

ACCORDION receives funding from the European Union’s Horizon 2020 research and innovation programme under Grant Agreement No. 871793

Adaptive edge/cloud compute and network continuum over a heterogeneous
sparse edge infrastructure to support nextgen applications

Deliverable D2.3

Architecture design (I)

 ACCORDION – G.A. 871793

D2.3 Architecture design (I) Page 2 of 68

DOCUMENT INFORMATION
PROJECT

PROJECT ACRONYM ACCORDION

PROJECT FULL NAME

Adaptive edge/cloud compute and network continuum

over a heterogeneous sparse edge infrastructure to

support nextgen applications

STARTING DATE 01/01/2020 (36 months)

ENDING DATE 31/12/2022

PROJECT WEBSITE http://www.accordion-project.eu/

TOPIC ICT-15-2019-2020 Cloud Computing

GRANT AGREEMENT N. 871793

COORDINATOR CNR

DELIVERABLE INFORMATION

WORKPACKAGE N. | TITLE WP2: Requirements & System Design

WORKPACKAGE LEADER HUA

DELIVERABLE N. | TITLE D2.3: Architecture design (I)

EDITOR K. Tserpes (HUA)

CONTRIBUTOR(S)

K. Tserpes (HUA), G. Kousiouris (HUA), S. Xydis (HUA). T.

Kafatari (HUA), Ioannis Korodanis (HUA), Patrizio Dazzi

(CNR), Emanuele Carlini (CNR), Hanna Kavalionak (CNR),

Luca Ferrucci (CNR), Felipe Huici (NEC), Eduard Marin

Fabregas (TID), Nicolas Kourtellis (TID), Diego Andilla

Ferran (TID), Ioannis Violos (ICCS), Evangelos

Psomakelis (ICCS), Mateusz Kamiński (BSOFT),

Bartłomiej Lipa (BSOFT), Tom Loven (PLEX), Yago

Gonzalez Rozas (PLEX), Andrea Toro (HPE), Marco Russo

(HPE), Lorenzo Blasi (HPE), Alain Vailati (HPE), Marco Di

Girolamo (HPE), Nadir Zinelaabidine (AALTO), Zbyszek

Ledwoń (ORBK), Saman Zadtootaghaj (TUB), Maria

Pateraki (OVR), Spiros Fotis (AEGIS), Leonidas Kallipolitis

(AEGIS), Spyros Vantolas (AEGIS)

REVIEWER Patrizio Dazzi (CNR)

 ACCORDION – G.A. 871793

D2.3 Architecture design (I) Page 3 of 68

CONTRACTUAL DELIVERY DATE 12/2020

ACTUAL DELIVERY DATE 31/12/2020

VERSION 1.0

TYPE Report

DISSEMINATION LEVEL Public

TOTAL N. PAGES 68

KEYWORDS Architecture, Cloud, Edge, Federation

EXECUTIVE SUMMARY
This deliverable provides an account of the work done for the specification of the ACCORDION ecosystem

architecture, which is mainly comprised of two artefacts: the infrastructure to support the cloud-edge

continuum and the platform to manage the resources and the applications hosted in that infrastructure. The

main outcomes of the work described in this deliverable are: a) the definition of components that comprise

the architecture as well as their interactions, and; b) the assignment of the implementation of those

components to specific project Tasks and partners.

The deliverable describes the process for reaching to those outcomes, starting with the delineation of the

scope of the described artefacts and working down to their specifics. The main approach used is the analysis

of the platform use case scenarios. In practice, we analyze the scenarios and extract the required

functionality. Then we cluster and map this functionality to components. Finally, we schematically present

the interactions of those components using block and sequence diagrams. These outcomes are then

validated against the use case requirements, especially those linked to the applications operation itself. This

is meant to provide a proof-of-concept that the ACCORDION architecture is able to support the ACCORDION

applications.

 ACCORDION – G.A. 871793

D2.3 Architecture design (I) Page 4 of 68

DISCLAIMER
ACCORDION (871793) is a H2020 ICT project funded by the European Commission.

ACCORDION establishes an opportunistic approach in bringing together edge resource/infrastructures

(public clouds, on-premise infrastructures, telco resources, even end-devices) in pools defined in terms of

latency, that can support NextGen application requirements. To mitigate the expectation that these pools

will be “sparse”, providing low availability guarantees, ACCORDION will intelligently orchestrate the compute

& network continuum formed between edge and public clouds, using the latter as a capacitor. Deployment

decisions will be taken also based on privacy, security, cost, time and resource type criteria.

This document contains information on ACCORDION core activities. Any reference to content in this

document should clearly indicate the authors, source, organisation and publication date.

The document has been produced with the funding of the European Commission. The content of this

publication is the sole responsibility of the ACCORDION Consortium and its experts, and it cannot be

considered to reflect the views of the European Commission. The authors of this document have taken any

available measure in order for its content to be accurate, consistent and lawful. However, neither the project

consortium as a whole nor the individual partners that implicitly or explicitly participated the creation and

publication of this document hold any sort of responsibility that might occur as a result of using its content.

The European Union (EU) was established in accordance with the Treaty on the European Union (Maastricht).

There are currently 27 members states of the European Union. It is based on the European Communities and

the member states’ cooperation in the fields of Common Foreign and Security Policy and Justice and Home

Affairs. The five main institutions of the European Union are the European Parliament, the Council of

Ministers, the European Commission, the Court of Justice, and the Court of Auditors (http://europa.eu.int/).

Copyright © The ACCORDION Consortium 2020. See https://www.accordion-project.eu/ for details on the copyright

holders.

You are permitted to copy and distribute verbatim copies of this document containing this copyright notice, but

modifying this document is not allowed. You are permitted to copy this document in whole or in part into other

documents if you attach the following reference to the copied elements: “Copyright © ACCORDION Consortium 2020.”

The information contained in this document represents the views of the ACCORDION Consortium as of the date they

are published. The ACCORDION Consortium does not guarantee that any information contained herein is error-free, or

up to date. THE ACCORDION CONSORTIUM MAKES NO WARRANTIES, EXPRESS, IMPLIED, OR STATUTORY, BY

PUBLISHING THIS DOCUMENT.

 ACCORDION – G.A. 871793

D2.3 Architecture design (I) Page 5 of 68

REVISION HISTORY LOG
VERSION No. DATE AUTHOR(S) SUMMARY OF CHANGES

0.1 10/11/2020 K. Tserpes (HUA) ToC, Initial content

0.2 01/12/2020 K. Tserpes (HUA) Assignments

0.3 15/12/2020 All Contributions’ deadline

0.4 21/12/2020 K. Tserpes (HUA) Review version

0.5 28/12/2020 P. Dazzi (CNR) Review report

1.0 30/12/2020 K. Tserpes (HUA) Final version

 ACCORDION – G.A. 871793

D2.3 Architecture design (I) Page 6 of 68

GLOSSARY
EU European Union

EC European Commission

H2020 Horizon 2020 EU Framework Programme for Research and Innovation

DoA Description of Action

VNF Virtualized Network Function

QoE Quality of Experience

SLA Service Level Agreement

SOA Service-oriented Architecture

VIM Virtualized Infrastructure Manager

CSI Container Storage Interface

CRUD Create Read Update Delete

DevOps Development and Operations

CI/CD Continuous Integration/Continuous Delivery

SCM Source code management

ACR Absolute Category Rating

 ACCORDION – G.A. 871793

D2.3 Architecture design (I) Page 7 of 68

TABLE OF CONTENTS

1 Relevance to ACCORDION .. 9
1.1 Purpose of this document ... 9
1.2 Relevance to project objectives .. 10
1.3 Relation to other work packages ... 10
1.4 Structure of the document .. 10

2 Introductory concepts .. 11

3 High-level approach ... 12
3.1 Actors .. 12

4 Platform operation scenarios .. 14
4.1 Join/Leave Federation ... 14

4.1.1 Required functionality ... 15
4.2 Deploy/un-deploy application ... 17

4.2.1 Required functionality ... 18
4.3 Start/Stop Application ... 21

4.3.1 Required functionality ... 22
4.4 Runtime adaptation .. 23

4.4.1 Required functionality ... 24

5 Architecture ... 26
5.1 Federated infrastructure layer .. 27

5.1.1 VIM ... 28
5.1.2 Indexing and Discovery ... 30
5.1.3 Monitoring .. 31
5.1.4 Security monitoring ... 33
5.1.5 Privacy leakage monitoring .. 33
5.1.6 Storage provision .. 34
5.1.7 Failure detection and recommendation .. 36
5.1.8 ACCORDION Services ... 37

5.2 ACCORDION Platform .. 38
5.2.1 Application description ... 39
5.2.2 ACCORDION Platform portal ... 40
5.2.3 Security scan ... 41
5.2.4 Unikernels SDK .. 45
5.2.5 Build tools ... 45
5.2.6 Application status registry .. 46
5.2.7 Application Bucket .. 47
5.2.8 Event bus ... 47
5.2.9 Compute resource orchestrator .. 48
5.2.10 Network resource orchestrator .. 50
5.2.11 Minicloud membership management .. 50

 ACCORDION – G.A. 871793

D2.3 Architecture design (I) Page 8 of 68

5.2.12 QoE model (validation) ... 51

6 Sequence Diagrams .. 53
6.1 Join Federation .. 53
6.2 Deploy Application .. 54
6.3 Start application .. 54
6.4 Runtime adaptation .. 55

7 Validating use case requirements .. 57
7.1 Use case #1: Collaborative VR ... 57
7.2 Use case #2: Multiplayer Mobile Gaming ... 57
7.3 Use case #3: Content delivery for cloud gaming engines .. 57

8 Summary and future work ... 59

Appendix: Requirements Compliance Table ... 60

 ACCORDION – G.A. 871793

D2.3 Architecture design (I) Page 9 of 68

1 Relevance to ACCORDION

1.1 Purpose of this document

This document presents the first version of the ACCORDION architecture as the main outcome of work in

Task 2.3: Frameworks architecture & specifications (T2.3). It is a living document that will be updated in later

iterations of the project. The first release of the report describes the architecture of the ACCORDION

framework, presenting it in an organic way along with the description of its components and their APIs.

The work in T2.3 is active throughout the period M07-M35 and is led by HUA. The contributing partners are:

CNR, TID, HPE, ICCS, NEC, AALTO, TUB, BSOFT and AEGIS. The goals of this work are:

• To map the requirements to blocks of functionality and from those to standalone software

components

• To assign partners with the responsibility to implement those components

• To provide instructions to both individual component developers and integrators about component

implementation

The starting point for the analysis to lead to these objectives was the project vision, i.e., to implement an

infrastructure comprised of mixed cloud and edge resources and implement a framework to manage it and

allow the application development and deployment on top of it. As stated in the DoA, ACCORDION aspires

to:

• provide an open, low-latency, privacy-preserving, secure and robust virtualized infrastructure

• provide an application management framework, tailored to the needs of the European SMEs skillset,

that will enable the deployment of NextGen applications on top of this infrastructure, reaping the

benefits of edge computing.

These statements set the goal of the system(s) that T2.3 needed to design. This was enhanced with the

analysis provided in D2.1: User requirements (I). Specifically, the technical/scientific requirements together

with the above-mentioned goal, set the scope for the design of the infrastructure and the management

framework.

With those in mind, T2.3 set to define the characteristics of the infrastructure and management framework

through a use case scenario analysis. The scenarios were meant to answer questions about the use of the

system. Such questions of interest to ACCORDION were:

• how resources participate to the cloud/edge continuum

• how an application can be developed and deployed in an environment like ACCORDION

• how an application can be launched within ACCORDION

• how the lifecycle of the application can be managed in an automatic way

For each of those scenarios, we identified the functionality that their realization entails and allocated

components to bring about this functionality. We continued with defining the specification of those

components, a work largely guided by the work in D2.2: State of the art report (I). This process gradually led

 ACCORDION – G.A. 871793

D2.3 Architecture design (I) Page 10 of 68

us to the definition of a conceptual architecture which is the main outcome of this report. To validate sch

outcome, we assessed the extent to which the use case requirements defined in report D2.1: User

requirements (I) can be met by the current version of the architecture.

1.2 Relevance to project objectives

This deliverable is particular in the sense that it is a precursor to the technical work and as such it is link to all

technical project objectives. In fact, the objectives of the architecture are identical to the project technical

objectives, namely:

• Obj1: Maximize edge resource pool

• Obj2: Maximize robustness of cloud/edge compute continuum

• Obj3: Minimize overheads in migrating applications to cloud/edge federations

• Obj4: Realize NextGen applications

1.3 Relation to other work packages

Task T2.3 generates an output that will be consumed by all the research tasks (since they all contain a

development part) as well as from the integration task. The system architecture relies on SOA principles

allowing for each task from WP3-5 to act independently selecting their preferred underlying technologies

and generate loosely coupled components under well-defined interfaces.

Furthermore, the architecture will be consumed by WP6, employing the concepts defined here in order to

design the application pilot implementations. In particular, sequence diagrams will be created for the

particular use cases showing the interaction and flow of logic between the components defined here.

Finally, this work is also influenced by the work reported in D7.5: Technoeconomic analysis in which high-

level concepts have been specified and are used as such in D2.3.

1.4 Structure of the document

To achieve T2.3 goals, during the period M07-M12, the partners worked on the development of the main

concept and the relevant definitions (Sections 2 & 3), including that of the ACCORDION applications and the

ACCORDION platform. With those artifacts conceptually defined, the partners worked on the identification

of the platform operation scenarios, i.e., scenarios that describe the main operations of the ACCORDION

platform (Section 4). Those scenarios provided the guidelines for singling out the required functionality and

mapping it into software components (Section 5). With those components specified, T2.3 was able to draft

the first conceptual architecture diagrams followed by sequence diagrams to further assist the potential

readers of this deliverable (Section 6). Finally, working backwards, we checked how this work meets the use

case requirements defined in D2.1 (Section 7).

 ACCORDION – G.A. 871793

D2.3 Architecture design (I) Page 11 of 68

2 Introductory concepts

What is an ACCORDION application? An ACCORDION application is a set of interacting, independent

application components, each one running in its own execution environment (e.g. containers) with the

following characteristic requirements: extremely low latency demands in their pairwise communication with

the end-user devices and high end-to-end QoE.

In a traditional setting such as Kubernetes1, those components would reside within a single pod with their

desired state being described in a single deployment. Unfortunately, the demands for low latency with the

end devices, dictate the need to deploy the components to resources that are close, in terms of latency, to

the end devices. We refer to these resources as edge nodes.

It is not safe to assume that edge nodes are available on demand because they can’t be virtually infinite and

everywhere. And when they become available, it might be the case that they are of limited capacity or

availability. Apart from technical reasons, one needs to consider that the reduced supply and unique

positioning of the edge nodes will render them expensive and they need to be wisely utilized. Those edge

nodes may become available based on an opportunistic scenario. For example, they may become available if

there is a large profit margin or underutilization in the core business of the infrastructure owner and

unavailable otherwise. It turns out that the pool of edge nodes is dynamic for two reasons: a) edge nodes

may come and go unpredictably, and b) their capacity may change at runtime.

In order to mitigate the infused uncertainty, the application components need to be distributed across edge

and cloud nodes. Such a distributed execution environment needs to be properly managed in a way that is

agnostic to the application. It also needs to provide services and operations that will accommodate the need

for high QoE and simplify the developer’s work. Such services may be auto-scalers, load balancers, message

brokers, event processors or combinations of the latter two (e.g., Apache Pulsar2), streaming data processors

and higher-order functions (e.g., map, reduce, filter) but also general-purpose virtualized network functions

(VNF) that intervene in the data path compressing or interpolating data. Those VNFs are also called “data
services”.

1 https://kubernetes.io/
2 https://pulsar.apache.org/

 ACCORDION – G.A. 871793

D2.3 Architecture design (I) Page 12 of 68

3 High-level approach

ACCORDION considers that each edge or cloud node in a computing continuum is an execution environment

for application components. We refer to this environment as “minicloud”. The minicloud is managed in the

same way disregarding the underlying resources, through the ACCORDION VIM (Virtualized Infrastructure
Manager). As such, the ACCORDION infrastructure is consisted of a federation of miniclouds. The

overarching management layer that manages the federation (continuum management framework) and

provides tools for the deployment as well as development (application management framework) of

ACCORDION applications is called ACCORDION platform.

Figure 1 depicts the high-level organization of the ACCORDION architecture. The infrastructure layer (bottom

layer) is consisted of miniclouds that can be hosted in public or private clouds, or even dedicated bare-metal

infrastructures. On top of that layer resides the ACCORDION platform which in turn can be hosted in any

ACCORDION minicloud. The ACCORDION platform bears all the services required to manage the federation,

collectively referred to as Federation Management Services (FMS). The platform can be either distributed or

centralized in nature, i.e., spread across multiple cooperating miniclouds or hosted in a single one. Obviously,

the distributed version entails bigger challenges than the centralized, yet it bears benefits related to the

scalability and fault tolerance of the platform.

Figure 1: High level view of the ACCORDION architecture

3.1 Actors

 ACCORDION – G.A. 871793

D2.3 Architecture design (I) Page 13 of 68

The top layer of the ACCORDION architecture depicts the ACCORDION platform end-users. Each actor

depicted refers to a business entity. For each of such entity there is an agent, a human actor that acts on

behalf of the business entity. Based on that the analysis is the following:

• Infrastructure owner: An entity that owns one or more edge nodes and makes them available in the
federation. It makes a profit by charging the utilization of its edge nodes, for a premium that depends
on its unique position in terms of latency with the application end devices.

o Agent: Infrastructure administrator
• Application provider: An entity that owns an application and knows the details of the application

operation. The application provider uses the ACCORDION resources and services to host his
application, taking advantage of the proximity (in terms of latency) of the ACCORDION-controlled
edge nodes to the end devices.

o Agent: Application developer

• ACCORDION Platform Owner: It is the entity that benefits from brokering between application
providers and infrastructure owners. It finds resources meeting the special requirements for the first
party and applications to utilize the resources for the second party. In order to facilitate the above,
the entity deploys and manages the ACCORDION Platform.

o Agent: Platform administrator

More information about the business aspects pertaining those entities may be found in the ACCORDION

Report series: Technoeconomic analysis (version I, D7.5, December 2020).

 ACCORDION – G.A. 871793

D2.3 Architecture design (I) Page 14 of 68

4 Platform operation scenarios

We distinguish a number of high-level scenarios that the ACCORDION platform must support:

• Join/Leave Federation: An infrastructure owner decides to commit his resources to the ACCORDION
federation or decommission from when he decides to leave the ACCORDION federation.

• Deploy application: An application provider decides to deploy his application to the ACCORDION
platform. This step potential includes the building of the application components from which the

application is composed of.

• Start application: The application provider decides to start/launch the application.

• Runtime adaptation: The ACCORDION platform reacts to its changing environment with the

objective to mitigating possible QoE degradation, like when miniclouds are entering or leaving the

federation, or recovering from failures.

Through these scenarios we provide a narrative about what the application is supposed to be doing for its

actors. Analyzing the narratives, we gradually identify the required functionality that the ACCORDION

platform must implement.

4.1 Join/Leave Federation

In this use case, an infrastructure owner decides to commit his resources to ACCORDION (Figure 2).

Figure 2: Use case diagram for joining/leaving the ACCORDION federation

 ACCORDION – G.A. 871793

D2.3 Architecture design (I) Page 15 of 68

As
su

m
pt

io
ns

● The resources within the minicloud are used to provide either containers (CaaS) or VMs

(IaaS) as a service to its client

● The minicloud enables control over its services through an API. Control comes through

a set of processes such as: to upload, organize, start, stop, scale and otherwise manage

VMs, containers, applications. Furthermore, the minicloud also offers an API with

monitoring information of the underlying infrastructure.

● The infrastructure owner may retract the resources being available to the federation at

any time.

● The business-related part of the federation is currently out of the scope of this analysis

and more information can be sought at the ACCORDION Report series: Technoeconomic

analysis (version I, D7.5, December 2020).

The steps for joining the federation include the following sub use cases:

• Sign SLA3: The infrastructure manager needs to agree on the Federation SLA so as to provide some

sort of guarantees regarding a predefined time period for the migration of the hosted components

and/or a general period for which they may become available.

• Commit resources: The infrastructure owner carves out a part of his infrastructure and provides it to
ACCORDION platform as a minicloud or to be added to an existing minicloud. This means that the

minicloud resources are available to the ACCORDION platform to deal them as if they belonged to it.

• Resize resource pool: The infrastructure owner needs to increase/decrease the number of resources

committed to the ACCORDION resource pool

• Install ACCORDION components: The Infrastructure manager installs all necessary components or

commits his resources to an appropriate existing minicloud. The functionality that these components

implement include: accessing and managing the edge node through the VIM; monitoring and

indexing the edge node; linking the node with a storage unit, and; Federation Management Services

in cases where the ACCODION platform is installed in a distributed fashion.

The respective steps for leaving the federation include the following sub use cases:

• Retract resources: The Infrastructure owner can revoke the ACCORDION access token validity at

any time. Of course, a process needs to be defined for that that will include the definition of the

time period to migrate application components and informing the Federation Management

Services.

4.1.1 Required functionality

3 https://it.wikipedia.org/wiki/Service_level_agreement

 ACCORDION – G.A. 871793

D2.3 Architecture design (I) Page 16 of 68

In what follows we list the functionality that we must implement in order to validate the use case scenario,

together with the task that will define and implement it.

Federation SLA Lifecycle Management (Task 7.5) (only definition)

There is the need to define the SLAs that will govern the business relationship between the ACCORDION

actors and for a component that will perform all the actions to manage the complete lifecycle of the SLAs

(monitoring, billing, penalizing, etc.). The implementation of this component is out of the scope of

ACCORDION, yet its definition remains part of the work in Task 7.5.

Virtualized Infrastructure Management (Task 3.5)

There is the need for a Virtual Infrastructure Manager (VIM), i.e., a component that allows the management

of the miniclouds. It represents an entity that has access to the underlying resources that also exposes an API

that allows the implementation of operations for cloud- and container-based environments. It also extends

a typical cloud API by adding monitoring data etc.

Monitoring and Characterization (Task 3.1)

A component must exist that will be able to collect monitoring information about the resources and even the

applications that are controlled by each minicloud. It must provide its data in a push and/or pull way and it

must allow for the registration of listeners, i.e., sort of alerts that are fired when certain metrics (or

combinations) are evaluated. Assuming a vastly heterogeneous environment, the component must be able

to characterize the resources in terms of their capacity and capabilities, e.g., if they bear a GPU, whether they

are battery powered, etc.

Indexing and Discovery (Task 3.2)

A component must be able to keep an up-to-date status of computational resources among the various

miniclouds and provide a service that allows to run queries on these resources. The component should be

able to respond to queries about the appropriateness of available resources to meet certain computational

criteria.

Storage Provision (Task 3.3)

For each minicloud there must be a component that will be able to abstract the storage units that are made

available to the edge nodes be it in the minicloud itself or in another. This component must be able to provide

the necessary storage resources even at runtime.

Minicloud Membership Management (Task 3.5)

There must be a component to maintain the list of edge nodes that are available at any time, together with

information about their characteristics. We need to be able to know what and how many resources are

provided by each minicloud at any time and we also need to have the endpoints of their APIs to access and

manage them.

 ACCORDION – G.A. 871793

D2.3 Architecture design (I) Page 17 of 68

4.2 Deploy/un-deploy application

In this use case, the Application Provider wants to (un-)deploy the application components and configure the

infrastructure so as to support their operation (Figure 3). In this case, the term “deploy” implies the building

of the application components and their storage close to where the appropriate resources may be. The

resources can either be found or created, yet the actions of the platform must result in the minimum possible

cost for the application provider. Example scenario: a container is found in an edge node of interest. The

application component image will be stored in the local storage but will be not loaded in the container. In

this case, we assume that the application component is deployed.

Figure 3: Use case diagram for deploying an application in ACCORDION

As
su

m
pt

io
ns

● The application provider authenticates before deployment. It might have to be

registered and obtain some credentials

The steps for deploying the application are the following:

 ACCORDION – G.A. 871793

D2.3 Architecture design (I) Page 18 of 68

• Provide application model: The application provider submits a document that primarily aims at
ensuring resource provisioning but secondarily it may define the deployment, the application

QoS/QoE requirements, the application workflows and the application lifecycle management.

• Store application model: The model is stored in an application registry, under an application account

for monitoring its status and resource utilization.

• Build application components: The application developer provides the links to the source code and

the build instructions to build the application component in a DevOps pipeline. Such component may

be a container or VM image.

• Scan application components: The application components need to be checked whether they
comply with security and privacy preserving standards.

• Create/Discover resources: The application model is consumed primarily by the Federation

Management Services. Compute and network resource orchestrators query the indexing service, to

find or create resources that match the QoE/QoS requirements of the application.

• Procure/Reserve resources: In case of “eager” provision (procurement), the orchestrators will hold

and mark the discovered resources as “owned” by the application. In case of “lazy” provision

(reservation), the resources are reserved, and procurement happens at. In ACCORDION “lazy”

provision is the most probable scenario, because it won’t be possible to know where the server

application components will have to be executed with clients appearing at virtually anywhere in the

world.

• Deploy components: Once all the above-mentioned processes have finished, the orchestrator

deploys the actual application components as per instructions from the application model.

• Deploy resilience agents: Together with the application components, the platform installs the

resilience scanning agents, i.e., security, privacy preserving and fault-tolerance. Those agents

continuously scan, report and mitigate fault and challenges to normal operation either based on the

application and its QoE model or based to an established knowledge of “normal” operation.

The steps for un-deploying the application are the following:

• Un-deploy application: The application provider may decide to un-deploy the application and thus

destroy or de-allocate the assigned resources.

• Destroy/de-allocate resources: If the resources are created, then they have to be destroyed. If they

were found, they need to be freed. This also entails the updating of the application account.

4.2.1 Required functionality

In what follows we list the functional components that derive from the use case scenario together with the

task that will define and implement it.

Application Model (Task 5.1)

 ACCORDION – G.A. 871793

D2.3 Architecture design (I) Page 19 of 68

The application model (more accurately referred to “application description”) must define, perhaps at

distinct times and documents, the following concepts about the application components:

• definitions: names and other metadata related to the application components
• building instructions: repository links and scripts to build the docker images for each application

component
• resource requirements: number of needed vCPUs, memory, storage, etc.
• deployment instructions: scripts to configure and “install” the application components, e.g., define

replica sets and ingress (ingress controller or load balancer)
• workflow definitions: possible pipelines that refer to different application-related procedures
• QoE requirements: definition of metrics to be monitored and thresholds that define normal/not

normal operation
• lifecycle management instructions: definition of events that may trigger the enactment of

cloud/edge ACCORDION services or operations (e.g., scaling operations)
• application status: the application model needs to reflect the status of the application at runtime.

I.e., with regards to the application component instances, we need to know how many, where and
for how long they are running. We also need endpoints to those instances to be able to manage
them.

Application Registration (Task 6.4)

We need a registry to store the applications currently running in ACCORDION and maintain the application

status. The relevant component must create the notion of “application account”. It must store information

about the owner of the application and the application itself. It particularly must keep information about the

application workflows and the events that trigger them. It should also maintain a list of the utilized resources

for this application account.

Identity and Access Management (Task 5.5)

A front-end to the ACCORDION end users must exist. It must provide the starting point for the user providing

authentication, authorization and accounting mechanisms.

Build Application Components (Task 5.4)

ACCORDION must allow for the application VM or container images to be built through appropriate

instructions (scripts and source code links).

Define Application Workflows with ACCORDION Services (Task 5.1)

The application provider should be able to define workflows including not only application components but

also ACCORDION services. Based on the application use cases discussed in Section 0, ACCORDION services

may be data services such as higher-order functions, standard offerings that may facilitate the use case

workflows (e.g., message brokers) as well as standard cloud offerings such as auto-scalers and load balancers.

Create Network Paths for Optimized Application Deployment (Task 5.3)

 ACCORDION – G.A. 871793

D2.3 Architecture design (I) Page 20 of 68

ACCORDION must efficiently spot problems that could disrupt the operation and performance of the system

(e.g., congested links, node capacity excess, etc.), and accordingly plan operations to fix these issues (e.g.,

migrate virtual machines, remove congested links, etc.). The DevOps approach will permit to automate these

operations within a reusable workflow that contains automated processes, optimized to ensure the optimal

planning and management of network paths at the edge, and including automated recovery actions.

Lightweight virtualization support (Task 3.4)

ACCORDION must be able to support the creation of Unikernels4, reaping the benefits they bring in terms of

performance and security. Also, the project may benefit from the capabilities of Unikraft5 to construct

Unikernels.

Submission or Creation of Application Model (Task 5.5)

There must be a usable way to provide or even construct the deployment instructions, the application

component requirements, the QoS requirements and the application lifecycle management instructions. This

needs to be stored and indexed with appropriate endpoints to access it.

Application Component Registration (Task 5.5)

A container or VM image registry is required. This is where the application components that succeed the

scanning tests are stored and indexed. It must be possible to deploy those components easily with low

latency.

Compute Resource Orchestration (Task 4.1)

An orchestrator must exist that must be able to:

• Find or create appropriate (in terms of meeting the QoE requirements) resources for the application
components

• Deploy application components to *appropriate* resources
• Perform necessary activities for the application lifecycle management including the invocation of

data and cloud services and operations
• Inform the application status at all times

Network Resource Orchestration (Task 4.2)

An orchestrator must exist that must be able to:

• Find or create *appropriate* network resources to satisfy the application needs
• Perform necessary activities for the application lifecycle management including the invocation of

data and cloud services and operations and the network reconfiguration
• Inform the application status at all times

4 http://unikernel.org/
5 http://www.unikraft.org

 ACCORDION – G.A. 871793

D2.3 Architecture design (I) Page 21 of 68

Deployment and Runtime Security Conformance Evaluation (Task 4.4)

A component must exist that will check whether a built application component conforms with the

ACCORDION security standards and provide recommendations for fixing them in case they exist. The same

must be done at runtime.

Deployment and Runtime Privacy Preserving Conformance Evaluation (Task 4.5)

A component must exist that will check whether a built application component conforms with the

ACCORDION privacy preservation standards and provide recommendations for fixing them in case they exist.

The same must be done at runtime.

Failure detection and mitigation (Task 4.3)

A component must exist that will be responsible for monitoring and mitigating potential faults in the system.

Mitigation may include hot (or live) migration commands or replication.

QoE Model (Task 5.2)

A model must be able to map the application QoE requirements to QoS requirements and to define what

values are acceptable and not.

4.3 Start/Stop Application

The application provider decides to launch the application, after it has been deployed and perhaps stop it

later (Figure 4). The term “launch” or “start” implies that the application components start being executed

and more costs are incurring. In the example scenario described in the “deploy” section, the start of the

application would imply the creation of the container, if it didn’t exist, and the loading of the image in it.

Figure 4: Use case diagram for starting/stopping an application in ACCORDION

 ACCORDION – G.A. 871793

D2.3 Architecture design (I) Page 22 of 68

As
su

m
pt

io
ns

● The system is running on an event-driven logic

● All system related messages are flowing in an event bus

The steps for starting/stopping the application are the following:

Start components: Once the developer issues the explicit “launch” intent, the workflow declared as “main”

is initiated.

Monitor: The relevant queries are issued to monitor the application’s resources status and report it back to

the Application provider.

Stop components: Once the developer issues the explicit “stop” intent, the components are stopped.

Alternatively, the components stop, when an event that has been declared as terminal for the application

happen.

4.3.1 Required functionality

Application Component Registration (Task 6.4)

As defined in 4.2.1.

Event Bus (Task 6.4)

A component is needed in order to consume several input streams and detect events. Such streams may be

logs or reported output from various components. The component must check in the message flows

attempting to find combinations of messages that compose an event that may trigger an action. It may do so

based on systems like Apache Druid6 or Apache Pulsar7. The actions are references to cloud computing

operations such as those found in any IaaS cloud API. E.g., start, stop, delete, move VM/container, scale

in/out, scale up/down, deploy subnetwork, assign IP, etc. They can also be references to software

engineering patterns, such as balance load, replicate, enable secure channel, microservice or serverless

design patterns, for instance higher-order functions. Finally, they can be references to complex cloud API

operations that can be provided as “black box” scripts.

Application Status Reporting (Task 5.5)

There must be a front end that will allow the application provider/developer to monitor the status of the

application, including whether it is running or not, where the application components instances and

6 https://druid.apache.org
7 https://pulsar.apache.org

 ACCORDION – G.A. 871793

D2.3 Architecture design (I) Page 23 of 68

ACCORDION services are deployed, for how long, how much has it costed yet. The end user must be able to

start and stop the application from the same front-end.

Monitoring Application Status (Task 3.1)

The application status must be maintained through appropriate queries at the monitoring mechanism and

by appropriate configuration at the level of execution environment. For example, in Kubernetes, we can

reserve a namespace for the pods to which the application runs.

4.4 Runtime adaptation

This use case is related to the self-adaptive behavior of the ACCORDION platform with the primary objective

to optimize its QoS provision (mitigate QoS degradation).

Figure 5: Use case diagram for the ACCORDION platform runtime adaptation

As
su

m
pt

io
ns

● All necessary information for determining the events that trigger runtime adaptation

activities is provided in the form of an event loop

The steps for managing the lifecycle of the application are the following:

Validate QoE model: The steps involve the constant monitoring of the state of the application, and its

evaluation against the application model and particularly the QoE part. The QoE model includes monitoring

parameters and sets the conditions that indicate the degradation of the QoE. A handler for QoE-related

events fires the necessary orchestrating activities.

Perform cloud operations: In case that the QoE levels are compromised, the orchestrators may issue

commands for the scaling of the application component or the deployment of a load balancer or the

restarting of application components and the complete workflow.

 ACCORDION – G.A. 871793

D2.3 Architecture design (I) Page 24 of 68

Perform SDN operations: This use case refers to activities such as network reconfiguration from the network

resource orchestrator, should this be deemed necessary.

Deploy data services: For similar reasons as above, the orchestrators may demand to deploy a data service.

Ensure resilience: A component detects potential off-normal behavior of resources and in case of high

possibility for failure it triggers mitigation plans. Such plans include the migrations of the running snapshot

to more appropriate resources or the replications of the components for redundancy.

Security runtime scanning: An agent regularly scans the resources where the application is running and

checks whether they are OK in terms of security

Privacy preservation runtime scanning: An agent regularly scans the resources where the application is

running and checks whether there is any privacy leakage

Change workflow: Certain events defined in the application model may trigger the changing of the

application workflow.

4.4.1 Required functionality

Event Bus (Task 6.4)

Same as 4.3.1.

QoE Model Validation (Task 5.2)

A mechanism must exist for mapping current QoS parameters, as measured by the monitoring component,

to the desired application QoE.

Compute Resource Orchestrator (Task 4.1)

Same as 4.2.1.

Network Resource Orchestrator (Task 4.2)

Same as 4.2.1.

ACCORDION Data Services (Task 5.1)

There must be a mechanism to define and deploy general-purpose and even programmable components that

facilitate the needs of the applications by intervening in the data pathway. These can be higher-order

functions or message queues.

Failure Detection and Mitigation (Task 4.3)

Same as in Section 4.2.1.

 ACCORDION – G.A. 871793

D2.3 Architecture design (I) Page 25 of 68

Runtime Security Conformance Evaluation (Task 4.4)

Same as in Section 4.2.1.

Runtime Privacy Preserving Conformance Evaluation (Task 4.5)

Same as in Section 4.2.1.

 ACCORDION – G.A. 871793

D2.3 Architecture design (I) Page 26 of 68

5 Architecture

In what follows, we use the requirements as they were defined in the previous Section and start identifying

the components and the functionality that could meet them. Figure 6 presents the ACCORDION stack, a

conceptual view of the ACCORDION architecture in which the components are placed in layers based on

whom they are providing services to. We start with the ACCORDION platform users/actors and move on to

the ACCORDION Platform layer that is containing components that are meant to manage the applications

and the underlying infrastructure. The bottom layer is the Federated Infrastructure Layer, in which we

position the Miniclouds, the basic computation unit of ACCORDION. The figure also depicts the possible

resource composition that could support the Minicloud. These are defined in the Description of Action and

they are meant to act as a proof of concept. In particular, the edge Miniclouds may be hosted in private or

public clouds and clusters of mainstream or single-board computers. The ACCORDION Platform itself, will be

hosts in a Minicloud.

Figure 6: ACCORDION Stack

Before we delve into the details of the functional components’ specification as they are presented in the

fugure, we would like to draw the attention of the reader in two notes:

 ACCORDION – G.A. 871793

D2.3 Architecture design (I) Page 27 of 68

• Figure 6 is preceding the analysis in a possible counter-intuitive way, however it is meant to assist
the reader have an overview of the findings before those are presented.

• Not all the components are functional and therefore not present in Figure 6. In fact, in the analysis

that follows, each layer is singled out and both the functional and non-functional components are

explained.

The structure of the analysis that follows is this: for each of the identified components we first present the

relevant functionality that is collected and grouped from Section 4 and then we provide the description of

the component and its interfaces. For the time being, the developers of the components are free to define

whatever interfaces they feel right, however in the coming versions of the architecture document these will

be specified based on OpenAPI and will be presented as such.

5.1 Federated infrastructure layer

This layer deals mainly with the Miniclouds, i.e., the computing unit of ACCORDION. They are composed of

several internal components, presented in Figure 7. Again, the approach is layered, i.e., the components are

grouped based on the consumer of the service that they are providing. At the top layer, we have all the

components that the application needs in order to be executed: the run-time, the persistence system

functions and the ACCORDION data services that intelligently “mend the rips” of the cloud/edge fabric.

One layer below is the Minicloud management layer, that performs all the operations to abstract and manage

the underlying resources.

The Virtualized Infrastructure layer intervenes between the actual resources and the management layer. The

role of this layer is to highlight that ACCORDION builds on top of existing infrastructures that support at the

very least the runtime environment for executing code, VMs and/or container images as well as management

services such as allocation of resources, authorization and accounting, deployment, etc.

 ACCORDION – G.A. 871793

D2.3 Architecture design (I) Page 28 of 68

Figure 7: Minicloud Architecture View

The following of this Section is focusing on the presentation of only the ACCORDION components of the

Minicloud management layer and the layers above. As such, the application component is not presented

here.

5.1.1 VIM

 ACCORDION – G.A. 871793

D2.3 Architecture design (I) Page 29 of 68

Relevant functionality

• Virtualized Infrastructure Management (Task 3.5)

Description

The functionality of VIM is to manage a virtual infrastructure allowing you to modify its configuration,

monitor and manage the operation of workloads in an environment where resources can vary from node to

node, can be low or not standard like an ARM architecture instead of x86_64. Thus, it provides monitoring

services for the processes running on the cluster nodes, maintains a configuration database and runtime

status and interacts closely with virtualization systems, but also can support different CPU architectures and

has small footprints in term of memory ram and disk.

As VIM implementation, we choose K3S8, a light weighted Kubernetes distribution. The choice was driven by

several criteria like, but not only: licencing, developer community, security feature, project maturity,

extensibility, hardware requisite. K3S has all the features of K8S9 and a series of improvements designed to

better adapt to run on clusters that can be made up of hosts with few resources, as often happens in the IoT.

So, it is distributed with a single small binary file, obtained by eliminating old code such as deprecated API or

non-essential API as alpha versions that are not enabled by default. Moreover, are catted out all non-default

admission controllers, in-tree cloud providers and storage drivers which can be added by users as they needs.

In order to reduce RAM usage, the K3S processes have been reduced and merged, has been introduced

compatibility with the SQLite DB10 which also simplifies maintenance. For same reason also the Docker11

runtime has been replaced with Containerd12 which is a much more efficient runtime, losing some features

such as libnetwork, swarm, Docker storage drivers and other plugins.

As Kubernetes distribution, K3S support execution of Docker container trough Containerd, to add virtual

machine execution features, in ACCORDION installation will be used also KubeVirt framework. KubeVirt is a

set of API and processes running in a K8S cluster (and thus K3S cluster also), both on master and worker

nodes, that enable a new set of K8S managed object: the VM and VMI, virtual machine and virtual machine

instance: It enable to create, delete, start, stop, monitor, migrate to different node virtual machines. Also,

for choosing this software component has been done a screen of different available project using similar

criteria used for VIM comparison, the choice was KuberVirt also for its project maturity and developer

community, this project has started by RedHat and it's now a CNCF Sandbox project13. KubeVirt is compatible

with Kubernetes (>=1.10) and derivative.

Interfaces

8 https://k3s.io
9 https://kubernetes.io
10 https://www.sqlite.org
11 https://www.docker.com
12 https://containerd.io
13 https://www.cncf.io/sandbox-projects/

 ACCORDION – G.A. 871793

D2.3 Architecture design (I) Page 30 of 68

K3S is a Kubernetes distribution, so it inherits the same K8S interfaces, which has been lightened cutting out

deprecated or alpha version API. The programmatic interfaces are composed of different RESTful APIs

enabling the user to manipulate Kubernetes object for example to create, delete or update. As RESTful API

uses standard HTTP method: GET, POST, PUT, PATCH, DELETE. Three different object representations are

allowed supported: JSON, Protobuf, Table. Also, a change notification mechanism is available.

We can group those API into main arguments: configuration and storage, workloads, scheduler.

Configuration is a set of APIs that enable user to inject data to an application via "ConfigMaps", store and

provide password or token necessary to applications with "Secrets", and with "Volumes" provide a persistent

external filesystem to containers. It is possible to write and deploy plugin exposing new storage systems: for

doing so it is necessary to implement Container Storage Interface (CSI).

Workloads resources are managed by controllers that create Pods wrapping containers and manage their

dependencies, there are several types of controllers the most common are: deployments, statefulsets, jobs.

In order to distribute workload, to choose best node to run a pod into, there is the component "Scheduler"

that working with scheduling policies and scheduling profile enable a better control of workload scheduling

of available resources.

The list of API described before is not complete but a meaningful set, plus RestfulAPI isn't the only interface

available, actually also a CLI utility is available: “kubectl”, it enables every operation on a K3S cluster with the

right authorization.

KubeVirt Interfaces

KubeVirt itself has its own interfaces: a CLI interface which is “virtctl” and a Restful API, this interfaces enables

client to perform all operations to work on KubeVirt objects in similar way Kubernetes API work.

All above interfaces above are secured with https protocol and client authentication and permission

enforcement.

5.1.2 Indexing and Discovery

Relevant functionality

• Indexing and Discovery (Task 3.2)

• Minicloud Membership Management (Task 3.5)

Description

The component “Resource Indexing and Discovery” (RID) provides an up-to-date view of the status of

computational resources, possibly described by static and dynamic features, that are available among the

various miniclouds. The component also provides functionality for retrieving such status effectively.

Ultimately, any ACCORDION component that wants to find resources with specific computational features

can rely on this functionality.

 ACCORDION – G.A. 871793

D2.3 Architecture design (I) Page 31 of 68

We envision the RID as a distributed component, in practice implementing a distributed data structure. This

means that there is an instance of the RID running in every minicloud of the ACCORDION federation. Each

RID instance connects to the local monitoring component and injects status data into the data structure;

likewise, each instance can accept and reply to queries. The instances communicate with each other via

internet connection.

Internally, the RID is composed of the following components:

• An interface toward the local monitoring. It is essentially a client that will pull from the local (i.e., in

the same minicloud) monitoring instance (Resource monitoring & characterization component) to

get resources status data.

• The local storage component keeps the data received from the monitoring interface component.

Distributed indexing techniques are used to distribute data among all their instances, in order to

speed up retrieval.

• The Query mapping component. The component is aimed at transforming the incoming query

request into the necessary software artifacts in order to process it in the system.

• The Topology manager component. The topology manager is managing the execution of the query

on top of the distributed topology of the system.

Interfaces

Each RID instance exposes a HTTP interface that allows other ACCORDION components to submit queries on

computational resources. The current version of the RID interface accepts 'POST' requests with the queries

in the JSON format. Likewise, the results of the query are returned in JSON format. At the current status, the

following types of queries are supported: (i) multi attribute range queries on numerical values, e.g., available

RAM; (ii) exact queries for string values, e.g., specific GPU chipset names; (iii) Boolean query for specific

feature availability, e.g., availability of a GPU. The available interfaces of the component will be subject to

changes with the progress of the project and changing requirements of other ACCORDION system

components.

5.1.3 Monitoring

Relevant functionality

• Monitoring and Characterization (Task 3.1)

Description

The resource monitoring & characterization component has to monitor and characterize the resources as

other components will query for information to perform actions based on metrics. Monitoring and

characterization won’t have a central component instead it will be done on the Edge. Monitoring is going to

be repetitive whereas characterization is static, as it will have information for the hardware of the Edge

devices. Monitoring should be able to monitor both physical (devices) and virtual layer (VMs, containers,

pods). In addition, it should be able to characterize and monitor heterogenous devices with different

computational power.

 ACCORDION – G.A. 871793

D2.3 Architecture design (I) Page 32 of 68

For the monitoring part we use Prometheus14 and Grafana15. Prometheus is a popular open-source system

that performs monitoring. Prometheus uses a time series database to store metrics in a key-value pair

format. It has its own query language named PromQL which Grafana uses to present realtime graphs.

Prometheus has a pull model which basically pulls metrics from exporters. Exporters can fetch statistics from

non-Prometheus systems and convert them into Prometheus metrics. To pull metrics from the exporters

Prometheus must know the targets through service discovery or static configuration. To deploy Prometheus

and Grafana on K3s we used a monitoring stack that we found on Github16. This project uses Prometheus

Operator to manage and configure Prometheus instances on Kubernetes / K3s. Prometheus Operator can

automatically generate monitoring targets configuration, so each node of the cluster will have exporters to

expose their metrics to Prometheus which will be installed to the master node of Kubernetes. For bare metal

or VM monitoring the node exporter pods expose the required metrics. Kube-state-metrics expose critical

metrics about the condition of a Kubernetes cluster, it generates them from the Kubernetes API server. This

project also uses Prometheus adapter which is an implementation of the Kubernetes resource metrics,

custom metrics, and external metrics APIs.

To be able to characterize resources every node of a cluster has to host a char-agent container which

identifies the characteristics of the device and exposes them via an API in JSON format. The master node of

a K3s cluster is the one who collects the information from the characterization-agents and stores them in a

MongoDB database. Char-agents give information about device name, UUID, CPU (arch, bits, cores), the

region (continent, country, city), GPU model (model name, type: dedicated/integrated, video memory,

unified memory), battery (details or None), RAM (in bytes), K3s node role (name of role), Disk (disk device,

fstype, mountpoint) and OS (name, version) for each node.

Interfaces

The monitoring API will provide to other ACCORDION components monitoring and characterization

information. As it is a REST API the format of the results is JSON. Depending on the call that monitoring API

will receive, it will query Prometheus for monitoring results of MongoDB17 for characterization results. For

monitoring information, the path for the calls is /monitoring and the HTTP parameter is metric. In the

metrics/parameters that are now supported for the physical layer are bare metal CPU usage, memory usage,

filesystem usage, disk write latency, disk read latency, time spent for disk IO operations, disk size and disk

free space. There is also the physical_metrics parameter which returns all the above. In case of virtual layer

monitoring the parameters that are currently supported are pods CPU usage, pods memory usage, pods

status phase and pods info. The equivalent parameter to physical_metrics is the virtual_metrics which

returns all the virtual metrics in one JSON response.

In case of characterization results the path is /characterization and the supported parameter is the format.

The result can be returned in JSON with REST calls or as a TOSCA YAML18 downloadable file. In both cases the

14 https://prometheus.io
15 https://grafana.com
16 https://github.com
17 https://www.mongodb.com/
18 http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.1/TOSCA-Simple-Profile-YAML-
v1.1.html

 ACCORDION – G.A. 871793

D2.3 Architecture design (I) Page 33 of 68

response would be a description that would present a K3s and its devices. The results are related to the K3s

cluster that monitoring component is installed to.

5.1.4 Security monitoring

Relevant functionality

• Deployment and Runtime Security Conformance Evaluation (Task 4.4)

• Runtime Security Conformance Evaluation (Task 4.4)

Description

See Section 5.2.3

Interfaces

5.1.5 Privacy leakage monitoring

Relevant functionality

• Deployment and Runtime Privacy Preserving Conformance Evaluation (Task 4.5)

• Runtime Privacy Preserving Conformance Evaluation (Task 4.5)

Description

The privacy-preserving component (PPC) is responsible for guaranteeing users' privacy at various levels
within the Accordion infrastructure. This component will carry out (at least) three main functions. First, PPC
will provide the necessary mechanisms to ensure that containers can be correctly executed atop a network
infrastructure without the network administrators being able to infer any information about them (e.g.,
which type of application runs inside them). Second, PPC will enable the generation of machine learning (ML)
models that provide high accuracy while at the same time being resistant to attacks that aim to infer private
information from the ML model. This includes privacy-preserving mechanisms suitable for federated
learning. Finally, PPC will allow the detection of user data leakage to unauthorised third parties by passively
or actively monitoring users on devices and user components (e.g., browsers or containers). All these privacy
features can either be enabled by default within the Accordion infrastructure or be offered as a service, e.g.,
to customers who run sensitive workloads.

Interfaces

We envision a scenario where the ACCORDION platform owner - possibly in collaboration with the Edge
infrastructure provider - can give its customers the possibility to running their containerised applications in
a confidential and isolated manner protected by a trusted execution environment (TEE). However, the use of
a TEE alone does not provide strong privacy guarantees to containerised applications. This is because TEEs
do not conceal the interactions between the container and the host kernel, which, based on our hypothesis,
could be used to uniquely identify the applications running inside containers. To prevent this, PPC will

 ACCORDION – G.A. 871793

D2.3 Architecture design (I) Page 34 of 68

examine the syscall patterns of containerised applications. It will take a container image as input and will
output a privacy score that determines how unique the syscall pattern of the container is (compared to syscall
patterns of other containers). In case a containerised application can be accurately fingerprinted, PPC will
additionally provide a set of recommendations to make the syscall pattern of the containerised application
less unique, e.g., by adding a small amount of noise in the form of dummy syscalls.

We envisage the design and implementation of generic techniques to create privacy-preserving ML models
that provide high accuracy without incurring a high overhead. The techniques employed and the way these
privacy-preserving ML models will be generated will vary depending on the use case, the desired level of
privacy and the considered threat model. Yet, in all cases, PPC will take as input training data (or locally
generated ML models) from different entities and will produce a privacy-preserving yet accurate ML model
as output. When doing so, PPC will apply a combination of privacy mechanisms and technologies, such as
differential privacy and TEEs, such that the ML model is resistant to privacy attacks and the accuracy of the
ML model is (at worst) only reduced minimally.

Finally, in order to detect user data leakage, PPC will collect data exchanged between different entities and
will analyse the obtained information at distinct levels (e.g., in the application or the network layers). As
before, depending on the use case, the considered threat model and the desired level of privacy, PPC will
take as input various plaintext and/or encrypted data collected while users browse the Web or while
containers communicate with each other (among others). PPC will then output a set of indicators and privacy
metrics that will be used to estimate the privacy leakage. Based on the existing privacy leakage, PPC will then
apply various types of obfuscation techniques at different levels in order to enhance the users' privacy.
Optionally, PPC will also notify the appropriate entities about potential privacy violations that can occur.

5.1.6 Storage provision

Relevant functionality

• Storage Provision (Task 3.3)

Description

The Edge storage component has the goal of providing an edge storage framework that can support the QoE

needs of the users, optimizing resource usage in the edge devices and networks. We have two possible base

technologies for this; the MinIO19 and OpenStack20 platforms that enable us to create highly distributed,

lightweight and scalable storage clusters, using Kubernetes as an orchestrator. The final choice of the tool

will be made after running a number of experiments, testing their effectiveness and optimizing their

configuration for scenarios close to the real use cases that the ACCORDION will be called to handle. The tool

will then be modified in order to optimize its deployment and functionality in order to achieve the best QoE

possible, taking into consideration the requirements set by the ACCORDION use cases.

19 https://min.io
20 https://www.openstack.org

 ACCORDION – G.A. 871793

D2.3 Architecture design (I) Page 35 of 68

The component will use the Kubernetes ecosystem by using the Kubernetes master as the storage controller,

storage UI access point and Prometheus master for the specific cluster. Each node that is connected to the

Kubernetes cluster has the potential of becoming a storage worker for this cluster or/and for the ACCORDION

ecosystem. This is enabled by defining a custom label for the node, enrolling it as a storage worker. As a node

we define a Kubernetes node, which can be a PC, laptop, IoT device or any other compatible device. In order

to be eligible for the role of storage worker a node must have sufficient hard disk space available. The amount

of space is highly dependent on the use case, so it is not pre-configured. The following figure (Figure 8) depicts

a high-level architecture of the component.

Figure 8: Edge Storage high level architecture.

After the choice of the appropriate technology and configuration a middleware layer will be added between

the VIM and storage components in order to expose specific, role-based APIs that ensure security of the data,

integrity of the system, optimized QoE for the users, fault proofing, fault tolerance, intelligent caching and

other relevant functionalities.

Interfaces

We have isolated four actors that are using the services of the Storage module; the VIM, the Prometheus

Aggregator, the Infrastructure Administrator and the ACCORDION Platform Administrator. VIM will be using

the APIs exposed by the component in order to perform automated or semi-automated processes or even

expose the functionalities in other interfaces or components. A draft of the APIs that will be exposed by the

component is included in Table 1 at the end of this chapter. The Prometheus Aggregator will access the

endpoint provided by the cluster Prometheus master in order to scrape the data and collect them in an

aggregated database that collects information from all the ACCORDION miniclouds. The Min-cloud

Administrator will be using the storage UI in order to manage the storage cluster and the data in it for

administrative purposes. The ACCORDION Administrator will also be using the storage UI in order to manage

 ACCORDION – G.A. 871793

D2.3 Architecture design (I) Page 36 of 68

and monitor the data and the cluster in accordance with the general ACCORDION needs. In the following

UML we can see a visual representation of these relations.

The following table lists the indented endpoints for Edge Storage, providing interfaces to the aforementioned

actors. The standard AWS S321 APIs will also be available as they are supported in both proposed base

technologies.

Table 1: Edge Storage indented endpoints.

Endpoint Method Inputs Outputs Description
data/{{filename}} GET None Binary File Request a file using the ACCORDION

edge storage system
data/{{filename}} POST Binary File, Path Confirmation Send a file for storage in the

ACCORDION edge storage system
data/{{filename}} DELETE Path Confirmation Delete a file from the ACCORDION edge

storage system
cluster GET Cluster ID Cluster Status Gets the status and some monitoring

data about the cluster
cluster POST JSON Configuration Access Details Creates a new edge cluster with the

configuration provided or updates an
existing cluster with new configuration

cluster DELETE Cluster ID Confirmation Deletes an edge cluster with the ID
provided

scale POST JSON Configuration Confirmation Scales out or up an existing cluster
based on the configuration provided

scale DELETE JSON Configuration Confirmation Scales in or down an existing cluster
based on the configuration provided

5.1.7 Failure detection and recommendation

Relevant functionality

• Failure detection and mitigation (Task 4.3)

Description

The Failure detection & recommendation component provides a proactive fault tolerance mechanism

leveraging resource monitoring data. The processing edge nodes will be assessed periodically in order to

predict the QoE degradation. If potential QoS deterioration is identified, the component proactively will

inform the intelligent orchestrator to trigger hot and cold migration policies.

The Failure detection and recommendation component receives input from the Resource Monitoring &

Characterization component and makes real time process with the resource utilization model. The resource

utilization model involves a training and inference workflow as depicted in Figure 9. In the beginning, the

training process receives historic data and builds a multi-output regression model as we can see in the steps

a to e of Figure 9. Specifically, the resource usage data of the historic edge nodes contain parameters like

21 https://aws.amazon.com/s3/

 ACCORDION – G.A. 871793

D2.3 Architecture design (I) Page 37 of 68

CPU, ram disk and network. The component makes pre-processing with a normalization method and pipes

them to the hyper-parameter optimization process which trains and evaluates multiple neural networks in

order to identify an optimal topology.

Figure 9: Resource usage prediction and QoS deterioration

In the next steps f and g is illustrated the inference process which takes the current status of resource usage,

makes the same pre-processing with the training stage and provides resource utilization predictions for the

next timestep. The predictions involve the resource usage bottlenecks and the potential QoE deteriorations

for each processing edge node. The prediction of the QoS deterioration is related to the decision whether an

edge node is reliable to process workload or migration actions should take place.

Interfaces

The Failure detection and recommendation component consumes periodically the response of the

monitoring API regarding the resource usage for each node. This includes physical layer parameters such as

bare metal CPU usage, memory usage, filesystem usage, disk write latency, disk read latency, time spent for

disk IO operations, disk size and disk free space. The Failure detection and recommendation component

publish messages for each node that contain the probability of QoS deterioration. These messages will be in

json format and can be consumed from the intelligent orchestrator.

5.1.8 ACCORDION Services

Relevant functionality

 ACCORDION – G.A. 871793

D2.3 Architecture design (I) Page 38 of 68

• Define Application Workflows with ACCORDION Services (Task 5.1)

• ACCORDION Data Services (Task 5.1)

• Application Model (Task 5.1)

Description

ACCORDION services or data services, are small components that can intervene the data pathway to do

filtering, interpolation, compression etc. They can be implemented as Virtualized Network Functions (VNFs)

through the network orchestrators, when they deem this operation meaningful for mitigating QoS/QoE

issues. They can also be explicitly requested by the application developer to be integrated in the application

workflow through the application development/deployment process. For the time being, we consider

operations such as higher-order functions, message queues or even interpolation and general compression

functions to be provided by ACCORDION as a service. The ACCORDION services will be exposed in a

microservice setting, allowing their easy and low-cost replication for meeting the needs of various

applications and workflows.

Interfaces

Each of the ACCORDION Services exposes its own RESTful API while it also includes a client for the

ACCORDION Event Bus.

5.2 ACCORDION Platform

The ACCORDION Platform layer deals with the functionality that supports the ACCORDION applications and

the infrastructure. On its own, this layer can be broken down to more layers. Figure 10 depicts such an

internal structure, focusing on the ACCORDION user of interest, i.e., the application provider. The latter uses

the ACCORDION Platform Portal to allow the development and deployment of the application. To facilitate

some level of automation and simplicity in the migration of applications to the ACCORDION Platform, the

portal consumes a description of the application, provided by the application provider. This description is

then consumed by a number of components for building the application and from another set of components

for the deployment and runtime management of the application.

 ACCORDION – G.A. 871793

D2.3 Architecture design (I) Page 39 of 68

Figure 10: ACCORDION Platform Architecture View

Our analysis starts with the details of the initial description of the application that the application provider

must provide. It then moves on with the specification of the functional components as depicted in Figure 10.

5.2.1 Application description

The initial configuration of the ACCORDION platform is necessary so as to enable the development,

deployment and runtime management of the application to the highest possible level of automation. For that

to happen, the application provider must provide some information about how to build the application

components, how to deploy them and which workflows must be supported as the application is running.

Relevant functionality

• Application Model (Task 5.1)

• QoE Model (Task 5.2)

• ACCORDION Data Services (Task 5.1)

Application model

In the application model the main components that can be described are containers, end devices, edge

devices, ACCORDION framework and the relationships between them. The goal of the application model is

 ACCORDION – G.A. 871793

D2.3 Architecture design (I) Page 40 of 68

to automate Cloud operations. Technologies like Compose22 and Kubernetes Resources 23 can perfectly

describe containers and pods, but they cannot describe if a container/pod must be deployed on Edge or

Cloud like our application model does. For each scenario of the application there would be one application

model file to describe it. The application model describes both design time properties like ports or hardware

requirements for the containers, and runtime properties like IP of containers and runtime application related

properties like the number of players in a container. The application model may support an event driven

application flow. As such, it allows the definition of events and responses to the events, in the form of the

triple {target, event, handler}. In detail, the application model may contain the following.

• Build instructions

Docker can build images automatically by reading the instructions from a Dockerfile24. A Dockerfile is a text

document that contains all the commands a user would execute on the command line to assemble an image.

The build process starts from fetching the source code from the code repository, then using bash script a

compiled package is produced. Depends on the executable file and the compile process itself, the image

building instructions may vary significantly and there is no way to make one, reusable Dockerfile.

Nevertheless, to make DevOps process as efficient as possible, Dockerfile should not contain any

environmental properties and every image built from Dockerfile should be generic and treated as a blueprint.

All environmental variables should be injected directly to specific instances built out of the docker image.

• QoE model metadata

The QoE model allows the estimation of the achieved application QoE levels based on some monitored

metrics. At this point, the application provider needs to define thresholds for the QoE levels that the

ACCORDION platform must respect, applying countermeasures. The “QoE model metadata” must possible

present suggestions about these countermeasures, allowing the application provider to select from a set of

predefined operations (e.g., scale out/up, etc.).

• Lifecycle management model

As the application model will have an event driven approach, it describes the workflow of the actions in such

a way to automate the deployment of use case owners. The application model provides instructions about

the order of the actions and the conditions which will trigger them. There is also a need to have a lifecycle

management model to provide instructions about the events that trigger software engineering patterns or

the deployment of data services. Data services are software components with a minimal resource fingerprint

that can be deployed along the application workflow to improve the QoS offering.

5.2.2 ACCORDION Platform portal

Relevant functionality

22 https://docs.docker.com/compose/
23 https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
24 https://docs.docker.com/engine/reference/builder/

 ACCORDION – G.A. 871793

D2.3 Architecture design (I) Page 41 of 68

• Identity and Access Management (Task 5.5)

• Submission or Creation of Application Model (Task 5.5)

• Application Status Reporting (Task 5.5)

Description

The main is goal to provide an interface to support the DevOps process in ACCORDION. The component will

also visualise all the essential information about the deployments, their statuses and the properties of each

deployment across the whole platform.

The Platform component is going to provide meaningful insight into the Accordion Platform and via its CRUD

interface, users will be able to manage the applications. The component is going to be integrated with

GitLab25 repository, thus allowing for fetching the source code directly from there and building an instance

of an application, or from docker image. Besides deploying applications, the component will be capable of

running tests which has been specified in a special file provided by the user.

Interfaces

After analytics of business requirements of the platform, it was determined that Platform component should

be integrated with the code repository, it should provide an interface for deployment and building process

of application and finally, an interface for testing. The integration with GitLab was done by implementing

OAuth2.026 code grant flow and using GitLab as an OAuth provider, therefore there was no need for creating

the dedicated interface for authentication. The component is only going to have interfaces for deployment,

building process and for application testing, though the exact details of these interfaces have not been yet

specified.

5.2.3 Security scan

Relevant functionality

• Deployment and Runtime Security Conformance Evaluation (Task 4.4)

Description

The Security component aims at improving the level of security in the application development and

deployment lifecycle of Accordion Applications by providing guidance and tools in the form of DevSecOps

techniques, focusing in the areas of automated static code analysis (SAST), dynamic application analysis

(DAST) and automated container images security inspection.

The functionalities of the Security component described in the previous paragraph can be implemented

through a myriad of solutions available in the market. An evaluation of suitable software security tools and

25 https://about.gitlab.com
26 https://oauth.net/2/

 ACCORDION – G.A. 871793

D2.3 Architecture design (I) Page 42 of 68

methods has been conducted in the context of Task 4.4 using specific metrics considered relevant for the

ACCORDION project, including license type, development activity and additional capabilities including

extendibility and possibility of adoption in automated CI/CD contexts. This evaluation produced following

results:

• For SAST: SonarQube27

• For DAST software: OWASP Zap28

• For Container image security: Harbor29 (integrated image scanning tool Clair 230)

Considering a generic DevOps process, the following figure (Figure 9) shows the phases where the selected

tools should be integrated.

Figure 9: Generic DevOps process

At the moment, it is not yet completely decided if the development phase of ACCORDION applications will

be performed in an ACCORDION environment or on premises. The latter hypothesis seems the more

probable: in this case, application authors will run their development pipelines on premise (development

phase) uploading artifacts into Accordion for the remaining deployment, production and post-production

phases. In this case, SAST and DAST analysis tools must be integrated and operated directly on premise.

SonarQube

27 https://www.sonarqube.org
28 https://owasp.org/www-project-zap/
29 https://goharbor.io
30 https://coreos.com/clair/docs/latest/

 ACCORDION – G.A. 871793

D2.3 Architecture design (I) Page 43 of 68

SonarQube is a tool for automatic scanning of source code to detect bugs and vulnerabilities. It can be

integrated with existing workflows to enable continuous and automated code inspection. One of the

SonarQube key features is its capability of scanning more than 25 programming languages source types is

particularly useful for ACCORDION where all the applications, which might greatly differ in terms of

programming language and development models, can be analyzed using a single solution. SonarQube works

by analyzing the source code of a given project and summarizing the results in a snapshot¸ which contains a

set of metrics and issues for that project at a given time according to a Quality Profile¸ that is a configurable

set of rules to be applied for an analysis. Found issues relate to potential Bugs, Vulnerabilities, Code Smells

and Security Hotspots. Estimations on time required to fix Vulnerability (Remediation Cost) and to fix all

Maintainability Issues / Code smells (Technical Debt) are also provided. Additional details on SonarQube basic

concepts are available at [Reference: https://docs.sonarqube.org/latest/user-guide/concepts/].

OWASP ZAP

OWASP ZAP (Zed Attack Proxy) is an open-source tool for web applications penetration testing. ZAP acts as a

proxy between browsers and applications and can be instructed to perform attacks on application URLs both

manually and automatically by crawling and scanning all the available pages with its spider. ZAP can perform

both passive and active scanning, searching several known security issues like SQL injection, Cross Site

Scripting and the other vulnerabilities included in the OWASP Top 10 list [Ref. https://owasp.org/www-

project-top-ten/]. Passive scanning does not change the requests nor the responses in any way and is

therefore safe to use, while active scanning attacks selected targets searching potential vulnerabilities by

using known attack techniques and could potentially break the target application. The specific rules applied

in the scanning tests are defined in one or more configurable Scan Policies. ZAP creates statistics of the

attacks which can possibly be used to generate reports.

Harbor

The open-source Harbor project (https://goharbor.io/) is a trusted cloud native repository for Kubernetes

that offers many interesting features like:

• Private docker image registry

• Integrated control on image signing process

• Integrated control on image vulnerabilities

We had chosen this platform as docker registry in ACCORDION because the three features above are all

integrated in a single tool and no other external components are necessary to perform image signing and

image security scanning.

With Harbor a docker image can be signed at “push time” using the Client DCT Notary feature; in this way

Harbor is able to check image signatures automatically and independently of any Docker client environment.

In addition, Harbor integrates Clair 2 docker image vulnerability scanning tool, when images are pushed to

Harbor, a Clair scan is performed, and the image is “rated” based on the vulnerabilities found.

Another strength of Harbor is that both image signature verification and vulnerability scores can be

configured individually for each project. It is possible to configure setting like “allow only verified images to

be deployed” (i.e., signed images) and “prevent images with vulnerability severity of Medium and above to

 ACCORDION – G.A. 871793

D2.3 Architecture design (I) Page 44 of 68

be deployed” (images with medium-high score). This are just two examples to understand the flexibility of

the harbor configuration. All this configuration is performed at Harbor server side and is agnostic respect to

the docker client used.

Interfaces

SonarQube

SonarQube consists of four main architectural components: one or more SonarScanners, installed on an

existing project’s CI/Build Servers and performing the code analysis, a central server (providing WEB

interface) for configuration and administration of the SonarQube platform and the processing of analyses

and reports produced by the SonarScanners, a database to store all the data related to configurations, views,

quality snapshots etc. and, finally, a set of plugins installed on the Server for managing governance,

authentication, Source Code Management integration etc. An optional component, SonarLint, is also

available as an IDE extension to be installed on developers’ workstations to perform code analysis in real

time and warning developers before code is pushed in Source code management (SCM) repository.

SonarQube platform can be used with several Application Lifecycle Management and CI/CD tools and also

provides web API to access and possibly extends its functionalities, making it a good choice for integration in

ACCORDION development and operation pipelines.

OWASP ZAP

ZAP provides several interfaces. It is mainly used as an application running on the penetration tester machine

(in the form of a standalone application or as a browser plugin), but it also provides a CLI interface and an

API for all its functionalities allowing the integration of the tool in existing CI/CD pipelines. The most common

way to perform automated penetration testing in CI/CD contexts using ZAP is through its Jenkins31 plugin.

Harbor

Harbor is composed by several components which can be easily installed on Kubernetes using Helm, the main

ones are:

• Postgresql32

• Redis33

• Clair

• Beego34

• Chartmuseum35

• Docker/distribution

• Docker/notary

31 https://www.jenkins.io
32 https://www.postgresql.org
33 https://redis.io
34 https://beego.me
35 https://chartmuseum.com

 ACCORDION – G.A. 871793

D2.3 Architecture design (I) Page 45 of 68

• Helm

• Swagger-ui36

Harbor can be managed by an extensive Web UI, provide a Command Line Interface and a set of openAPI

compatible APIs, it Is able to communicate with other tools (like jenkins) using secure webhooks.

API reference can be found at https://goharbor.io/docs/1.10/build-customize-contribute/configure-

swagger/

5.2.4 Unikernels SDK

Relevant functionality

• Lightweight virtualization support (Task 3.4)

Description

ACCORDION will natively support Unikernels, i.e., specialised, single address space machine images

constructed by using library operating systems. The developers can select, from a modular stack, the minimal

set of libraries which correspond to the OS constructs required for their application to run. These libraries

are then compiled with the application and configuration code to build sealed, fixed-purpose images

(Unikernels) which run directly on a hypervisor or hardware without an intervening OS such as Linux or

Windows. By tailoring the operating system, libraries and tools to the specific needs of the application, it

vastly reduces virtual machine and container image sizes to a few KBs, drastically cutting down your software

stack's attack surface.

Given the specialized nature of the Unikernels, ACCORDION will assist the application developers to migrate

their software. Such assistance comes in the form of an SDK. Such an SDK will be largely based on the Unikraft

build system37. In particular, ACCORDION will leverage kraft, a command line companion tool used for

defining, configuring, building, and running Unikraft applications. With kraft you can seamlessly create a build

environment for your Unikernel and painlessly manage dependencies for its build.

Interfaces

As stated, ACCORDION will leverage the tool “kraft” for allowing the build of Unikernels.

5.2.5 Build tools

Relevant functionality

36 https://swagger.io/tools/swagger-ui/
37 https://github.com/unikraft/kraft

 ACCORDION – G.A. 871793

D2.3 Architecture design (I) Page 46 of 68

The most core feature of this component is automating software development process by providing a set of

useful tools for building, testing, deploying.

Build Application Components (Task 5.4)

Description

Since the requirements of each use case are vast and different, the ACCORDION application component

building tools will be based on Jenkins. Jenkins helps automate the parts of software development related to

building, testing, and deploying, facilitating continuous integration and continuous delivery. Jenkins Pipeline

is a suite of plugins which supports implementing and integrating continuous delivery pipelines into Jenkins.

This process involves building the software in a reliable and repeatable manner, as well as progressing the

built software (called a "build") through multiple stages of testing and deployment. Pipelines provide an

extensible set of tools for modelling simple-to-complex delivery pipelines "as code" via the Pipeline domain-

specific language (DSL) syntax. The definition of a Jenkins Pipeline is written into a text file (a Jenkinsfile)

which in turn can be committed to a project’s source control repository. In Jenkins’ pipeline, a bash script to

build an executable package out of source code will be executed.

Interfaces

The component will use Jenkins’ API, especially for the visualisation of DevOps process and for executing

pipelines.

5.2.6 Application status registry

Relevant functionality

• Application Registration (Task 6.4)

Description

This main role of this component is to store the information about the lifecycle of the application. Each

application will have an instance of the application registry. Beside the information about the lifecycle, the

registry also keeps track about the resource in which the services of the application are running. The

application registry is updated by the orchestrators (in case of the startup or change of the application

deployment) and via the dashboard (for example when the application provider forces a manual stop of the

application).

An important distinction must be made between the Application Registry in ACCORDION and the Container

Registry technologies that are common to store containerized images (e.g., Harbor). As written above, the

former contains the metadata referred to the application to support the work of the orchestrator; The latter

allow users to manage containers throughout their applications and networks, also providing fine-grained

access control to individual containers. A similar functionality in ACCORDION is provided by the Application

Bucket (see 5.2.7).

 ACCORDION – G.A. 871793

D2.3 Architecture design (I) Page 47 of 68

Interfaces

The component will be listening on the ACCOORDION event bus for information about possible changes in

the status of the application. In addition, the component exposes REST API for a seamless integration with

the web dashboard of ACCORDION.

5.2.7 Application Bucket

Relevant functionality

• Submission or Creation of Application Model (Task 5.5)

• Application Component Registration (Task 6.4)

Description

After an application is built and end-user wants to deploy it, the ACCORDION platform should provide storage

from which the image might be fetched from. The component will consist of two services, one of them is a

storage of image registry, the other one is storage from application model properties. Docker images will be

kept in a Docker registry, which can be provided e.g., by GitLab. Application model properties will be stored

in a database.

Interfaces

The component will have interface for performing CRUD actions on applications like e.g., saving new

application or getting one.

5.2.8 Event bus

Relevant functionality

• Event Bus (Task 6.4)

Description

This component provides the communication fabric that interconnects many components of the ACCORDION

ecosystem. In particular, the component will support:

• platform-to-platform communications, i.e., those communication that happens between two

services of the accordion platform;

• app-to-platform communication, i.e., a specific channel thought which the application can

communicate with the accordion platform, for instance to signal possible QoE degradation.

To support these communications, several event bus instances might be present at the same time. Beside

the single instance that is needed to support the platform-to-platform communication, there is an instance

of the event bus for each application to support the app-to-platform communication.

 ACCORDION – G.A. 871793

D2.3 Architecture design (I) Page 48 of 68

The even bus is implemented according to a publish subscribe model. In this model the producers send

messages to the event bus connected to a specific topic. The messages are then stored inside the event bus,

waiting to be delivered to the consumers. The consumers subscribe to their topics of interests, and then

receives messages according to their preferences. A well-known implementation of this model is provided

by Apache Kafka38, which is currently considered as the tool of choice for ACCORDION.

Interfaces

The event bus interfaces strongly depend on the specific tool used for its implementation, in this case Apache

Kafka. There are different packages available for most programming languages that allow producers and

consumers to interact with the system, including Java, Python, C#.

5.2.9 Compute resource orchestrator

Relevant functionality

The ACCORDION federation is composed of a “continuum” of (physical or virtualized) resources belonging to

Edge Miniclouds (EM) or public Central Clouds (CC). The main functionalities of the Compute resource

orchestrator (CRO) are:

• allowing the allocation of resources to the various application components, considering the

applications’ QoS/QoE requirements and their internal topologies

• composing a Service Allocation Plan (SAP) for all the required application components

• modifying or composing a new SAP when a QoS/QoE violation or another type of disrupting event is
detected and signaled by the VIM Monitoring Agents or other ACCORDION services and executing

the suitable recovery actions (migration, scale up/down, etc.)

Description

To maintain a global vision of the resources of the federation and of the placement of all the application

components, the CRO is logically viewed as a centralized component. Although the high level logical abstract

architecture of the CRO is viewed as centralized (single instance), its implementation can be instead

decentralized (multiple instances), to increase fault tolerance and scalability respect to the size of the

federation. An instance of the CRO is deployed on top of the VIM of each EM or CC and manage in an

exclusive way the local group of resources which are called the associated resources.

The CRO instance, when received an application deployment request, must be able to solve a Multi-resource
Multi-objective service allocation problem (MRMO) over the associated resources. To do so, the CRO must

build an internal representation model of the problem: the most common models used in literature are the

Mixed Integer Linear or Non-Linear Programming model (MILP or MINLP) and various Graph Models, which

have been investigated. Independently from the chosen model, inputs for it are the application model of the

application to be deployed, retrieved by the associated Application Bucket, and the resources availability

38 https://kafka.apache.org/

 ACCORDION – G.A. 871793

D2.3 Architecture design (I) Page 49 of 68

model, which is obtained by querying the Resource Indexing and Discovery (RID). The MRMO problem is then

solved exploiting algorithms which use approximated techniques: these algorithms produce a near-optimal

solution with a low level of computational effort, exploiting heuristic, random or other types of techniques

to reduce the solution space. Examples are genetic algorithms, iterative search algorithms or vote and

consensus algorithms, which will be investigated. Such class of algorithms is well suitable for constrained

resources environments such as Edge Clouds.

One or more valid SAPs (Service Allocation Plan) are computed and then executed, one at a time, by the

Allocator component of the CRO: in case a QoS/QoE violation is detected, or a disrupting event occurred, i.e.,

a security violation, a failure of a hardware component or a risk of a privacy data leakage, detected and

signalled to the CRO by the properly ACCORDION services, the Allocator could execute and/or compute

another SAP. When an SAP failed, the Allocator could execute a set of one or more recovery actions. Such

QoS/QoE violation or disrupting event could happened also during the lifecycle of the application, causing a

modification to the executed SAP.

 If no SAPs are computed or all the SAPs failed to be executed by the Allocator, the CRO could try to find

additional resources to satisfy the application deployment request from other group of remote resources,

belonging to other EMs or CCs, managed by a different CRO instance: in this case, a possible solution

technique is to contact a selected group of other CRO instances, chosen following certain selection criteria,

creating an Aggregation. An MRMO service allocation problem is then solved over the union of all the

associated resources of the CRO instances of the Aggregation: distributed algorithms are well suitable to

solve this problem efficiently, or a leading CRO instance could be elected or created from scrap, forming a

possible hierarchical architecture of CRO instances. All the critical issues relative to form, maintain and

manage the lifecycle of such Aggregations are investigated.

Interfaces

The main input interface for the CRO provides an entry point for the application deployment requests, both

for its entirety or for one or more of its components and it will be developed as a REST-like API. Its main input

parameters are constituted by the information to identify a single application or application component,

which had been built and deployed by the Application Provider. In the same API are also specified all other

typical IaaS functions of an orchestrator, such as migration, scale up/down, stop, etc. which are not internally

generated.

Internal platform-to-platform interfaces are defined with other components: an interface with the internal

ACCORDION event bus is needed to receive asynchronous events such a privacy leakage, a failure of a

hardware component, the QoS/QoE deterioration for an application component or a security violation which

are sent by respectively the Privacy preserving application component, the Failure detection and

recommendation component and the Security application monitoring component. The characteristics of this

interface depend on the technology used for the implementation of the ACCORDION event bus. There are

also internal interfaces with the Resource Indexing and Discovery component to submit queries to retrieve

the availability of remote resources, and with the VIM and its Monitoring and Network agents to know the

availability of the associated resources and the estimation parameters about traffic congestion, latency or

bandwidth of the network connections.

 ACCORDION – G.A. 871793

D2.3 Architecture design (I) Page 50 of 68

Finally, another internal interface with the Application Bucket is needed to retrieve the application model of

an application to be deployed and to update its status each time the orchestrator needs to change it. These

interfaces have not been defined yet, and they are currently under development.

5.2.10 Network resource orchestrator

Relevant functionality

• Network Resource Orchestration (Task 4.2)

• AI-based automated orchestration framework of network resources

Description

Alongside the Compute Resource Orchestrator (CRO), the Network Resource orchestrator (NCO) also takes

part in the deployment and runtime of ACCORDION applications. This component assures that the

deployment and runtime of applications do not violate the network requirements of these applications. The

role of this component is to provide a multi-domain AI-based orchestration framework of the network

elements by ensuring reliability and latency. This component provides automated orchestration and

intelligent management operations and facilitates the life cycle management of the network slices with the

aim of rapid slice creation and activation, enabling application developers, Use Case owners (In the case of

ACCORDION: ORAMA VR, ORBK and PLEXUS) to define blueprints for their VR/AR ready slices. This

component relies on monitoring the network resources at the edge/public cloud for any potential QoS

degradation (e.g., congested links, node capacity excess, etc.) and accordingly plan operations to fix these

issues (e.g., service migration, remove congested links, scaling, etc.) and guarantee the network

requirements of these applications. To enable self-configuration and self-optimization capabilities of network

resources, this component considers the exploitation of machine learning techniques and their integration

in the ACCORDION framework.

Interfaces

This component comprises two interfaces with (i) ACCORDION internal services, and (ii) application

developer. The former consists of data signalled by other internal services which could periodic such as

monitoring data or unexpected events such QoE deterioration. The application developer inputs comprise

the application itself and its blueprint. The application developer provides the application as a container (ex:

Docker container) and the blueprint in the form of a YAML file. This component should also provide an output

interface, a set of functions, that gives an app developer more flexibility to decide how and where

applications should be deployed. Communication between internal components and between NCO and the

application developer could be achieved via a Rest-API interface and event bus. The available interfaces are

subject to change with the progress of the project.

5.2.11 Minicloud membership management

Relevant functionality

 ACCORDION – G.A. 871793

D2.3 Architecture design (I) Page 51 of 68

• Minicloud Membership Management (Task 3.5)

Description

While adding a node is almost automatic, you just need to install the K3S agent with server configuration,

deletion needs explicit commands to remove running workload containers, and then delete node.

Interfaces

To modify cluster configuration, the entry points are master nodes via CLI or Rest API hosted on master

nodes. There is one main CLI command “kubectl” and several rest API.

To remove nodes there are two options:

1. By command line:

a. kubectl drain <node name>

b. kubectl delete node <node-name>

2. Via Rest api

a. Eviction API (restfull): /api/v1/namespaces/default/pods/<node name>/eviction

b. Node api: DELETE /api/v1/nodes/{name}

To add a node:

Node registration is automatic at K3S agent startup, to successfully complete registration the process must

know master IP address and cluster token, parameters the must be configured as environment variable:

K3S_TOKEN, K3S_URL or as service start arguments.

5.2.12 QoE model (validation)

Relevant functionality

• QoE Model Validation (Task 5.2)

Description

Within the ACCORDION project, three QoE models will be developed to continuously measure the quality of

ACCORDION use cases by monitoring the network, compression, and client parameters. The model predicts

the QoE of each use case on a 5-point Absolute Category Rating (ACR) scale based on the network parameters

as well as compression parameters.

The models are decided to be a parametric model that gets network, compression, and client parameters as

input for quality prediction. Since each use case has its own characteristics, the model will be developed and

employed separately and independently from other use cases. However, all models follow the same structure

in the development phase, which is described in D5.1. The development of model will be done in different

iterations where in each iteration, a draft version of the model will be developed with limited scope and

range of parameters, and then the developed model will be evaluated. Based on the result of the evaluation,

 ACCORDION – G.A. 871793

D2.3 Architecture design (I) Page 52 of 68

more data will be collected to improve the model but also to ensure that the model can be integrated into

the ACCORDION platform in the early stage of the project. So far, a draft model is developed for the ORBK

use case, which is described in WP5.

The models are taking the network, compression, and client parameters as input parameters to predict the

quality of ACCORDION use cases. The input parameters must be provided by use case owners as described

below:

Network Parameters: The parameters collected from the network are delay, jitter, packet loss rate, and burst

rate.

Encoding Parameters: In addition to network parameters, multiple encoding parameters will be collected for

the use case with video streaming components (OVR use case). Parameters such as encoding bitrate,

encoding resolution, encoding frame rate can be considered as required parameters for encoding. It must be

noted that in more advanced monitoring services, bitstream information could also be collected, such as

packet header information (e.g., I-frame and P-frame size) or even payload bitstream information (e.g.,

quantization parameters). For the first draft model, only encoding parameters will be considered, while, for

other iteration, bitstream information will also be considered.

Client Parameters: The client information includes information about the device or application that is

running on the client-side. For example, the size of the display or input device plays an essential role in quality

assessment. In the ORBK use case, the information about sensitivity of the game towards delay is considered

as an input of the model in the first draft of the model.

The QoE model will be used to monitor the quality of the ACCORDION use cases in which the quality will be

predicted in R-scale range from 0 to 100 (where 0 is the worst quality and 100 the best quality) or transformed

R-scale to 5-point ACR scale (where 1 is the worst quality and 5 is the best quality). In order to get more

insight into the root of low-quality prediction, diagnostic scores will be provided for each use case. The

diagnostic predictions are described in D5.1, which could be beneficial to track the cause of errors or low

quality of a specific use case, consequently, decide on the strategies that need to be implemented in response

to the low quality. As an example of such diagnostic information, the transmission impairment will be

predicted how the interaction of the user with a use case is affected by packet loss. The model predicts the

diagnostic information in R-scale where 0 is the worst quality and 100 is the best quality.

Interfaces

The QoE model validator will provide a RESTful API for the provision of the input parameters. In fact, we need

a single endpoint accepting a POST HTTP request with the parameters in its body (application/json). The HTTP

response will bear the QoE metrics’ values in a JSON array.

 ACCORDION – G.A. 871793

D2.3 Architecture design (I) Page 53 of 68

6 Sequence Diagrams

In this Section we create a set of sequence diagrams with the intention to explain the interplay of the

ACCORDION components (Section 5) when implementing the platform operation scenarios (Section 4).

6.1 Join Federation

The sequence diagram in Figure 11 depicts the high-level interaction between the involved entities when an

infrastructure owner decides to join the minicloud federation. This flow is not implemented in the context of

ACCORDION however it is specified in D7.5 and to an introductory extent in Section 4.1. ACCORDION assumes

that the procedures depicted in the sequence diagram have already been performed and that the minicloud

federation already contains an adequate number of miniclouds.

Figure 11: Flow of logic for joining the minicloud federation

 ACCORDION – G.A. 871793

D2.3 Architecture design (I) Page 54 of 68

6.2 Deploy Application

The sequence diagram in Figure 12 shows which components are activated and interact when the application

developer uses the ACCORDION Platform to build and test the application components. In this scenario we

use the term “test” in a slightly different context than in a typical DevOps scenario. Apart from the traditional

unit testing for the code, ACCORDION also applies security and privacy evaluations and provides a report on

it results to the application developer together with recommendations. Note that the application description

is focusing on the part of the application model and the build instructions.

Figure 12: Flow of logic for Build and Test

6.3 Start application

The following sequence diagram (Figure 13) shows how the application components are being deployed. This

operation requires more than just the application model; it also requires the QoE model metadata in order

 ACCORDION – G.A. 871793

D2.3 Architecture design (I) Page 55 of 68

to estimate the achieved QoE levels based on the selection of resources. The figure shows how the

Application Platform components are interacting with the Minicloud components in order to find, create and

reserve the appropriate resources for the application components.

Figure 13: Flow of logic for starting the application

6.4 Runtime adaptation

The following sequence diagram (Figure 14) depicts the activation sequence of the components involved in

the runtime adaptation of the platform to accommodate application-related workflows. The diagram

highlights the use of the event bus to facilitate the communication between application and ACCORDION

components and generally, to accommodate the automatic implementation of the various application

workflows. Especially during the start of the application, a number of Minicloud components are attaching

to the resources that hosts the application component to be able to monitor its performance and resilience

levels.

 ACCORDION – G.A. 871793

D2.3 Architecture design (I) Page 56 of 68

Figure 14: Flow of logic for application lifecycle management

 ACCORDION – G.A. 871793

D2.3 Architecture design (I) Page 57 of 68

7 Validating use case requirements

In what follows we provide the descriptions of the three validating use cases of ACCORDION. We validate the

proposed architecture through the use case requirements provided in the first version of the series of reports

on User requirements (D2.1). For each of those requirements we mark the components of our architecture

that provide the functionality to support them. This exercise proves the coverage of the architecture in terms

of supporting applications. If a requirement is marked with at least one ‘x’, this implies that the architecture

can support it. Note that the descriptions of the components in Section 5 are already considering the use

case requirements. For readability purposes the compliance table is provided in the Appendix: Requirements

Compliance Table. We adopt the notation used in D2.1, with “FR” standing for “Functional Requirement”,

“NFR” for “non-Functional Requirement” and “UC#” stands for “Use Case #”. A final remark is that there is a

number of use case requirements that are excluded because they are application-oriented, i.e., they refer to

the way the applications are implemented, and not to the hosting platform.

Finally, in order to ensure that this report is self-contained, we provide a brief description of the use cases.

For more details the reader can refer to the ACCORDION report: D2.1: User requirements (I).

7.1 Use case #1: Collaborative VR

Solutions are sought to enable immersive collaborative VR training tools and applications for a large number

of remote users while overcoming the necessity to rely on heavy, local technology assets. To scale current

solution designs, edge-cloud resources can be exploited for untethered mobile collaborative VR training

experiences supporting advanced processing capabilities with low-latency and thus reduce constraints in

resource limits, GPU, battery and mobility on untethered HMDs. Moreover, adopt a networking functionality

beyond the standard client-server model and with decrease dependence on local service with one of the

users to act as the server responsible for handling game logic and broadcasting messages to remote clients.

7.2 Use case #2: Multiplayer Mobile Gaming

ORBK Use Case is a multiplayer mobile game. Game servers will be deployed on top of the ACCORDION

system so as to meet the requirements of NextGen mobile gaming, which aims to lower latency between

servers and clients and highly improve user experience. It will also take advantage of AI-based network

orchestration to dynamically and automatically deploy new servers based on performance metrics and

player’s geographical localization.

7.3 Use case #3: Content delivery for cloud gaming engines

PLEX approach towards ACCORDION raises the development of a brand-new complete platform, based on a

PaaS model integrating edge computing and derived services.

 ACCORDION – G.A. 871793

D2.3 Architecture design (I) Page 58 of 68

A multi-level, microservices-based scenario platform that calculates varied information from different

locations and creates real-time analytics. Analytics and derived knowledge elements that provide advantages

to all parts of a new value chain based on information processing.

The continuous processing of information will be managed from different leveled nodes. The integration of

all the information will lead to an expert system whose parts are mutually feeding each other. As a result,

content delivery to different devices and the measurement of their response will be done in a consistent way

across peripheral devices and connections.

 ACCORDION – G.A. 871793

D2.3 Architecture design (I) Page 59 of 68

8 Summary and future work

This document summarizes the efforts of the partners involved in T2.3 and WP2 in general to design the

ACCORDION environment architecture. It is mainly composed of two large-scale systems: the infrastructure

of federated edge and cloud nodes and the ACCORDION platform. The former is meant to solve issues of

interoperability among heterogeneous edge/cloud nodes that are put together in a dynamic way forming a

federation. The latter is meant to solve management issues, orchestrating resources and application

components across miniclouds and providing an environment for the development and deployment of

applications.

ACCORDION is emphasizing on the needs of the application providers/developers trying to accommodate

their needs for smooth transition to the ACCORDION ecosystem from their traditional ones. This high-level

requirement has a deep impact on the design of the system with a lot of effort being put in the specification

of components and processes that will automate procedures and especially the application lifecycle

management.

The result of the work is a layered architecture and the definition of the encompassed functional and non-

functional components. These components were delineated in D2.2 and their functionality was – to an extent

-defined in D2.1. This report (D2.3) solidifies the specification of the functionality of those components so as

to allow for the release of a first set of components and a complete first version of the ACCORDION artifacts

(infrastructure and platform). The document (D2.3) will be updated on M22 and M36 incorporating changes

dictated by the evaluation of the pilots and the updating of the requirements. It will also be updated with a

technical presentation of the API details that each of the components will implement.

 ACCORDION – G.A. 871793

D2.3 Architecture design (I) Page 60 of 68

Appendix: Requirements Compliance Table

ID Description

O
rchestrators
Event B

us

A
pplication

description

Platform
 Portal

A
pplication status

registry

A
pplication B

ucket
B

uild &
 Testing

Q
oE m

odel

VIM

M
onitoring

(Perf/Sec/Priv/Fail)

Indexing and
D

iscovery

Storage

M
em

bership
m

anagem
ent

A
C

C
O

R
D

IO
N

Services

F_UC1_01
APPLICATION DEVELOPER: Use the mirror networking service or similar for matchmaking,
creation of session and selection of an already existing session (ip, location, userid master) x x x x

F_UC1_02
USER: Able to create session and/or select an existing session from the application on the HMD
based on my credentials x x

F_UC1_03
APPLICATION DEVELOPER: Session management through a relay server or message broker
in the cloud x x x x

F_UC1_04 USER: Application updates through cloud-based repository, including apk installation on HMD x x

F_UC1_05
APPLICATION DEVELOPER: Communication of the application to Azure Cloud to store and
retrieve user analytics x x x

F_UC1_06 USER: Able to visualize my performance analytics on the HMD x x

F_UC1_07
APPLICATION DEVELOPER: The application component running on the HMD should be aware
of the connected resources where part of the application has been offloaded. x x x x

F_UC1_08
APPLICATION DEVELOPER: The application running on the HMD should be able to connect
via standardised protocols to the resources where part of the application has been offloaded. x x x x

F_UC1_09
APPLICATION DEVELOPER: Able to send output from the controllers and HMD to the resource
where part of the application has been offloaded x x x x

F_UC1_10
APPLICATION DEVELOPER: Able to receive encoded image data to the HMD for display from
the resource where part of the application has been offloaded x x x x

F_UC1_11
APPLICATION DEVELOPER: Support continuous streaming of two images (one per eye) per
user from the edge resource node to the HMD. x x x x x x

 ACCORDION – G.A. 871793

D2.3 Architecture design (I) Page 61 of 68

F_UC1_12
APPLICATION DEVELOPER: Application component on the untethered HMD needs to be
deployed and run on ARM based architecture (to support SoC) x x x x

F_UC1_13

APPLICATION DEVELOPER: The resource discovery mechanism of ACCORDION should
offload part of the application functionality from the HMD to nearby edge resource considering
lowest average latency x x x x x x x

F_UC1_14 APPLICATION DEVELOPER: Efficient sharing of the same resource among different users x x x x x x

F_UC1_15
APPLICATION DEVELOPER: The send rate of rotations/translations from the HMD should be
dynamically set considering the network characteristics x x x x x

F_UC1_17
APPLICATION DEVELOPER: Communication of the HMD to the Remote Service (RS) in the
cloud when launching the app on the HMD x x x x

F_UC1_18
APPLICATION DEVELOPER: Establish communication and initial data transfer from edge node
for the user to enter the virtual OR x x x

F_UC1_19
APPLICATION DEVELOPER: VR scene, data assets and avatars are locally stored on the edge
node x x x x x

F_UC1_20
APPLICATION DEVELOPER: Different instances of the application can run on the same edge
node supporting different users via their HMD devices x x x x

F_UC1_21
APPLICATION DEVELOPER: The HMD should be able to receive data from different modules
running on different edge nodes (e.g. the part of the application, the QoE model) x x x x x

NF_UC1_01 USER, APPLICATION DEVELOPER: Round trip time (RTT) latency <15ms x x x x x

NF_UC1_02 USER, APPLICATION DEVELOPER: Data rate >50 Mbps supported by at least 5Ghz wifi or 5G x x x x x

NF_UC1_03 USER, APPLICATION DEVELOPER: Minimum connectivity requirements of 5GHz wifi or 5G x x x x

NF_UC1_04 USER, APPLICATION DEVELOPER: Connectivity from user HMD device <10 ms x x x x

NF_UC1_07 ADMINISTRATOR: Support at least 15 CCUs in the same OR x x x

NF_UC1_09
ADMINISTRATOR: The ACCORDION framework to ensure security of the software components
on the end devices and computing resources and transferred data across the network x x x x x

NF_UC1_10
ADMINISTRATOR, APPLICATION DEVELOPER: To be able to use existing networks and
available infrastructures x x x x x

NF_UC1_11

APPLICATION DEVELOPER: Receive error messages on potential problems with existing
resources, continue the VR app by on a newly discovered communicating to another resource
(discovery and placement) x x x x

NF_UC1_13 ADMINISTRATOR: Maintain application integrity and user’s security x x

 ACCORDION – G.A. 871793

D2.3 Architecture design (I) Page 62 of 68

NF_UC1_14 APPLICATION DEVELOPER, USER: Proximity of the relay server based on the users’ footprints x x x x x x

NF_UC1_15
APPLICATION DEVELOPER: GPU and CUDA acceleration capabilities available at edge
nodes, where part of the application is instantiated. x x x x x

NF_UC1_19
USER, APPLICATION DEVELOPER: Performed actions from all users should be synchronized
to the output rendered image to each individual user on his HMD with lowest average latency x x x x

F_UC2_01
INFRASTRUCTURE: As APPLICATION DEVELOPER I want the selected version of the Lobby
Server to be up and running all the time or whenever a Player starts the Game on her/his device x x x x x x

F_UC2_02
INFRASTRUCTURE: As APPLICATION DEVELOPER I want the selected version of the Game
Server to be up and running whenever a Player starts the Game on her/his device x x x x x x

F_UC2_03
INFRASTRUCTURE: As ADMINISTRATOR I want to have access to the web-based
administration after authorization by entering user and password x

F_UC2_04
INFRASTRUCTURE: As ADMINISTRATOR I want to be able to see a list of all Administrator
User Accounts x

F_UC2_05
INFRASTRUCTURE: As ADMINISTRATOR I want to be able to select any of the Administrator
User Account in order to perform one of actions: remove, reset password, block / unblock x

F_UC2_06
INFRASTRUCTURE: As ADMINISTRATOR I want to be able to add new Administrator User
Account by entering new user’s email address and sending the invitation x

F_UC2_07
INFRASTRUCTURE: As ADMINISTRATOR I want to be able to use web-based administration
panel in order to perform all necessary configuration operations x

F_UC2_08
INFRASTRUCTURE: As ADMINISTRATOR I want to be able to see a list of all uploaded
versions of the Lobby Server (Docker image file) with upload date and time and version number x x

F_UC2_09
INFRASTRUCTURE: As ADMINISTRATOR I want to be able to see a list of all uploaded
versions of the Game Server (Docker image file) with upload date and time and version number x x

F_UC2_10

INFRASTRUCTURE: As ADMINISTRATOR I want to be able to select any of the Lobby Server
(Docker image file) displayed on the list of Lobby Servers in order to perform one of actions:
replace, remove, edit information (version, requirements, description) x

F_UC2_11

INFRASTRUCTURE: As ADMINISTRATOR I want to be able to select any of the Game Server
(Docker image file) displayed on the list of Game Servers in order to perform one of actions:
replace, remove, edit information (version, requirements, description) x

F_UC2_12

INFRASTRUCTURE: As ADMINISTRATOR I want to be able to upload new Lobby Server
(Docker image file) with automatic date and time information and manually entered version and
description x x

F_UC2_13

INFRASTRUCTURE: As ADMINISTRATOR I want to be able to upload new Game Server
(Docker image file) with automatic date and time information and manually entered version,
requirements and description x x

 ACCORDION – G.A. 871793

D2.3 Architecture design (I) Page 63 of 68

F_UC2_14
INFRASTRUCTURE: As ADMINISTRATOR I want to be able to select what version of Lobby
Server should currently be used by the system x x

F_UC2_15

INFRASTRUCTURE: As ADMINISTRATOR I want to be able to select what version of Game
Server should run in relation to the Game version reported by the Player’s device during the
Game launch process x x x x x

F_UC2_16
INFRASTRUCTURE: As ADMINISTRATOR I want to be able to select what version of Lobby
Server should currently be used by the system for all defined regions (i.e. EU, US, AS) x x

F_UC2_17
INFRASTRUCTURE: As ADMINISTRATOR I want to be able to select what version of Game
Server should currently be used by the system for all defined Regions (i.e. EU, US, AS) x x

F_UC2_18 INFRASTRUCTURE: As ADMINISTRATOR I want to be able to see a list of all defined Regions x

F_UC2_19
INFRASTRUCTURE: As ADMINISTRATOR I want to be able to select any of the Regions in
order to perform one of actions: remove, edit x

F_UC2_20
INFRASTRUCTURE: As ADMINISTRATOR I want to be able to add new Region by entering
new Region’s name x

F_UC2_21 SERVICES: As APPLICATION DEVELOPER I want to have a service that deploys Lobby Server x x x x x x

F_UC2_22 SERVICES: As APPLICATION DEVELOPER I want to have a service that deploys Game Server x x x x x x

F_UC2_23
SERVICES: As APPLICATION DEVELOPER I want to have a service which returns Lobby
Server’s IP address based on my Player’s IP addresses x x x x x

F_UC2_24
SERVICES: As APPLICATION DEVELOPER I want to have a service which returns Game
Server’s IP address based on my Player’s IP addresses x x x x x

F_UC2_25

SERVICES: As APPLICATION DEVELOPER I want to have a service that returns a list of all
currently deployed Lobby Servers along with all the details: versions, requirements and
description x x x x

F_UC2_26

SERVICES: As APPLICATION DEVELOPER I want to have a service that returns a list of all
currently deployed Game Servers along with all the details: versions, requirements and
description x x x x

NF_UC2_01

INFRASTRUCTURE: As APPLICATION DEVELOPER I want all the versions of uploaded Lobby
Servers (Docker image files) to be stored securely and to be well protected against unauthorized
access x x x

NF_UC2_02

INFRASTRUCTURE: As APPLICATION DEVELOPER I want all the versions of uploaded Game
Servers (Docker image files) to be stored securely and to be well protected against unauthorized
access x x x

NF_UC2_03
INFRASTRUCTURE: As ADMINISTRATOR I want to the web-based administration the panel to
be well protected against unauthorized access x x

 ACCORDION – G.A. 871793

D2.3 Architecture design (I) Page 64 of 68

NF_UC2_04
INFRASTRUCTURE: As ADMINISTRATOR I want to the web-based administration the panel to
enable comfortable work on PC and Mac computers but also on mobile devices x x

NF_UC2_05

INFRASTRUCTURE: As ADMINISTRATOR I want to the web-based administration the panel to
enable comfortable work on newest versions of popular web browsers: Chrome, Safari, Firefox
including mobile versions x x

NF_UC2_06
INFRASTRUCTURE: As ADMINISTRATOR I want to the web-based administration the panel to
enable very fast upload times of the Docker image files x x

NF_UC2_07

SERVICES: As APPLICATION DEVELOPER I want to the service that deploys Lobby Server to
select optimal localization for the deployment of Lobby Server in terms of lowest average latency
between Game Server and all connected Players x x x x x

NF_UC2_08

SERVICES: As APPLICATION DEVELOPER I want to the service that deploys Game Server to
select optimal localization for the deployment of Game Server in terms of lowest average latency
between Game Server and all connected Players x x x x x

NF_UC2_09

SERVICES: As APPLICATION DEVELOPER I want to the service that deploys Game Server to
select optimal resource for the deployment of Game Server in terms of requirements attached to
the given Game Server version x x x x

NF_UC2_10
GAME: As an APPLICATION DEVELOPER I want to have as low as possible latency in
communication between Player’s device and Game Server (< 100 ms) x x x x x

F_UC3_11
DEVICE IDENTIFICATION, ACCORDEON AI: As APPLICATION DEVELOPER I want to
Receive updated information in real time so that I can keep the service updated x x x x

F_UC3_12
DEVICE IDENTIFICATION: As APPLICATION DEVELOPER I want to Get device data so that I
can develop a platform x x x x x x

F_UC3_16
CLIENT IDENTIFICATION: As USER I want to Broadcasted information to be useful and
personal related so that I stay better informed X X

F_UC3_17
CLIENT IDENTIFICATION: As USER I want to Data processed does not threaten my privacy so
that I feel I am in a legal protected environment X

F_UC3_19
CLIENT IDENTIFICATION: As ADMINISTRATOR I want to Develop services for authenticated
clients so that I offer added value to the use of the service X

F_UC3_20
CLIENT IDENTIFICATION: As ADMINISTRATOR I want to Be able to consult generated data,
both historical and real time so that I am informed of crowd characteristics X

F_UC3_21
CLIENT IDENTIFICATION: As ADMINISTRATOR I want to that I can define concrete areas and
trigger events so that security managing and employees' control is included X X

F_UC3_23
CLIENT IDENTIFICATION: As MARKETER I want to Collect as much information as possible so
that I can make deep analysis X X

 ACCORDION – G.A. 871793

D2.3 Architecture design (I) Page 65 of 68

F_UC3_24
CLIENT IDENTIFICATION, ACCORDEON AI: As APPLICATION DEVELOPER I want to Interact
autonomously with customers so that We can test and improve Ai, BI and Big Data tools X

F_UC3_26
CONTENT DECISION MAKING: As USER I want to Decision making rules to be fair and honest
so that content is not biased and becomes interesting and relevant X X X

F_UC3_27
CONTENT DECISION MAKING: As USER I want to Customer response influences content
decision making so that Service will be interactive X X X X

F_UC3_28
CONTENT DECISION MAKING: As USER I want to Having absolute clarity on how the
algorithm works so that Confidence in the process is high X

F_UC3_30
CONTENT DECISION MAKING: As USER I want to identify when content derived from a
decision making so that I maintain my sovereignty as a consumer X X

F_UC3_33
CONTENT DECISION MAKING: As ADMINISTRATOR I want to have a platform to manage the
decision making so that I can make decisions easily X

F_UC3_34
CONTENT DECISION MAKING: As ADMINISTRATOR I want to Broadcast and performance
they have their own statistics crowd related so that information analysis is complete X

F_UC3_35
CONTENT DECISION MAKING: As ADMINISTRATOR I want to Platform itself had processed
tested and defined about content decision making so that I can manage it easily X

F_UC3_37
CONTENT DECISION MAKING: As MARKETER I want to interact with a system of rules to
define behaviors so that I'll use the platform intensively for my profession X

F_UC3_42
CONTENT DECISION MAKING: As MARKETER I want to Accomplish all the safety and privacy
standards so that administrative offenses are avoided X X

F_UC3_43
CONTENT DECISION MAKING: As MARKETER I want to Import/export info in compatible
format so that it could be handled in other areas X

F_UC3_45

CONTENT DECISION MAKING, ACCORDEON AI: As APPLICATION DEVELOPER I want to
Use all processed data in machine learning systems so that new patterns and solutions are
found X

F_UC3_46
CONTENT DECISION MAKING, ACCORDEON AI: As APPLICATION DEVELOPER I want to
Check to have adequate content or requests to cloud so that Optimal content is available X X X X

F_UC3_48

CONTENT DECISION MAKING: As APPLICATION DEVELOPER I want to Define simple and
friendly tools to incorporate content so that content and rules can be added by inexperienced
staff X

F_UC3_49
ADAPTED CONTENT: As USER I want to not publicly reveals my habits so that so that no
compromising information is shown X

F_UC3_53
ADAPTED CONTENT: As ADMINISTRATOR I want to Content can be rated by customer so that
I receive direct feedback, in addition to the derivative of behavioral analysis X

 ACCORDION – G.A. 871793

D2.3 Architecture design (I) Page 66 of 68

F_UC3_54
ADAPTED CONTENT: As MARKETER I want to Coordinate content with other edges via cloud
so that advantage of global trends can be taken X X X X

F_UC3_55
ADAPTED CONTENT: As MARKETER I want to Receive statistics on the relationship between
adaptation and customer behavior so that report quality improves X

F_UC3_56

ADAPTED CONTENT, ACCORDEON AI: As APPLICATION DEVELOPER I want to Receive
inputs about the relationship between adaptation and customer behavior so that report quality
improves X

F_UC3_58

CONTENT STREAMING, ACCORDEON AI: As APPLICATION DEVELOPER I want to Keep
transparent for other actors interactions with the cloud so that they are allowed to focus on other
areas X X X X X

F_UC3_60

CONTENT STREAMING: As APPLICATION DEVELOPER I want to that Edges and Cloud are
able to interchange info without human actions and solving possible problems so that Service
integrity is kept X X X X

F_UC3_61
ADVANCED ANALYTICS: As USER I want to Interact by asking questions or making proposals
so that receiving data relates to my interest X X

F_UC3_65

ADVANCED ANALYTICS: As ADMINISTRATOR I want to Summarized and visual access to
result of advanced analytics so that as much information as possible is concentrated in the
simplest visual model X

F_UC3_66
ADVANCED ANALYTICS: As ADMINISTRATOR I want to Access in general terms to
autonomous or semi-autonomous data processing so that I can understand data processing X

F_UC3_71
AUGMENTED REALITY GAME: As USER I want to play anonymously so that data privacy is
protected X X

F_UC3_77
AUGMENTED REALITY GAME: As ADMINISTRATOR I want to Relate it to AR games from
other malls so that the potential between multiple locations can be shared X X X X X X

F_UC3_78
AUGMENTED REALITY GAME: As MARKETER I want to Use some api to add content so that I
can participate in design without modeling knowledge X

F_UC3_81
MOBILE APP: As USER I want to Increase data accuracy so that accordion decisions are
improved X

F_UC3_82
MOBILE APP: As USER I want to Facilitate personal data control so that personal data
management is made easy X

F_UC3_83
MOBILE APP: As USER I want to Exploit device capabilities so that a whole new personal
communication channel is created X X

F_UC3_84
MOBILE APP: As USER I want to Receive push notification updates so that there is a better
communication stream X X

 ACCORDION – G.A. 871793

D2.3 Architecture design (I) Page 67 of 68

F_UC3_85
MOBILE APP: As USER I want to Use a local chat geolocated or walkie-talkie like so that there
is local centered communication X

F_UC3_88
MOBILE APP: As ADMINISTRATOR I want to that the app provides data even far from mall so
that the whole system receives more data X X X X

F_UC3_89
MOBILE APP: As ADMINISTRATOR I want to Add personal devices as accordion edges
devices so that edge number increase based on my audience X X X X X X

F_UC3_91
MOBILE APP, ACCORDEON AI: As APPLICATION DEVELOPER I want to Find more ways for
interact so that AI improves X X

NF_UC3_02
INFRASTRUCTURE & NETWORK: As USER I want to have access throughout the mall so that
there is continuous interactivity, no areas limited X X X X

NF_UC3_03

INFRASTRUCTURE & NETWORK: As ADMINISTRATOR I want to Use existing networks and
infrastructures without the need for new network installation, except Accordion infrastructure so
that I can deploy fast with minimal added costs X X

NF_UC3_04

INFRASTRUCTURE & NETWORK: As ADMINISTRATOR I want to Accordion prevent falls
infrastructure and network falls so that accordion services work autonomously, even without
network X X X X

NF_UC3_05
INFRASTRUCTURE & NETWORK: As ADMINISTRATOR I want to Accordion prevent and
security breaches so that these can be a complement for other security tools X

NF_UC3_07

INFRASTRUCTURE & NETWORK, ACCORDEON AI: As APPLICATION DEVELOPER I want
to Collect updated info about infrastructure and network status so that I can identify and prevent
possible infrastructure derivate failures X X

NF_UC3_08
INFRASTRUCTURE & NETWORK: As APPLICATION DEVELOPER I want to work in agnostic
to infrastructure and network paradigm so that the platform runs in any network or infrastructure X X X

NF_UC3_09
TECHNOLOGY: As USER I want to Assure that accordion does not break my device so that Full
confidence to the system X

NF_UC3_10
TECHNOLOGY: As USER I want to Accordion do not involve expenses or updates so that I
keep my trust X

NF_UC3_12
TECHNOLOGY: As USER I'm familiar with accordion tech environment and I don’t need training
to use it so that Accordion use is instantly X X

NF_UC3_13
TECHNOLOGY: As ADMINISTRATOR I want to that everything is updated, open architecture,
free and open code so that there are only platform costs, without dependencies X X

NF_UC3_17
TECHNOLOGY: As APPLICATION DEVELOPER I want to Develop over a universal and
portable development platform so that team integration is eased X X X X

R_TS_01
APPLICATION DEVELOPER: Minimum changes in the application components when migrating
them to ACCORDION X X X

 ACCORDION – G.A. 871793

D2.3 Architecture design (I) Page 68 of 68

R_TS_02 APPLICATION PROVIDER: Automated application lifecycle management X X X

R_TS_03 APPLICATION PROVIDER: Definition of accepted QoE levels X X

R_TS_04 APPLICATION PROVIDER: Proactive fault tolerance X X X X X

R_TS_05 APPLICATION PROVIDER:Minimization of security and privacy vulnerabilities X X

R_TS_06
APPLICATION DEVELOPER: Simplified definition of application lifecycle flows and blueprint
generation X X

R_TS_07 APPLICATION DEVELOPER: Provision of automations for lifecycle management X X

R_TS_09
INFRASTRUCTURE OWNER: Minimum changes required to join ACCORDION federation of
edge infrastructures. X X X

R_TS_10 APPLICATION PROVIDER: Application components being provided as Docker Images X X

R_TS_11 APPLICATION PROVIDER: File storage functionality at the edge X X

R_TS_12 APPLICATION PROVIDER: Docker images starting at edge nodes on demand X X X X X X X X

R_TS_13
APPLICATION PROVIDER: Validation pipeline ensuring application and deployment process
correctness X X

R_TS_14 APPLICATION PROVIDER: Notification system in case of deployment failures or errors X X

R_TS_15 ADMINISTRATOR: A system showing particular deployment steps that failed X

R_TS_16 APPLICATION PROVIDER: Support for heterogeneous hardware at the edge X X

R_TS_17
APPLICATION PROVIDER: Ability to execute applications on geographically sparse edge
resources X

R_TS_18 APPLICATION PROVIDER: Ability to migrate applications between edge resources X X

R_TS_19 Definition of a common application model for accordion X

R_TS_20
INFRASTRUCTURE OWNER: Blueprints for VR/AR slice generation, and rapid slice creation
and activation X

R_TS_21
INFRASTRUCTURE OWNER: Efficiently spotting problems and accordingly plan operations to
fix the issues X X

