding tweets in English,
he latter exploits only language-independent features. In the following, we will consider the *version of 𝐶𝐴𝑃 _𝑈𝑁𝐼 , that allows for
ore reliable results even when analysing non-English language tweets.

.2. Features related to the account’s profile/timeline

In a pioneer study about the detection of fake followers (Cresci et al., 2015), Cresci et al. tested Twitter fake followers in the
eference set against algorithms based on: (i) classification rules proposed by technology bloggers and social media marketing
ompanies,2 and (ii) feature sets proposed in the literature for detecting spammers. They classified rules and features according
o the cost required for gathering the data needed to compute them and showed how the best performing features are also the
ost costly ones. Then they implemented a series of lightweight classifiers using less costly features, that nevertheless are able to

orrectly classify more than 95% of the accounts of the baseline dataset. Table 3 shows the list of features inherited from Cresci
t al. (2015) that will be used in the next section to test the outcome of a number of classifiers. The features in Class A are those
btainable from the account profile data only, and those in Class B are those obtainable from the timelines of the accounts.

.3. Proportion of tweets sent by unofficial Twitter clients

In their study on the dissemination of fake news during the 2016 presidential elections (Bovet & Makse, 2019), Bovet and Makse
roposed to identify tweets originated by bots by inspecting their source field and extracting the name of the Twitter client used
o post the tweet. Bovet and Makse considered genuine users only those that mostly tweeted from clients in the list of the official
witter clients, as listed in the Supplementary Table 14 of Bovet and Makse (2019). The motivation for not considering authentic
he accounts that tweeted from third-party clients is that the latter are mainly used by professionals for automating some tasks, see,
.g., www.sprinklr.com or dlvrit.com.

The approach has been further investigated by the same authors in Bovet, Morone, and Makse (2018), where its classification
erformances are compared with those of Botometer Varol et al. (2017). The outcomes of the comparison showed a good accuracy
f their proposal, although with a higher number of false positives3 than Botometer. The authors of Bovet and Makse (2019) and
ovet et al. (2018) also state that evolved bots ‘might not be detected’ by simply looking at the source field, but ‘this is also a
roblem for more advanced methods that rely on a training set of known bots (Varol et al., 2017)’.

2 Stateofsearch.com: How to Recognise Twitterbots: 7 Signals to Look out for (August 2012) (online newsletter, no more available); M. Camisani-Calzolari:
nalysis of Twitter Followers of the US Presidential Election candidates: Barack Obama and Mitt Romney (August 2012); Status People Fakers (a former
ervice to tag accounts as fake or not); SocialBakers (a social media marketing platform, https://www.socialbakers.com/feature/fake-influencers-detection);
ttps://www.twitteraudit.com/.

3

5

False positives are the genuine accounts erroneously classified as bots.

http://www.sprinklr.com
https://dlvrit.com/
https://www.socialbakers.com/feature/fake-influencers-detection
https://www.twitteraudit.com/
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Table 3
Class A and Class B features.

Class A – profile Class B – timeline

Friends count Rate of posts with at least one Hashtag
Followers count Rate of posts with at least one URL
Tweets count Rate of posts with at least one mention

𝑓𝑟𝑖𝑒𝑛𝑑𝑠
𝑓𝑜𝑙𝑙𝑜𝑤𝑒𝑟𝑠2

Rate of retweets

Account age

Following rate (approximated as 𝑓𝑟𝑖𝑒𝑛𝑑𝑠
𝑎𝑔𝑒

)

The account’s profile has a name
The account’s profile has an image
The account’s profile has an address
The account’s profile has a biography
The account’s profile has a URL
The account belongs to a list
2 × 𝑓𝑜𝑙𝑙𝑜𝑤𝑒𝑟𝑠 ≥ 𝑓𝑟𝑖𝑒𝑛𝑑𝑠

𝑓𝑟𝑖𝑒𝑛𝑑𝑠
𝑓𝑜𝑙𝑙𝑜𝑤𝑒𝑟𝑠

≃ 100

𝑓𝑟𝑖𝑒𝑛𝑑𝑠
𝑓𝑜𝑙𝑙𝑜𝑤𝑒𝑟𝑠

≥ 50

Table 4
Training sets for the experiments. The accounts are those for which Botometer v3 returns a valid
response and that have at least 400 tweets in their timelines.

Training set #bot #human

Celebrity-Botwiki 642 4375
Verified-Botwiki 642 1919
Verified-Vendor 217 1919
Stock 5619 3888
Rtbust 303 308

In the following, inspired by the evaluation of the source field of tweets, we consider as a feature the proportion of tweets posted
y unofficial Twitter clients, on the whole number of tweets of the account. As ‘whole’ number of tweets, we consider the most
ecent 400 tweets in the account timeline.

.4. Experimental setup

We combine the datasets described in Section 3 to construct five training sets to test the goodness of the four feature sets in
iscriminating bots and genuine accounts: Celebrity-Botwiki; Verified-Botwiki; Verified-Vendor; Stock; Rtbust.

Statistics about the number of bots and genuine accounts in the training sets are in Table 4.
The rationale behind the choice of these combinations is to evaluate how the different sets of features are able to recognise

recent bot accounts, with more advanced characteristics than bots dated 2010–2017, both for types acting in a coordinated fashion
(such as Stock and Rtburst) and for types acting individually (Botwiki and Vendor).

All the training sets do not consider those accounts for which Botometer v3 does not produce a valid response. Thus, we will
consider only performance results over the training sets with accounts (i) for which Botometer v3 has returned a valid response and
(ii) have at least 400 tweets in their timeline.

In the following, we evaluate the performances of five different learning algorithms in terms of well known, standard metrics,
such precision, recall, Matthew Correlation Coefficient (MCC) (i.e, the estimator of the correlation between the predicted class and
the real class of the samples), and the area-under-the-curve metric (AUC), that is the area under the Receiver Operating Characteristic
(ROC) curve (Metz, 1978). As can be seen from the composition of the training sets (Table 4), they have different degrees of balance,
from Rtbust which is balanced, to Verified-Botwiki and Stock which have a mild degree of imbalance (minority class equal
o 20%–40% of the whole set), to Celebrity-Botwiki and Verified-Vendor which have a moderate degree of imbalance
minority class equal to 1%–20% of the whole set).4 The ROC-AUC - Area Under the Curve corresponding to the Receiver Operating
haracteristics — is generally considered an unbiased metric in imbalanced settings. Provost et al. proposed ROC-AUC as alternatives
o accuracy (Weiss & Provost, 2003). In addition, as evaluation metric, we will also consider the Precision Recall-Area Under the
urve (PR-AUC), often judged less biased than ROC-AUC in the presence of moderate imbalances (Saito & Rehmsmeier, 2015).
inally, we report the Balanced Accuracy, defined as (True Positive rate + True Negative rate)/2.

4 https://developers.google.com/machine-learning/data-prep/construct/sampling-splitting/imbalanced-data.
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Table 5
10-folds cross validation (imbalanced, #post ⩾ 400).

Name Celebrity-Botwiki

Bal. Accuracy Precision Recall MCC PR-AUC ROC-AUC

Botometer CAP_UNI∗
MlP 0.857 0.761 0.748 0.719 0.762 0.931
JRip 0.833 0.816 0.687 0.716 0.628 0.836
NaiveBayes 0.721 0.858 0.452 0.588 0.772 0.928
RandomForest 0.853 0.778 0.737 0.723 0.778 0.95
IBk 0.854 0.775 0.739 0.722 0.768 0.951

ClassA
MlP 0.961 0.925 0.932 0.918 0.978 0.996
JRip 0.984 0.983 0.971 0.974 0.97 0.984
NaiveBayes 0.98 0.847 0.986 0.901 0.979 0.995
RandomForest 0.989 0.991 0.979 0.983 0.998 1
IBk 0.951 0.912 0.915 0.901 0.843 0.955

ClassB
MlP 0.954 0.914 0.921 0.905 0.95 0.976
JRip 0.962 0.922 0.935 0.918 0.92 0.966
NaiveBayes 0.934 0.663 0.937 0.752 0.912 0.968
RandomForest 0.964 0.941 0.937 0.93 0.978 0.995
IBk 0.94 0.888 0.896 0.876 0.878 0.94

Twitter client
MlP 0.962 0.804 0.958 0.859 0.827 0.978
JRip 0.96 0.81 0.952 0.859 0.778 0.961
NaiveBayes 0.951 0.614 0.993 0.743 0.796 0.977
RandomForest 0.949 0.818 0.929 0.852 0.803 0.975
IBk 0.949 0.814 0.929 0.849 0.804 0.977

Concerning the five algorithms, each of them belongs to a different category: MlP (Multilayer Perception) (Pal & Mitra, 1992),
Rip, i.e., a Java-based implementation of the RIPPER algorithm (Cohen, 1995), Naive Bayes (John & Langley, 1995), Random
orest (Breiman, 2001a), and the Weka (Witten, Frank, & Hall, 2011) implementation of the Instance-based Learning Algorithms,
.e., IBk (Aha, Kibler, & Albert, 1991). For all the experiments, we rely on the open source machine learning software Weka. For
ach evaluation, we apply a 10-fold cross validation on the training sets. For each algorithm, we use the default parameter settings,
etailed in the official Weka documentation.5

As a final note, before presenting the result of our analysis, we would like to highlight that, although we could have directly used
he Botometer CAP* to classify accounts as bots or not, we preferred to give the CAP* as a feature to the learning models, exactly
s we did with the other features presented. This allows us to give a homogeneous presentation of the results. In the Discussion
ession, we will show that the two procedures (classifying directly with Botometer/classifying with the learning models) obtain the
ame performances.

. Experimental results

In this section, we report our experiments and comment their main outcomes.

.1. Celebrity-Botwiki

Table 5 shows the performances results of the same learning algorithms when fed with the Botometer v3 CAP_UNI*, the Class A
nd Class B features, and the percentage of tweets posted by unofficial clients, for the training set composed of self-declared bots
nd the celebrity accounts.

All the four approaches achieved very good results in terms of ROC-AUC. It can be seen that the other metrics are slightly worse
or models trained with the CAP_UNI* score returned by Botometer v3. To be precise, the worst results are those obtained with
he CAP_UNI* and with the feature about the Twitter client. The performance with the latter is indeed not so surprising, since
elebrity accounts are probably managed by social media managers who may also decide to automate the tweets posted. Regarding
he CAP_UNI*, for this particular training set some celebrities have been tagged as bots (lower precision), and some bots have been
lassified as celebrities (lower recall). This also results in slightly lower values for the ROC-AUC. As one of the most skewed training
ets, we notice a worsening of the PR-AUC compared to the ROC-AUC for every tested feature set, but Class A and Class B still give
alues greater than 0.9.

5 https://waikato.github.io/weka-wiki/documentation/.
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Table 6
10-folds cross validation (imbalanced, #post ⩾ 400).

Name Verified-Botwiki

Bal. Accuracy Precision Recall MCC PR-AUC ROC-AUC

Botometer CAP_UNI∗

MlP 0.836 0.867 0.708 0.721 0.865 0.914
JRip 0.853 0.817 0.762 0.722 0.746 0.854
NaiveBayes 0.706 0.971 0.415 0.576 0.838 0.889
RandomForest 0.843 0.866 0.723 0.731 0.866 0.918
IBk 0.842 0.86 0.723 0.726 0.866 0.919

ClassA
MlP 0.958 0.909 0.948 0.903 0.948 0.986
JRip 0.976 0.975 0.96 0.957 0.958 0.974
NaiveBayes 0.961 0.907 0.955 0.907 0.964 0.982
RandomForest 0.983 0.989 0.969 0.972 0.997 0.999
IBk 0.952 0.908 0.935 0.895 0.866 0.951

ClassB
MlP 0.962 0.965 0.935 0.933 0.963 0.966
JRip 0.982 0.958 0.979 0.957 0.953 0.986
NaiveBayes 0.941 0.823 0.951 0.843 0.951 0.979
RandomForest 0.983 0.976 0.974 0.966 0.993 0.997
IBk 0.973 0.964 0.958 0.948 0.957 0.977

Twitter client
MlP 0.958 0.867 0.965 0.885 0.878 0.973
JRip 0.958 0.884 0.957 0.892 0.833 0.949
NaiveBayes 0.934 0.728 0.993 0.793 0.857 0.967
RandomForest 0.956 0.878 0.957 0.887 0.874 0.973
IBk 0.956 0.874 0.957 0.884 0.874 0.973

5.2. Verified-Botwiki

Table 6 shows that, when the training set is composed by Botwiki and the verified Twitter accounts, the outcome is very similar
o the previous one.

.3. Verified-Vendor

When we consider the dataset formed by verified accounts and fake followers, the results of the various approaches start to differ
ignificantly, see Table 7. The Twitter client approach fails on every front. This training set is the most unbalanced of all, in fact
ake followers represent only 10% of the whole set. To limit the perhaps too optimistic view given by the ROC-AUC, we can analyze
he PR-AUC values, which are derived from the individual precision and recall values. Leaving aside Naive Bayes and IBk, which
or class A and B give much worse results than CAP*, the precision for the other types of algorithms is comparable for the three
et of features. Recall gets the highest value for Class A features and Random Forest (0.729). However, for all the feature sets, the
lgorithms classify many fake followers as verified accounts.

We have examined this aspect in more detail: the low recall values could in fact be due to the strong unbalance of the dataset.
able 8 compares, for each algorithm, the recall calculated on the unbalanced dataset and the recall calculated on the dataset where
he majority class (the verified accounts) has been under-sampled.6 In this way, the dataset is composed of 40% Vendor accounts

and 60% Verified accounts. The recall values in the balanced dataset actually increase. Even if they do not reach the peaks of 0.9
of the datasets we have analysed so far, they still oscillate between 0.6 and 0.853. We will come back to this aspect in Section 6.3
of the Discussion section.

5.4. Stock

We now analyse a dataset consisting of both bots and genuine accounts, each of which tweet about financial markets. Some of
the bots act in a coordinated manner. The dataset is very recent and this let us assume that we are dealing with a very sophisticated
version of bots. First, from Table 9, we can see that the values of ROC-AUC and PR-AUC are similar. The dataset is in fact almost
balanced, bots are about 60% of the total accounts in the dataset. Again, analysing the Twitter client does not yield good results
(although this approach performs better than in the case considered in Section 5.3). Surprisingly, the remaining three approaches
have similar results and they generally obtain values greater than 0.8 for ROC-AUC (11 times out of 15). Class A generally obtains
the lowest values for precision and recall, while class B gives the best results. We can conjecture that the nature of these bots, which
is peculiar to the content tweeted, means that the timeline features of the accounts are sufficient, and necessary, to best detect these

6 https://weka.sourceforge.io/doc.dev/weka/filters/supervised/instance/SpreadSubsample.html.
8
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Table 7
10-folds cross validation (imbalanced, #post ⩾ 400).

Name Verified-Vendor

Bal. Accuracy Precision Recall MCC PR-AUC ROC-AUC

Botometer CAP_UNI∗

MlP 0.764 0.879 0.535 0.661 0.689 0.854
JRip 0.771 0.84 0.553 0.654 0.551 0.75
NaiveBayes 0.709 0.948 0.42 0.608 0.681 0.838
RandomForest 0.748 0.84 0.507 0.625 0.707 0.885
IBk 0.767 0.843 0.544 0.65 0.709 0.887

ClassA
MlP 0.767 0.799 0.549 0.632 0.711 0.862
JRip 0.848 0.812 0.715 0.737 0.649 0.828
NaiveBayes 0.781 0.868 0.572 0.679 0.739 0.906
RandomForest 0.858 0.859 0.729 0.77 0.837 0.939
IBk 0.75 0.634 0.535 0.54 0.399 0.75

ClassB
MlP 0.816 0.88 0.641 0.728 0.767 0.913
JRip 0.814 0.767 0.65 0.676 0.629 0.832
NaiveBayes 0.605 0.598 0.226 0.329 0.518 0.901
RandomForest 0.836 0.828 0.687 0.73 0.819 0.935
IBk 0.804 0.745 0.632 0.654 0.517 0.815

Twitter client
MlP 0.5 0 0 0 0.146 0.58
JRip 0.5 0 0 0 0.101 0.495
NaiveBayes 0.5 0 0 0 0.136 0.607
RandomForest 0.511 0.242 0.033 0.055 0.135 0.6
IBk 0.5 0.1 0.028 0 0.133 0.605

Table 8
Vendor-Verified training set: Recall values for the original set and for a modified set where the
balance among the classes is 40% Vendor – 60% Verified.

Name 10%–90% 40%–60%

Botometer CAP_UNI∗

MlP 0.535 0.683
JRip 0.553 0.692
NaiveBayes 0.42 0.563
RandomForest 0.507 0.673
IBk 0.544 0.692

ClassA
MlP 0.549 0.756
JRip 0.715 0.848
NaiveBayes 0.572 0.6
RandomForest 0.729 0.853
IBk 0.535 0.738

ClassB
MlP 0.641 0.807
JRip 0.65 0.779
NaiveBayes 0.226 0.738
RandomForest 0.687 0.807
IBk 0.632 0.816

accounts. We would like to point out that in the paper where these accounts were first analysed (Mazza et al., 2019), the proposed
detection technique is an unsupervised technique that detects these bot accounts as a group acting in a coordinated manner. Our
analysis suggests that we could obtain a good result at detection level, even leveraging a traditional supervised classifier, exploiting
features that are not expensive in terms of data gathering.

5.5. Rtbust

We now analyse the classification results on the last dataset, consisting of a mix of genuine accounts and bots. The latter feature
coordinated behaviour, whose peculiarity is to retweet en masse some target account. The dataset is perfectly balanced (303–308),

so we focus on ROC-AUC rather than PR-AUC. The result is that, once again, Class B gives the best results, reaching values above 0.8
and peaking at 0.877. The Class A approach degrades the performances; 0.841 is the best result, but with all other values between
0.7 and 0.8. We argue that this is a surprising result, for the following reasons. First, Class B features are not onerous to compute
compared to the ensemble of features used in Botometer v3 (in our experiments summarised by CAP_UNI*). Secondly, the authors
9
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Table 9
10-folds cross validation (imbalanced, #post ⩾ 400).

Name Stock

Bal. Accuracy Precision Recall MCC PR-AUC ROC-AUC

Botometer CAP_UNI∗
MlP 0.797 0.815 0.886 0.609 0.826 0.823
JRip 0.797 0.812 0.893 0.611 0.79 0.789
NaiveBayes 0.787 0.839 0.795 0.569 0.829 0.834
RandomForest 0.794 0.811 0.887 0.605 0.838 0.839
IBk 0.794 0.81 0.89 0.604 0.837 0.839

ClassA
MlP 0.717 0.762 0.793 0.438 0.822 0.787
JRip 0.795 0.829 0.842 0.592 0.818 0.814
NaiveBayes 0.561 0.623 0.981 0.235 0.85 0.804
RandomForest 0.801 0.835 0.842 0.603 0.914 0.882
IBk 0.674 0.732 0.74 0.348 0.7 0.673

ClassB
MlP 0.824 0.834 0.909 0.664 0.872 0.869
JRip 0.825 0.836 0.907 0.666 0.825 0.835
NaiveBayes 0.806 0.82 0.898 0.63 0.852 0.854
RandomForest 0.806 0.827 0.875 0.62 0.871 0.863
IBk 0.753 0.795 0.807 0.507 0.782 0.763

Twitter client
MlP 0.605 0.661 0.815 0.231 0.674 0.635
JRip 0.64 0.688 0.819 0.302 0.674 0.641
NaiveBayes 0.558 0.622 0.96 0.202 0.661 0.62
RandomForest 0.615 0.663 0.874 0.273 0.671 0.643
IBk 0.607 0.657 0.879 0.258 0.668 0.64

Table 10
10-folds cross validation (#post ⩾ 400).

Name Rtbust

Bal. Accuracy Precision Recall MCC PR-AUC ROC-AUC

Botometer CAP_UNI∗

MlP 0.538 0.53 0.588 0.075 0.574 0.588
JRip 0.616 0.612 0.614 0.231 0.552 0.592
NaiveBayes 0.529 0.614 0.152 0.088 0.554 0.554
RandomForest 0.562 0.56 0.542 0.123 0.573 0.571
IBk 0.559 0.55 0.604 0.118 0.585 0.569

ClassA
MlP 0.717 0.767 0.618 0.442 0.761 0.764
JRip 0.738 0.77 0.674 0.48 0.737 0.746
NaiveBayes 0.649 0.6 0.865 0.329 0.7 0.742
RandomForest 0.776 0.801 0.73 0.554 0.867 0.841
IBk 0.706 0.698 0.717 0.412 0.644 0.706

ClassB
MlP 0.827 0.869 0.766 0.658 0.871 0.877
JRip 0.805 0.852 0.736 0.616 0.815 0.827
NaiveBayes 0.747 0.711 0.826 0.5 0.816 0.832
RandomForest 0.818 0.859 0.76 0.641 0.902 0.869
IBk 0.778 0.769 0.789 0.556 0.707 0.77

Twitter client
MlP 0.514 0.51 0.522 0.028 0.524 0.539
JRip 0.596 0.57 0.743 0.2 0.532 0.564
NaiveBayes 0.537 0.517 0.921 0.115 0.52 0.537
RandomForest 0.564 0.539 0.802 0.145 0.51 0.543
IBk 0.575 0.546 0.832 0.175 0.52 0.555

that firstly discovered these kind of bots achieved, in their best parameters’ configuration, a precision of 0.934 (w.r.t. our best
result = 0.869), a recall of 0.814, comparable to our recall value of 0.826, and MCC = 0.757 (w.r.t. our best result = 0.658) (Mazza
et al., 2019). Although achieving lower performances than (Mazza et al., 2019), we obtain promising results without relying on a
specialised technique aimed at detecting retweeters. It is also worth noting

that Mazza et al. (2019) experimented with different parameters’ configurations, and, except for their values of 0.757, the MCCs
values that we obtain here are always higher than those obtained in Mazza et al. (2019) for the tested configurations. Last, but not
least, our approach and its outcome align us with the very recent approach in Sayyadiharikandeh et al. (2020), without leveraging
the premium version of Botometer v4 (see a discussion in the following section).
10
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6. Discussion

In this section, we (1) highlight our motivations for considering features easily obtainable from the account profile and timeline,
hrough an analysis of the cost of data gathering from Twitter; (2) discuss the main findings of the manuscript; (3) introduce some
imitations of the work and test its robustness by introducing further experiments.

.1. Twitter API and Botometer rate limits, in a nutshell

In this paper, we have carried out some experiments over datasets of genuine and bot accounts, in order to compare the
erformances of well-known learning algorithms used to detect bots, while considering different sets of state-of-art features of the
ccounts. From the simplest to the most complex ones, the account features are computed from the data that Twitter makes available
rom the APIs.7 As originally defined by Cresci et al. in Cresci et al. (2015), such features can be distinguished, according to the
umber of API calls needed to compute them, into features related to the account profile (so called Class A features), related to the
imeline (Class B features), and related to relationships (Class C features). Extracting features other than those that can be computed
rom data in the account profile have a higher cost in terms of the number of API calls needed.

To retrieve the most recent tweets posted by one user, Twitter provides two versions of the same service, namely v1 and v2. At
ime of writing, the Twitter documentation reports that the new API v2 will fully replace the v1.1 standard, premium, and enterprise
PIs.

The user timeline API v2 limits the number of tweets that can be obtained per request, compared to v1: the latter allows up to
maximum of 200 tweets per single request, while the former allows up to a maximum of 100 tweets. Moreover, the maximum

umber of requests is equal to 1500 requests per 15-min window.
Similarly, to get the list of IDs of followers and followings of an account, there are new versions of the APIs. With respect to

1, the number of IDs per request has been greatly reduced, from 5000 in v1 to 1000 in v2. Concerning the rate limit, v2 allows
or 15 requests per 15-min window. Thus, if for example we concentrate on the account’s followers, downloading the whole list of
ollowers of an account would require

⌈

𝑓
5000

⌉

API calls, where 𝑓 is the number of the account’s followers. The number of followers
nd followings of an account is not limited and, therefore, it is impossible to calculate the maximum number of API calls to crawl
he necessary information and compute the features related to the relationships of an account. As an example, the Twitter account
ith the highest number of followers belonged, at time of writing, to Barack Obama (@BarackObama), with around 130 millions

accounts. To gather information about them, one would need around 130,000 Twitter API calls.
In light of the above, it is clearly more appealing to use ‘low cost’ features, to reduce the time for feature gathering. Hence the

idea of the manuscript, i.e., to test efficacy of low cost features on more advanced bot datasets.
A tool such as Botometer can save the user the process of feature extraction — leaving this part of the work to Botometer itself.

In this regard, we would like to clarify that our goal here is not to evaluate or question the quality of a system like Botometer. This
well-known bot detector is now at version 4, and it has been recently shown that it performs well for detecting both single-acting bots
and coordinated campaigns (Sayyadiharikandeh et al., 2020). Botometer has however some limitations that may justify considering
alternative approaches for bot detection. For much of its life, Botometer was an openly accessible tool, relying on the Twitter API to
collect recent data about the accounts to investigate. As highlighted above, in that case the query limits imposed by the Twitter API
caused the analysis of large population of accounts to be very time consuming. Botometer v3 imposes additional rate limits, while
the current version v4 provides both a free version and a premium version.8 The premium version (50 dollars/month) allows a rate
limit of 17,280 requests per day (each request processes 1 user only). In addition, v4 premium offers the lite version BotometerLite,
which does not interface with Twitter, but simply takes the tweet, retrieves the author, and does the necessary follow-up analysis.
Interestingly, this light version only needs the information in the user profile to perform bot detection. This resembles the approach
considered in this paper, the one based on Class A features. The disadvantage is that each request to BotometerLite can process a
maximum of 100 users, with the limit of 200 requests per day, leading to a maximum of 20k account checks per day.

6.2. Classifying via CAP* as output of Botometer or as input to the learning models

For the sake of completeness, here we compare the performance of Botometer, based directly on CAP, and of our classifiers that
use CAP as their input feature. As stated in Section 4.1, we consider here the *version of CAP_UNI, i.e., CAP_UNI adjusted with a
corrective factor taking into account the actual number of bots in the training sets. Once having CAP_UNI* for every account in the
training sets, we measured the Botometer’s performances by applying a threshold-based rule: if CAP_UNI* ≥ 𝑡ℎ, then the account
s tagged as a bot. Then, we evaluated the performances of the rule varying the threshold in the interval [0, . . . 1]. Finally, for
ach training set, we selected the threshold that gave the best Balanced Accuracy. This value of Balanced Accuracy (and the related
recision and Recall values) have been compared with the best performances obtained by our learning models. The results of the
omparison are in Table 11. For each training set, we have reported the Botometer threshold and the learning model for which the
est Balanced Accuracy was obtained. We have also reported the corresponding Precision and Recall values. As the results show,
here is no substantial difference in considering CAP_UNI* directly, or in giving it as input to the learning models. This gives us
onfidence that the choice we made is trustworthy. This way, we could maintain uniformity of both the adopted methodology and
he presentation of results (Section 5), i.e., always considering feature sets + learning models.

7 Twitter API documentation: https://developer.twitter.com/en/docs/twitter-api.
8 https://cnets.indiana.edu/blog/2020/09/01/botometer-v4/.
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Table 11
Performances of Botometer and our classifiers that use the Botometer’s CAP* as their feature.

Model Thd Bal. Accuracy Precision Recall

Celebrity-Botwiki
Rule-based 0.015 0.855 0.773 0.742
MlP – 0.857 0.761 0.748

Verified-Botwiki
Rule-based 0.025 0.858 0.829 0.768
JRip – 0.853 0.817 0.762

Verified-Vendor
Rule-based 0.025 0.779 0.822 0.572
JRip – 0.771 0.84 0.553

Stock
Rule-based 0.4 0.8 0.824 0.869
RandomForest – 0.794 0.811 0.887

RtBurst
Rule-based 0.02 0.624 0.615 0.647
JRip – 0.616 0.612 0.614

6.3. Main findings

From the study conducted in this paper, we can draw the following findings.

• Basic methods based on a single, basic, feature, like the Twitter client, are not sufficient to detect sophisticated bots, possibly
acting in a coordinated fashion. For the specific training sets considered here, the method gives good results only when
considering rather simplistic bots that act individually, i.e., Botwiki. It is interesting instead to note the low performances
obtained considering the Twitter client with regard to Vendor: Although they act individually, the Twitter client is not enough
to recognise them, because they do not tweet by third-parties clients;

• Surprisingly, a set of simple features, such as those obtained from the user’s timeline, are effective in distinguishing novel
social bots, either acting individually (like those in the Vendor dataset) or in teams (like the retweeters in Rtbust and the
promoters of low-value stocks in Stock). Obviously, deeming an individual account as a bot does not imply that it is part of a
team programmed for the same goal. We think, however, that an approach based on features such as those in Class A and Class
B, once proven to work well on datasets in which we know there are bot squads – such as those investigated in this manuscript
– can be useful as a first step for finding such squads. Then, the nature of the unveiled bots can be further investigated by
exploiting specialised detection systems. As a notable example, the Social Fingerprinting bot detection technique (Cresci et al.,
2018) encodes the online behaviour of a user into a string of characters that represents its digital DNA. Then, digital DNA
sequences are compared between one another by means of bioinformatics algorithms. The technique classifies as bots acting
in teams those users that have suspiciously high similarities among their digital DNA sequences. To obtain the digital DNA
of the user, various encodings can be used. If we aim to understand, for example, if within a set of bots there are some that
advertise the same product, or point to the same piece of information or account, we could think about coding their Twitter
timelines according to the nature of hashtags, mentions and URLs therein. Some recent work did something similar, even if
not under the flag of digital DNA, see, e.g., Caldarelli et al. (2019) and Hui et al. (2020);

• When considering the analyses launched on the Vendor-Verified set, all the tested features lead to a collapse of the recall
values. In Table 8, we have verified that the recall rises when the training set is more balanced. In fact, even if the values
do not reach peaks of 0.9, they are similar to the values obtained considering the training set Rtbust, see Table 10. Thus,
compared to the other sets (Celebrity-Botwiki, Verified-Botkiwi, Stock, some fake followers in the Vendor set
are erroneously tagged as genuine Twitter accounts. This suggests that even this strain of account, originally designed in a
very simplistic way, just to increase the number of followers of a Twitter account, has evolved.

.4. Considering timelines shorter than 400 tweets

We are aware that our study has limitations. First, in order to have a solid comparison with similar approaches, like the one
roposed in Sayyadiharikandeh et al. (2020), we would have to test our feature sets on the datasets used in that work. This is far
rom impossible, as the datasets are known: we put it on the agenda for future work.

Then, we guessed about a possible change in the performance results by considering timelines shorter than 400. In fact, as can be
een from Table 2, the number of accounts in the datasets changes if we set thresholds on the minimum number of tweets that each
ccount must have. For example, considering the Vendor dataset, there is a net decrease for those accounts that have at least 400

tweets (217 accounts) compared to the accounts currently ‘alive’ at the time of data re-crawling (699 accounts). Therefore, we have
analysed how the ROC-AUC varies with respect to a variation of the number of posts in the accounts’ timeline.9 Considering only

9 In this experiment, we do not show the PR-AUC, given the fact that this metric ‘should not be compared between populations’ with different bot accounts
12
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Fig. 1. ROC-AUC by varying the minimum number of posts in the account timelines, per training set.

accounts that have at least x tweets in their timeline leads to a change of the training sets (see Table 2). In order to demonstrate
the robustness of our analysis, we should test if the ROC-AUC remains constant on the training sets, when varying the minimum
number that an account must have in its timeline. As can be seen from Fig. 1, the ROC-AUC values remain stable, except in the case
of the Verified-Vendor training set, which shows a marked difference between the AUC values for 100, 200, and 300 tweets
(0.73, 0.73, 0.75 respectively) and the value for 400 tweets (>0.9) for the Class B feature set. In this case, the performance degrades
when fewer tweets are considered.

6.5. Feature analysis

Here, we show the results on the relevance of the single features, based on the Information Gain, a measure about the
informativeness of a feature with respect to the predicting class (Kent, 1983). The information gain can be informally defined
as the expected reduction in entropy caused by the knowledge of the value of a given attribute (Mitchell et al., 1997). The analysis
has been implemented in Weka, through the attribute selector algorithm InfoGainAttributeEval.10 In Table 12, we report the ranking
of the first five most important features, for two specific training sets, according to the Information Gain value. We show the results

10 InfoGainAttributeEval: https://tinyurl.com/ve99qt8.
13
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Table 12
Ranking of relevance of the features.

Verified-Botwiki Stock

(1.000) rate of retweets (1.000) rate of retweets
(0.955) rate of posts with at least one mention (0.942) rate of posts with at least one Hashtag
(0.928) friends count (0.925) Botometer
(0.907) rate of posts with at least one Hashtag (0.865) followers count
(0.897) Twitter client (0.793) rate of posts with at least one URL

obtained for one of the ‘easiest-to-classify’ training set, namely the Verified-Botwiki, composed by simplistic bots and verified
witter users, and one of the most ‘troublesome-to-classify’ one, where the bots work in team, i.e., Stock. Not surprisingly, the
witter client ranks 5th amongst the most relevant features for the Verified-Botwiki training set, while, looking at the Stock
raining set, the same feature does not appear in the top 5 results, as shown in the table, but not even in the top 12 (actually, it
anks 13th). Looking instead at the results for Stock, we can see that in the first five positions there are class A and B features and
he CAP*. We consider this an interesting outcome, which would confirm that features and tools coined a few years ago are still
ffective for the detection of novel social bots.

. Conclusions

In this paper, we carried out an exploratory study on the effectiveness of different set of features exploitable for bot detection
ethods. In particular, we focused on features that, for the complexity of their computation, require minimal analytical efforts.
he considered features are well known by Academia and commonly exploited in the past for bot detection. In particular, Class A
nd Class B feature sets were first introduced in Cresci et al. (2015), limited to the detection of Twitter fake followers, and have
iven excellent performance results. The Botometer scores have been judged more than effective indicators for automated account
etection for years. Finally, the idea of using the source field of the tweet to evaluate from which client one tweets was proposed
n Bovet and Makse (2019). We examined such existing features on new bot designs to identify those feature sets that allow us to
uild bot detectors that are efficient and effective, also for unveiling newer and more sophisticated accounts.

We have learned the following main lessons:

1. The method based on considering the Twitter client has a minimal complexity, but it proves insufficient to detect sophisticated
bots;

2. Profile and – especially – timeline features prove to be significant in discriminating even advanced bots, i.e., those working
in teams;

3. The evolution of bots does not stop: fake followers, a typology of bots that was once very simplistic, now manage to well
disguise themselves amongst the genuine accounts.

The experiments shown in this article are not exhaustive. More accurate analyses can be carried out considering, e.g., a different
omposition of the training sets analysed and other datasets. We believe, however, that the results shown in this paper, and the
elated discussions, represent a good proof and reasoning that it is possible to contrast the evolution of bots also with state-of-art
eatures and learning models.
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