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Abstract 

The Law of the Sea as well as regional and national laws and agreements require exploited 
populations or stocks to be managed such that they can produce maximum sustainable yields. 
However, exploitation level and stock status are unknown for most stocks, because the data 
required for full stock assessments are missing. This study presents a new method (AMSY) that 
estimates relative population size when no catch data is available, using time series of catch-per-
unit-of-effort or other relative abundance indices as main input. AMSY predictions for relative stock 
size were not significantly different from the “true” values when compared with simulated data. 
Also, they were not significantly different from relative stock size estimated by data-rich models in 
88% of the comparisons within 140 real stocks. Application of AMSY to 38 data-poor stocks showed 
the suitability of the method and led to the first assessments for 23 species. Given the lack of catch 
data as input, AMSY estimates of exploitation come with wide margins of uncertainty which may not 
be suitable for management. However, AMSY seems to be well suited for estimating productivity as 
well as relative stock size and may therefore aid in the management of data-poor stocks.  

Introduction 

The Law of the Sea (UNCLOS 1982) commits its signatories to manage the exploitation of fish and 
invertebrates such that these populations are large enough to generate maximum sustainable yields 
(MSY). National and regional implementations of this MSY framework have made it clear that for 
risk-avoidance and economic benefits, biomass (B) of stocks must be above the MSY level (Bmsy) or 
proxies thereof (CFP 2013; HSP 2018) and fishing pressure (F) must be below the MSY level (Fmsy) 
(UNFSA 1995; MSA 2007). However, exploitation level and stock status are unknown for most 
exploited populations or stocks, because the data required for full stock assessments are missing. 
Methods that make best use of available data combined with general knowledge and Monte Carlo 
approaches have recently been developed on the basis of previous work in fish population dynamics 
(Graham 1933, 1935; Beverton and Holt 1957; Schaefer 1954, 1957; Ricker 1975), such as CMSY 
(Froese et al. 2017) for catch data and LBB (Froese et al. 2018, 2019) to estimate relative biomass 
levels from length frequency data. This study applies a similar approach to observed trends in the 
relative abundance of exploited species and thus complements CMSY and LBB.     

Fisheries-independent surveys carried out, year after year, with standardized gear and in a random 
or stratified fashion produce time series of indices of fish abundance also referred to as catch-per- 
unit-of-effort (CPUE), conventionally in units of catch in numbers or weight per duration of gear 
deployment or per swept area. CPUE obtained from such standardized research surveys is a good 
indicator of abundance (see, e.g. Silliman and Gutsell 1958 for experimental confirmation). 
Abundance estimates (relative or absolute) can also be obtained using hydroacoustic methods, as 
practiced e.g. for half a century for the stock of Peruvian anchoveta (Engraulis ringens; see Pauly et 
al. 1987). Time series of abundance are useful in that they allow trend analyses such as comparing 
current CPUE to the average of previous years (e.g. ICES 2017). However, it is often unclear whether 
such abundance trajectories refer to a stock fluctuating around unexploited stock size, or around a 
stock size close to collapse, or somewhere in between. If reliable catch data are available, this 
ambiguity is best addressed by combining CPUE trends with catch data, e.g. in surplus production 
models (Schaefer 1954; Fox 1970; Pella and Tomlinson 1969; Froese et al. 2017; Pedersen and Berg 
2017; Winker et al. 2018).  

If no reliable data are available for the total catch taken from a stock, as is often the case in 
migratory species, widely dispersed stocks, in by-catch species or in species with high discard rates, 
independent assessments of relative stock size can be used as priors for modelling, such as derived 



from expert opinion or preferably from other data sources such as length-frequency data (LBB, 
Froese et al. 2018, 2019). One must be conscious, however, that such use of independent 
assessments of relative stock size to present the observed CPUE in an MSY framework fully depends 
on the quality of the independent assessment and is not informed by the CPUE data. This study aims 
to overcome this limitation by performing a joint analysis of abundance trends, independent stock 
size information, and readily available information on the resilience or productivity of the respective 
species.  

Material and Methods 

Theoretical background 

For stocks that lack information on age, natural mortality or recruitment, but have reliable time 
series of catch and abundance, surplus production models are the method of choice for estimating 
stock status and exploitation. Based on Graham (1935), the Schaefer (1954) model estimates surplus 
production or equilibrium Yield (Y) from biomass (B), maximum intrinsic rate of population increase 
(r, sometimes called rmax) and carrying-capacity (k) (Equation 1). 

𝑌 = 𝐵 𝑟 (1 − )         Equation 1 

The difference form of the Schaefer model predicts the biomass in the next year (Bt+1) from the 
current biomass (Bt) plus surplus-production or yield (Yt), minus catch (Ct) (Equation 2).  
 

𝐵 = 𝐵 + 𝑌 − 𝐶 =   𝐵 + 𝐵  𝑟 1 −  − 𝐶      Equation 2 

Note that the expression (1 – Bt/k) describes the linear decline with relative biomass of the 
applicable fraction of r, resulting in a factor of 1 when Bt = 0 and zero when Bt = k.   

In surveys that deploy a standard gear in a random or stratified fashion across an area, CPUE is 
usually assumed to be directly proportional to the abundance or biomass of the target species in 
that area. The relation between CPUE and biomass is then determined by the catchability-coefficient 
q (Arreguin-Sanchez 1996; Maunder and Punt 2004), which is here assumed to be constant over the 
considered time period (but see below for exceptions) (Equation 3), such that:  

𝐶𝑃𝑈𝐸 =  𝐵  𝑞          Equation 3 

Multiplying both sides of Equation 2 with q and replacing Bt q with CPUEt gives Equation 4. 

𝐶𝑃𝑈𝐸 = 𝐶𝑃𝑈𝐸 + 𝐶𝑃𝑈𝐸   𝑟 1 −  − 𝐶  𝑞     Equation 4 

Solving Equation 3 for Bt and inserting in Equation 4 gives Equation 5 (Froese et al. 2017). 
 

𝐶𝑃𝑈𝐸 = 𝐶𝑃𝑈𝐸 + 𝐶𝑃𝑈𝐸   𝑟 1 −  
 

− 𝐶  𝑞     Equation 5 

For the purpose of estimating relative exploitation and stock status it is not necessary to know the 
absolute values of Ct, Bt, k and q. One can instead treat Ct q as relative catch Cq t and k q as relative 
carrying capacity kq or the CPUE one would obtain if there were no commercial fishing (Equation 6). 

𝐶𝑃𝑈𝐸 = 𝐶𝑃𝑈𝐸 + 𝐶𝑃𝑈𝐸   𝑟 1 −  − 𝐶       Equation 6 

Equation 6 can be rearranged to predict relative catch Cq, up to the second last year in the time 
series: 



𝐶  = 𝐶𝑃𝑈𝐸 + 𝐶𝑃𝑈𝐸   𝑟 1 −  − 𝐶𝑃𝑈𝐸      Equation 7 

In the Schaefer model, the maximum sustainable catch (MSY) is obtained at half of k and half of r 
with MSY = r/2 * k/2. A similar expression is obtained in Equation 8. 

𝑀𝑆𝑌 =  =
 

          Equation 8 

where MSYq is the maximum sustainable value of relative catch Cq and therefore the ratio Cq/MSYq is 
the same as the ratio C/MSY. This logic, which is very similar to the matter covered in Ricker (1975, 
p. 316), also means that the relative catch predicted from Equation 7 can be presented in an MSY 
framework.  

Similarly, since kq represents the expected value of CPUE in the absence of fishing, the ratio CPUEt/kq 
is the same as the ratio Bt/k and therefore CPUE can be presented as relative biomass within an MSY 
framework.  

Finally, in the Schaefer model, the fishing mortality F is equal to the ratio of catch to biomass Ct/Bt, 
which is identical to the ratio Cq t/CPUEt. Hence, the fishing mortality that corresponds to MSY is Fmsy 
= 0.5 r and therefore relative exploitation can be presented within an MSY framework (Equation 9). 

=  

 

/
=  

  

 
         Equation 9 

 

The Abundance-MSY (AMSY) approach 

A time series of CPUE and prior ranges for r and relative stock size Bt/k in a given year are required 
input data for AMSY. A prior range for kq is derived from Bt/k and CPUEt as described below. With 
this information, the time series of CPUE can be placed within a preliminary MSY framework where 
half of the end points of the kq range are used as ranges for Bmsy_q (Figure 1 (a)).  A multivariate log-
normal random sample or r-kq pairs is then created based on the correlation matrix shown in Table 
1, where the prior log ranges of r and kq are assumed to represent four standard deviations and 
variance is standard deviation squared. The r-kq covariance in log space is obtained from the 
empirical correlation between log r and log kq obtained as median = -0.607 across 140 stocks (Froese 
et al. 2018) analyzed with a Bayesian Schaefer model (Froese et al. 2017), and from the prior 
standard deviations (SD) of log r and log kq, such that covariance log r-kq = -0.607 * SD log(r) * SD 
log(kq) (see cloud of grey dots in Figure 1).  

Table 1. Covariance matrix for multivariate normal distribution of r and kq in log-space 

variance log r  covariance log r-kq 
covariance log r-kq variance log kq 

 

As shown in the simulations in Appendix 1 and the upper panel of Figure 1, this procedure will result 
in a predicted central r-kq pair in the middle of the prior r-kq log space, with approximated 
confidence limits as wide as that space. In order to better accommodate “true” r-kq pairs that are off 
the center and to reduce the amount of uncertainty, AMSY applies filters to exclude r-kq pairs that 
would give unreasonable results when combined with the priors and CPUE data. For example, the 
relative catch predicted from Equation 7 may not become negative or exceed CPUE anywhere in the 
time series, because it is unlikely that a fishery catches all fish in a given year. Only r-kq pairs that 



fulfill these and additional conditions (see below) are considered ‘viable’ and are retained and used 
by AMSY to determine the most likely r-kq pair, with approximate confidence limits (see examples in 
Appendix 2 and the lower panel of Figure 1). 

 

 

 
Figure 1. AMSY analysis of simulated data for a stock with very low productivity and low biomass. The grey dots are a 
random sample of 50,000 points drawn from a multivariate distribution of r and kq in log space. The dotted rectangle 
indicates the prior ranges of r and kq and contains 95% of the random points. The black dots are ‘viable’ r-kq pairs with the 
red cross indicating the most probable value with approximate 95% confidence limits. The blue circle indicates the “true” r-
kq pair used in the simulations. In the upper panel, no logical filters are applied and the most probable r-kq pair falls in the 



center with confidence limits about equal to the prior ranges. In the lower panel, logical filters are applied to the selection 
of ‘viable’ r-kq pairs, with a central value much closer to the true one and much narrower confidence limits which slightly 
exceed the prior range.   

 

Priors for r, kq and F/Fmsy 

Priors for r were derived from FishBase (www.fishbase.org, Froese and Pauly 2019) for fish and from 
SeaLifeBase (www.sealifebase.org, Palomares and Pauly 2019) for invertebrates, from the section on 
the species summary page entitled “Estimates of some properties based on models”, either as 
lognormal distributions based on previous assessments or as qualitative indications of resilience 
from very low to high (Table 2). Resilience was then translated into uniform prior ranges as 
described in Froese et al. (2017) and reproduced here for easy reference.  

Table 2. Translation of resilience categories in FishBase or SeaLifeBase into ranges of r. 

Resilience Lower limit Upper limit 
Very low 0.015 0.1 
Low 0.05 0.5 
Medium 0.2 0.8 
High 0.6 1.5 

 

A prior for relative biomass B/k can be derived from experts who are asked how stock size in a year 
of their choice compared to past stock size when there was little fishing of the species. For example, 
if the stock was only lightly fished in the beginning of the time series, it is reasonable to assume that 
stock size was more than half of the unexploited level in those years. Such qualitative assessment is 
then translated into B/k ranges as indicated in Table 3. Alternatively, and preferably, a quantitative 
assessment of B/k or B/Bmsy is derived from a previous assessment or from independent data such as 
length frequencies analyzed with methods such as LBB (Froese et al. 2018, 2019, see examples in 
Appendix 4). The year for which the B/k prior is provided depends on the available data, i.e. a year 
with a good length-frequency sample or unanimous expert opinion. For example, if fishing was very 
light at the beginning of the time series, experts are likely to agree that stock size was close to 
unexploited, giving a B/k prior of e.g. 0.75 – 1.0. 

Table 3. Translation of qualitative stock size information into prior ranges of B/k. 

B/k  Lower limit  Upper limit 
Very small 0.01 0.2 
Small 0.15 0.4 
About half 0.35 0.65 
More than half 0.5 0.85 
Close to unexploited  0.75 1.0 

 

A prior range for kq is derived from B/k as kq = CPUEt/(Bt/k). If the lower bound of kq resulting from 
this exercise is less than maximum CPUE in the time series, max(CPUE) is used as lower kq bound 
because abundance of an exploited species is unlikely to exceed carrying capacity. Also, in order to 
avoid unrealistically narrow or wide ranges, the upper bound of kq is set to at least 30% larger than 
the lower bound but not further away than 3 times the lower bound. In other words, the B/k prior 
together with population dynamics and scaling considerations is used to put the observed CPUE into 



a preliminary MSY framework. This placement is then refined by the Monte Carlo filtering described 
below. 

AMSY Monte Carlo filtering 

Based on the prior knowledge of B/k, a time series of CPUE can be presented in a preliminary MSY-
framework, with the CPUE range that is capable of producing MSYq given by CPUEmsy =  CPUEt / 
(Bt/k), using the lower and upper limits of B/k (see Fig. 1a). Pairs of r-kq are then randomly selected 
from their respective prior ranges and the time series of relative catch Cq corresponding to the time 
series of CPUE is calculated from Equation 7 (see Fig. 1b-e).  

To account for reduced recruitment and thus reduced productivity or surplus production at very 
small stock sizes, Equation 7 is combined with a hockey-stick recruitment function (Barrowman and 
Myers 2000; Froese et al. 2016, 2017). Thus, if relative stock size at the end of the time series is 
smaller than half of Bmsy or 0.25 CPUE/kq, a linear reduction of surplus production with declining 
biomass is assumed (similar to the MSY Btrigger rule in ICES 2016) (Equation 10). 

𝐶  = 𝐶𝑃𝑈𝐸 + 𝐶𝑃𝑈𝐸   𝑟 1 −   4 − 𝐶𝑃𝑈𝐸       |  < 0.25        Equation 10 

AMSY applies a state-space model formulation with an annual multiplicative lognormal random 
process error exp(𝜂 ) and observation error exp(𝜀 )  terms with  𝜂 ~𝑁 0, 𝜎  and  𝜀 ~𝑁(0, 𝜎 ), 
respectively. For CPUE observation error, the default 𝜎   was set to 0.3 and for surplus production 
process error 𝜎  was set to 0.05, 0.07, 0.1, or 0.15, depending on the productivity of the stock from 
very low to high. These error terms were not shown in the above equations for the sake of 
simplicity. The chosen values are preliminary but worked well for the purpose of this proof-of-
concept study.  

For cases where CPUE stems not from surveys but from commercial fisheries and where efficiency of 
commercial fishing may increase with time, an effort-creep correction can be applied by AMSY based 
on the average percentage of increase in catching efficiency, as provided by the user (Equation 11). 

𝐶𝑃𝑈𝐸  = 𝐶𝑃𝑈𝐸  (1 − 𝑝)        Equation 11 

where CPUEcor is the corrected CPUE, t is a year in the time series, p is the percentage of average 
increase of efficiency as a decimal (e.g. 0.02 for 2%, Palomares and Pauly 2019) and t0 is the first year 
in the time series.  

Filters used to find r-k pairs compatible with the provided CPUE and priors 

Note: Numerical settings or multipliers for the filters are derived from preliminary test runs against 
the simulated data. They were accepted as sufficient for the purpose of this presentation and proof-
of-concept of AMSY and are expected to be further refined, also against real data, in subsequent 
research.    

(1) Exclusion of r-kq pairs if predicted relative catch is negative. By definition, catch is an 
extraction of fish from the population and may become zero but not negative. Thus, 
combinations of productivity and carrying capacity that, in combination with the CPUE time 
series, predict negative relative catches in any given year can be excluded as unrealistic. 
However, periods of close to zero relative catches are realistic scenarios especially during 
recovery phases of species with low or very low resilience, and during such periods, negative 
predictions of relative catch may result from the uncertainty and corresponding error terms 



used in the modelling. Therefore, during such periods a negative relative catch of 2-6% of kq 
(for low or very low productivity) is allowed by AMSY.  

(2) Exclusion of r-kq pairs if predicted catch in a given year exceeds biomass. It is unlikely that a 
fishery catches all fish of a stock in a given year. Thus, r-kq pairs that in combination with the 
CPUE time series predict relative catches above the available cpue appear unrealistic. 
However, looking at Equation 7, the term r(1-CPUE/kq) determines the amount of surplus 
production, and it may exceed 1.0 if e.g. r > 1.2 and CPUE/kq < 0.2, i.e., predicted annual 
catches may exceed biomass in species with high productivity and depleted stock size. AMSY 
accounts for this dependence on productivity by using empirical multipliers for the CPUE 
value not to be exceeded by relative catch, from 1.4 for high to 0.25 for very low 
productivity. This filter is skipped if at any point in the time series CPUE approaches zero 
(CPUE < 0.1 max(CPUE)), because under those circumstances catch may exceed mean 
biomass.  

(3) Exclusion of r-kq pairs if predicted catch strongly exceeds MSY. While it is possible for 
fisheries to catch more than MSY for a few years, the degree of such overfishing is inversely 
correlated with the MSY/k = r/4 ratio: in species with very low productivity, MSY is only a 
small fraction of carrying capacity and can be easily exceeded several fold. In contrast, in 
species with high productivity, MSY is a quarter or more of carrying capacity and is unlikely 
to be overshot by more than MSY. Accordingly, a multiplier for maximum predicted relative 
catch was set from 10 times MSYq for very low productivity to 2 times MSYq for high 
productivity.  

(4) Exclusion of r-kq pairs if F/Fmsy is negative or unrealistically high. If the time series of F/Fmsy 
ratios predicted by AMSY contains highly unrealistic values, such as less than -25 or more 
than 12, then that combination or r-kq with its specific error patterns is excluded from the 
analysis. Note that while negative F/Fmsy ratios require negative catches and thus are not 
possible in the real world, periods of very low or zero catches are realistic scenarios 
especially during recovery phases of species with low or very low resilience, and during such 
periods, predictions of negative F/Fmsy ratios may result from the uncertainty and 
corresponding error terms used in the modelling.  

(5) Exclusion of r-kq pairs if modeled CPUE/kq is outside the prior B/k range. If the relative 
CPUE (CPUE/kq) in the year specified for prior B/k falls outside of that prior range, then the r-
kq pair is discarded. 

Note that all r-kq pairs are tested multiple times with different random error settings for surplus 
production and CPUE and are only excluded from further processing if all of these runs fail to 
pass the filters. This processing leads to a modelled CPUE time series slightly different from the 
observed CPUE, as peaks, troughs and slopes that would lead to unrealistic catches or unrealistic 
productivity are smoothed. 

 

Finding the most likely values for r, kq , F/Fmsy and B/Bmsy   

The r-kq pairs that passed the filters described above were considered as viable. Median values of 
viable r and kq were considered to be the most likely estimates, and 2.5th and 97.5th percentiles were 
taken as approximate confidence limits, respectively. The time series of relative catch predicted by 
the viable r-kq pairs in combination with cpue were stored and a proxy for median Ft was obtained by 
dividing the median predicted catch by the median of cpue. An estimate of recent F/Fmsy was 
obtained by dividing Ft by the median estimate of r/2, with t set to the second last year.  
Approximate 95% confidence limits were obtained similarly from the 2.5th and 97.5th percentiles of 



predicted catch. The time series of modelled CPUEt were stored and a proxy for recent B/Bmsy was 
derived by dividing median CPUEt by median kq/2 and setting t to the last year. Approximate 95% 
confidence limits were obtained similarly from the 2.5th and 97.5th percentiles of modelled CPUE.   

 

Simulated data 

To assess the performance of AMSY, simulated catch and CPUE data were created so that the “true” 
simulated parameter values and stock status estimates were known and could be used for 
comparisons. For convenience, kq was set to 1000 and r was set at 0.06, 0.25, 0.5 and 1.0 to 
represent species with Very Low (VL), Low (L), Medium (M) and High (H) resilience, respectively (c.f. 
Table 2). For time series of 50 years, biomass patterns of continuously high (HH), continuously low 
(LL), high to low (HL), low to high (LH), low-high-low (LHL) and high-low-high (HLH) biomass were 
created. From an “Above half” (0.5 – 0.85 k) or “Small” (0.15 – 0.4 k) start biomass in the first year, 
the desired pattern was produced by inserting high or low catches into Equation 6 and calculating 
the biomass in subsequent years. These first year ranges of relative biomass were used as prior for 
AMSY to reduce the influence of the prior on the estimated relative biomass 50 years later. If 
relative biomass fell below 0.25 kq in any given year, surplus production was reduced as described in 
Equation 10 to account for potentially reduced recruitment. A catchability-coefficient q = 0.001 was 
assumed to turn biomass, catch and k into the desired values of CPUE, Cq and kq, respectively. The 
simulated data and the spreadsheet used to produce them are part of the Supplementary Material.       

Real data 

For the evaluation of AMSY estimates against real data, 140 stocks from the Northeast Atlantic, the 
Mediterranean and Black Seas were used, as a subset of the 397 stocks used by Froese et al. (2018) 
(see Appendix 3). Criteria for stock selection were uninterrupted time series of catch and abundance 
(CPUE, indices, or predicted biomass) for at least 15 years. These data were then analyzed with a 
Bayesian implementation of the Schaefer model (BSM) which is part of the CMSY package (Froese et 
al. 2017). AMSY and BSM used the same CPUE time series and the same priors for productivity and 
relative stock size in the first year of the time series, the only difference being that BSM in addition 
had time series of catch as input. The BSM results for the 140 stocks were also used to derive the 
median correlation between r and kq in log space, as required for construction of a correlation matrix 
(Table 1). The data and the results of the BSM analysis are part of the Supplementary Material. 

First assessments of data-limited stocks 

To test the usefulness of AMSY for its intended purpose, 38 data-limited stocks were analyzed first 
with LBB (Froese et al. 2018, 2019) to obtain objective prior information on relative stock size from 
length-frequencies, and then with AMSY to derive estimates of r, Fmsy, F/Fmsy and B/Bmsy from CPUE 
data. 

All appendices, data, spreadsheets and R-code used in this study are available as Supplementary 
Material from http://oceanrep.geomar.de/47135/. The version of LBB (33a) used in this study is 
available from http://oceanrep.geomar.de/43182/. 

Results 

Verification against simulated data 

AMSY predictions of population dynamic parameters (r, kq, MSYq), fishing pressure (F/Fmsy) and stock 
status (B/Bmsy) at the end of the time series were compared with the “true” values used to produce 



the simulated data. In order to better understand the influence of the priors and of the Monte Carlo 
filtering on the results, the simulated data were analyzed twice by AMSY, first without and then with 
the Monte Carlo filters described above.  

Without the filters, all r-kq pairs of the multivariate distribution are ‘viable’, the central values of 
predicted r and kq are in the center of the prior log space, and the respective approximate 95% 
confidence limits are wide and equivalent to the respective prior ranges. By design, the “true” values 
of r and kq were within the prior ranges and thus fall within the approximate 95% confidence limits 
of the predictions. Similarly, all “true” values of MSYq, F/Fmsy and B/Bmsy fall within the approximate 
95% confidence limits of the respective estimates.  

With Monte Carlo filtering, numerous r-kq pairs are excluded because of unrealistic predictions, and 
consequently the estimated central values of r and kq may move away from the center of the prior 
log space and their approximate 95% confidence limits get narrower and may exceed the original 
prior bounds (see Figure 1 and more examples in Appendix 2). With one exception (estimate of kq in 
LHL_VL, see Appendix 2), “true” values of all parameters still fall within the narrower approximate 
95% confidence limits. Table 4 shows a comparison of the estimated central values relative to true 
values and of relative lower confidence limits for AMSY runs without and with Monte Carlo filtering.   
All medians with filters are closer to 1 for the estimate/true ratios and narrower for the lower 
confidence limits of the estimates (except for B/Bmsy, where the median central value and lower 
confidence limit are about same, with and without filters).  

Table 4. Comparison of estimated central values relative to true values and of relative lower confidence limits for AMSY runs 
without and with Monte Carlo filtering, where est=estimated value, true=true value used in the simulation, and lcl=lower 
approximate 95% confidence limit of the estimate. 

Comparison Median 
without filters 

Median 
with filters 

r: est/true 0.72 1.04 
r: (est–lcl)/est 0.55 0.36 
kq: est /true 1.08 1.07 
kq: (est—lcl)/est 0.24 0.18 
F/Fmsy: est/true 1.45 1.19 
F/Fmsy: (est—lcl)/est 1.42 0.89 
B/Bmsy: est/true 0.94 0.93 
B/Bmsy: (est—lcl)/est 0.44 0.44 

 

Evaluation against real data 

AMSY predictions for 140 real stocks were compared with those of a Bayesian implementation of a 
regular Schaefer model (BSM). AMSY estimates of r were similar to those of BSM (Figure 1), with 128 
(91.4%) BSM estimates included in the approximate 95% confidence of AMSY. AMSY predictions of 
relative biomass (B/Bmsy) in the last year included the BSM estimate in their approximate 95% 
confidence limits in 122 stocks (87.1%). AMSY predictions of exploitation (F/Fmsy) included the BSM 
estimate in their approximate 95% confidence limits in 123 stocks (87.9%). Note, however, that 
AMSY confidence limits for F/Fmsy estimates were often wide. The median ratios of AMSY versus BSM 
predictions for r (0.92), final F/Fmsy (1.16) and final B/Bmsy (0.99) were used to summarize deviations 
and detect potential biases. Thus, AMSY predictions were, on average, 8% lower for r, 16% higher for 
F/Fmsy and 1% lower for B/Bmsy. Note that these are not entirely fair comparisons, because 
catchability q is not estimated by AMSY and this may cause part of the observed deviations. A 



spreadsheet [EU_ StocksResults_2.xls] with the detailed results for every stock is part of the 
Supplementary Material. 
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Figure 2. Comparison of (A) maximum productivity r, (B) exploitation in the last-but-one year F/Fmsy, and (C) relative stock 
size in the last year (B/Bmsy), between estimates of BSM (x-axis) based on catch and CPUE and AMSY (y-axis) based on CPUE 
only, for 140 real stocks. The dashed lines indicates identical predictions and the dotted lines indicate deviations of +/- 50%.  

 



Application to data-limited stocks 

Application of AMSY to data-limited stocks without reliable catch data produced the first MSY-level 
assessments for 38 stocks of mostly by-catch species (Table 5). This includes 23 species for which 
these are the first assessments globally (marked bold in Table 5). The details of these assessments 
are presented in Appendix 3 in Supplementary Material. Note there the overall very good agreement 
of relative biomass trends between LBB (Froese et al. 2018, 2019) based on length frequencies, and 
AMSY based on CPUE. There is also general good agreement between current and retrospective 
analyses, i.e., AMSY runs where data from the last 1, 2 or 3 years were omitted from the analyses. In 
two North Sea stocks (syc.27.3a47d, rjc.27.3a47d) the retrospective analysis indicated a substantial 
deviation of predicted relative biomass estimates (B/Bmsy) if the respective last years were included, 
because these years suggested a strong increase in biomass. These increases were accepted for the 
purpose of this study but may turn out to be fluctuations once data for the subsequent years 
become available.    

Predictions of exploitation (F/Fmsy) in the second-to-last year indicate that 24 stocks (63%) were 
subject to overfishing, but note the wide margins of uncertainty. Predictions of relative biomass 
(B/Bmsy) in the last year indicate that only 9 stocks (24%) were above the biomass level required by 
UNCLOS (1982) and 21 stocks (55%) were smaller than half of that level, suggesting that successful 
reproduction may be endangered. Margins of uncertainty for relative biomass are mostly less than 
50% with regard to the relevant lower confidence limit and thus similar to assessments with more 
input data.  

Table 5. Exploitation and stock status relative to MSY-levels (F/Fmsy, B/Bmsy) for 38 stocks comprising 35 species. For 23 of 
these species (marked bold) this is the first stock assessment globally. Results are arranged alphabetically by stock identifier 
within regions. 

Region Stock Species Name Years F/Fmsy B/Bmsy 
Adriatic 
Sea 

Ille_coi_AD Illex coindettii Shortfin squid 2001-
2017 

0.67  
0.07 - 1.71 

1.14  
0.64 - 2.05 

 Micr_pou_AD Micromesistius 
poutassou 

Blue whiting 1994-
2017 

1.53 
0.51 - 2.84 

0.73 
0.40 - 1.32 

 Octo_vul_AD Octopus vulgaris Common 
octopus 

1995-
2017 

0.94  
0.29 - 1.74 

1.01 
0.56 - 1.81 

Aegean 
Sea 

ANN_GSA22 
DIPL.ANN 

Diplodus annularis Annular 
seabream 

1994-
2016 

0.89  
0.11 - 2.38 

0.23 
0.13 - 0.42 

 BOC_GSA22 
CAPO.APE 

Capros aper Boarfish 1994- 
2016 

1.30 
0.21 - 2.90 

0.61 
0.34 - 1.09 

 BRF_GSA22 
HELI.DAC 

Helicolenus 
dactylopterus 

Blackbelly 
rosefish 

1994-
2016 

0.76 
0.07 - 1.88 

1.14 
0.63 - 2.15 

 CIL_GSA22 
CITHMAC_AEGEAN 

Citharus linguatula Spotted 
flounder 

1994-
2016 

1.55 
0.31 - 3.36 

0.45 
0.25 - 0.80 

 HYS_GSA22 
HYMEITA_AEGEAN 

Hymenocephalus 
italicus 

Glasshead 
grenadier 

1994-
2016 

1.07 
0.11 - 3.05 

0.26 
0.15 - 0.47 

 SNQ_GSA22 
SCORNOT_AEGEAN 

Scorpaena notata Small red 
scorpionfish 

1994-
2016 

1.68 
0.26 - 4.03 

0.23 
0.13 - 0.41 

Cyprus MERL_MER_CY Merluccius merluccius European hake 2005-
2017 

0.79 
0.07 - 2.35 

0.22 
0.15 - 0.33 

 SEPIOFF_CY 
 

Sepia officinalis Common 
cuttlefish 

2005-
2017 

0.58 
0.04 - 1.57 

1.26 
0.71 - 2.27 

North Sea Agonus cataphractus Agonus cataphractus Hooknose 1983-
2017 

1.90 
0.59 - 3.68 

0.49 
0.27 - 0.86 



 Amblyraja radiata Amblyraja radiata Starry ray 1983-
2017 

1.04 
-0.84 - 3.99 

0.21 
0.12 - 0.39 

 Buglossidium luteum Buglossidium luteum Solenette 1983- 
2017 

2.16 
0.69 - 4.09 

0.42 
0.23 - 0.76 

 Callionymus lyra Callionymus lyra Dragonet 1983- 
2017 

1.12 
0.12 - 3.15 

0.31 
0.17 - 0.56 

 Callionymus 
maculatus 

Callionymus 
maculatus 

Spotted 
dragonet 

1983- 
2017 

1.23 
0.19 - 2.71 

0.79 
0.44 - 1.43 

 Chelidonichthys 
cuculus 

Chelidonichthys 
cuculus 

Red gurnard 1984-
2017 

0.86 
0.13 - 1.88 

1.09 
0.61 - 1.94 

 Echiichthys vipera Echiichthys vipera Lesser weever 1983- 
2017 

1.46 
0.27 - 3.03 

0.60 
0.33 - 1.06 

 Enchelyopus cimbrius Enchelyopus cimbrius Fourbeard 
rockling 

1983- 
2017 

1.91 
0.45 - 4.29 

0.25 
0.14 - 0.46 

 Lumpenus 
lampretaeformis 

Lumpenus 
lampretaeformis 

Snake blenny 1983- 
2017 

1.19 
0.14 - 2.88 

0.45 
0.25 - 0.82 

 Lycodes vahlii Lycodes vahlii Vahl’s eelpout 1983- 
2017 

2.36 
0.81 - 4.64 

0.23 
0.13 - 0.43 

 Myoxocephalus 
scorpius 

Myoxocephalus 
scorpius 

Shorthorn 
sculpin 

1983- 
2017 

1.93 
0.61 - 3.63 

0.52 
0.29 - 0.91 

 Myxine glutinosa Myxine glutinosa Atlantic hagfish 1991-
2017 

1.16 
-0.32 - 3.50 

0.70 
0.38 - 1.25 

 rjc.27.3a47d Raja clavata Thornback ray 1983- 
2017 

0.68 
-0.20 - 2.36 

1.25 
0.70 - 2.25 

 rjm.27.3a47d Raja montagui Spotted ray 1983-
2017 

1.26 
-0.05 - 3.10 

0.92 
0.51 - 1.62 

 syc.27.3a47d Scyliorhinus canicula Lesser spotted 
dogfish 

1983-
2017 

0.83 
-0.09 - 2.41 

1.11 
0.60 - 2.01 

 Trisopterus luscus Trisopterus luscus Pouting 1983-
2017 

1.80 
0.46 - 3.83 

0.32 
0.18 - 0.58 

Baltic Sea Ench_cim22-24 Enchelyopus cimbrius Fourbeard 
rockling 

1991-
2018 

2.43 
1.01 - 4.38 

0.29 
0.16 - 0.52 

 Eut_gurn_Balt Eutrigla gurnardus Grey gurnard 2002-
2018 

0.88 
0.10 - 2.25 

0.67 
0.37 - 1.22 

 Myox_scor_22-24 Myoxocephalus 
scorpius 

Shorthorn 
sculpin 

2000-
2017 

2.64 
1.10 - 4.87 

0.27 
0.15 - 0.48 

 Zoar_vivi_Balt Zoarces viviparus Eelpout 1999-
2018 

5.80 
2.89 - 10.6 

0.03 
0.01 - 0.05 

Northwest 
Atlantic 

Little skate Eastern 
Canada 

Leucoraja erinacea Little skate 1970-
2018 

1.05 
-0.62 - 4.05 

0.35 
0.19 - 0.62 

 Smooth skate 
Laurentian Scotian 

Malacoraja senta Smooth skate 1970-
2018 

1.51 
-0.32 - 4.20 

0.37 
0.21 - 0.67 

South 
Africa 

HELDAC Helicolenus 
dactylopterus 

Jacopever 1987- 
2017 

0.84 
0.07 - 2.53 

0.15 
0.08 - 0.27 

 PNSK  Cymatoceps nasutus Black 
musselcracker 

1987-
2017 

0.73 
-0.25 - 2.62 

1.08 
0.60 - 1.95 

 STKB Argyrosomus thorpei Squaretail kob 1987-
2017 

1.00 
0.12 - 2.70 

0.26 
0.15 - 0.47 

 TBSK Raja straeleni Biscuit skate 1991- 
2017 

1.60 
-0.41 - 4.78 

0.31 
0.17 - 0.56 

 WSTM Rhabdosargus 
globiceps 

White 
stumpnose 

1987- 
2016 

0.89 
0.11 - 2.03 

1.03 
0.57 - 1.85 

  



Discussion 

Selection of Schaefer versus Fox or Pella-Tomlinson 

Several types of surplus production models are used in fisheries, with Schaefer (1954), Fox (1970) 
and Pella-Tomlinson (1969) being the most common ones. Of these three, only the Schaefer model is 
derived from ecological principles, implementing the sigmoid population growth that has been 
observed in many animal populations (Hjort et al. 1933; Graham 1939; Hairston et al. 1970; Smith 
1994; Yoshinaga et al. 2001). The Fox model is a logarithmic transformation of the Schaefer model, 
resulting in MSY being obtained at 37% of carrying capacity rather than at 50% as in the Schaefer 
model. This results in the Fox model predicting higher equilibrium yields for a given biomass at small 
stock sizes, implying that the Schaefer model is more precautionary in the proposed biomass 
necessary for producing MSY and in the sustainable catch that a given biomass can support (Cadima 
2003; Fig A1 in Appendix 1 of Froese et al. 2011; Tsikliras and Froese 2019). The Pella-Tomlinson 
model is a mathematical generalization introducing a shape parameter p for the sigmoid curve, 
corresponding to the Schaefer model if p = 1 and to the Fox model if p approaches zero. For AMSY, 
the Schaefer (1954) model was chosen over the Fox model to err on the precautionary side and over 
the Pella-Tomlinson (1969) model to avoid estimation of a third parameter in a data-poor situation.   

Performance of AMSY 

The key point of this study is to explore whether a model that only has a time series of CPUE as input 
can produce similar results as a model that, in addition, has a time series of catch data as input, 
everything else being equal. AMSY uses CPUE data combined with independent prior knowledge 
about the resilience or productivity of the species and prior perceptions or estimates of stock status 
for the year with the best available estimate. It applies surplus production modelling with randomly 
selected parameters for r and kq to predict catches that are compatible with the CPUE time series 
and the priors. AMSY aims to improve the precision and plausibility of stock status estimates by 
applying a set of filters to exclude r-kq pairs that result in, e.g., negative catches or unrealistic 
exploitation values.  

To better understand the respective influence of the priors and the filters on the results, AMSY was 
run against simulated data with and without filters. If no filters were used, the priors determined the 
central r-kq values with 95% confidence limits about equal to the prior ranges and with already 
reasonable fits of predicted versus “true” time series of relative catch and stock size, albeit with 
wide margins of uncertainty (Figure 1 a-c). The addition of the filters moved the estimates of r and kq 
closer to the “true” values and reduced the confidence limits for all estimates except B/Bmsy, which 
remained about unchanged (Table 4).  

In other words, if the relation between abundance and catch follows the logic of a surplus 
production model and if the priors for productivity and relative stock size include the “true” values, 
then AMSY predictions of r, F/Fmsy and B/Bmsy are not significantly different from the “true” values in 
simulated data covering a wide range of productivity and relative stock size. The question then is 
how well these assumptions are met in real world data.  

For this purpose, 140 European stocks, from the Barents Sea to the Black Sea, including 
invertebrates from shrimp to octopus and fish from anchovy to halibut (see EU_Stocks_ID_8.csv in 
Supplement Material), were analyzed with a Bayesian implementation of a full Schaefer model 
(BSM) with time series of catch and CPUE as input, and with AMSY with only CPUE as input. Both 
models used the same priors for productivity and for relative stock size at the beginning of the time 
series. 



Results from both models showed good agreement for r, F/Fmsy and B/Bmsy, with more than 87% of 
the BSM central estimates included in the approximate 95% confidence limits of the AMSY 
estimates, thus being not significantly. AMSY predictions for relative exploitation (F/Fmsy) in the 
penultimate year had, however, wide margins of uncertainty and thus deviations in predictions 
could be substantial. Note also that BSM estimates are not free of error and some of the largest 
differences were found where the filters applied by AMSY prevented it from predicting extreme 
values of exploitation (compare Figure 2). 

Application of AMSY to selected data poor stocks from the North Atlantic, the Mediterranean and 
South Africa, provided the first MSY-level assessments of exploitation and stock status for 38 stocks 
and 35 species (Table 4). The stocks were chosen such that they had no previous MSY-level 
assessments and no reliable or no catch data, but length frequencies as well as CPUE data available. 
The species range from by-catch, such as eel-pout (Zoarces viviparus) in the Baltic, to highly 
commercial species such as common octopus (Octopus vulgaris) in the Adriatic Sea. Note that for all 
these stocks, objective prior information on relative biomass depletion was provided from the 
analysis of length-frequency data (LBB, Froese et al. 2018, 2019). The wide margins of uncertainty 
for predictions of relative exploitation (F/Fmsy, Table 5) are not surprising, given that no information 
on catch was available for these stocks. Therefore, these predictions of exploitation should be used 
with caution. In contrast, the margins of uncertainty for predictions of relative stock size are within 
usual ranges and therefore suitable for management advice. With few exceptions, the predicted 
relative biomass B/Bmsy was below the level that can produce maximum sustainable yields and about 
half of the stocks were so small that successful reproduction may be endangered. While the 
selection of stocks was not random and therefore not representative of non-assessed species in 
general, the results underline the need for MSY-level assessments and management of data-poor 
stocks. 

 

Properties and assumptions of AMSY 

The Schaefer (1954) surplus-production function used by AMSY captures in only two parameters the 
interplay among somatic growth, reproduction, and natural mortality. AMSY is implemented within 
state-space modelling framework (Meyer and Miller, 1999; Froese et al. 2017; Winker et al. 2018) to 
account for process error due to the real-world variability in size-structure, species interactions, 
natural mortality and recruitment and observation error resulting from sampling error and variations 
in catchability. This allows the predicted biomass trajectories to deviate from the deterministic 
expectations resulting from equations 6 and 7, while keeping the trajectories within plausible 
biological limits by the productivity prior, the associated process variance and the filters imposed to 
identify viable r-k pairs.  This means that the time series pattern of the predicted relative abundance 
(B/Bmsy) may differ from the pattern of the CPUE provided as input to the model, in the bounds 
determined by the error terms for process and observation, which can be set by the user.  

AMSY assumes that there is a direct relationship between CPUE and exploited biomass. However, 
catch rates in commercial and survey fisheries may be influenced by factors such as fishing vessel 
type, where and when fishing occurred, the gear used, the depth of fishing, and whether fishing 
occurred during day or night. There are also cases of reduced catch rates because of depredation 
e.g. on longlines by various predators (Söffker et al. 2015) or because of predator avoidance 
behavior by fishers shifting into less optimal CPUE areas (Haddon 2018). Management regulations 
such as size or catch limits or closed areas or seasons may also impact CPUE. These factors, and any 



changes therein over time, may obscure the inter-annual changes in CPUE resulting from changes in 
stock size, which are the focus of AMSY (e.g. Sporic and Haddon 2018).  

As shown with the simulated data, predictions of AMSY come with high margins of uncertainty in 
stocks with very low resilience and periods of very low exploitation. Also, predictions of exploitation 
(F/Fmsy) come with wide margins of uncertainty and may be especially misleading during phases of 
low exploitation (Figure 2 B).   

When deriving management advice from CPUE, it is important to consider situations where the catch 
per unit of effort may be significantly biased, potentially resulting in biased advice. One such bias is 
the continuing increase in the efficiency of fishers to catch a certain species. This is often a 
combination of increase in experience about when and where target species are likely to be found, 
and an improvement in technology ranging from more efficient navigation (GPS, autopilots) to more 
efficient sonars to more efficient gear. Palomares and Pauly (2019) found this “effort creep” to 
increase efficiency in commercial fisheries by 1-5% per year, with 2% per year being a reasonable 
assumption if no better information is available. AMSY provides a correction for commercial CPUE 
depending on the percentage value provided by the user (Equation 11). CPUE from standardized 
surveys should not be affected by this.  

Another potential bias in commercial CPUE data is known as ‘hyperstability’, where CPUE remains 
stable while abundance is declining, leading to overestimation of biomass and underestimation of 
fishing mortality (Quinn and Deriso, 1999; Harley et al. 2001). This may be caused by a fishery 
expanding into previously less-fished areas or depth-zones (Kleisner et al. 2014; Morato et al. 2006) 
with the new catches masking the overall decline. It may also be caused by aggregating behavior of 
the target species, when the center of the aggregation is fished primarily and the density there 
remains high even if overall density is declining, as occurred prior to the collapse of Northern cod 
(Gadus morhua) in Canada (Hutchings 1996), or when the spawning aggregations typical of some 
tropical species are exploited (see Sadovy de Mitcheson et al. 2008 and www.scrfa.org). In contrast, 
‘hyperdepletion’ (Quinn and Deriso, 1999) describes a situation where CPUE declines faster than 
overall stock abundance. This occurred, for example, at the onset of some tuna fisheries, where 
fishers targeted rapidly declining accumulations of old tuna, but whose biomass was not 
representative of the entire, more resilient population (Ahrens and Walters 2005). While 
‘hyperdepletion’ will lead to overly pessimistic assessment of stock status, the damage would be 
limited as fish not caught because of too conservative exploitation will increase remaining biomass 
and future catches (Froese et al. 2016). CPUE from standardized surveys should not be affected by 
either ‘hyperstability’ or ‘hyperdepletion’.    

Conclusion 

The purpose of this study was to explore whether a standard population dynamics model can 
approximate regular predictions if given only one instead of two time series of input data, everything 
else (base model and priors) being equal. This is shown to be the case. The question then is the 
availability of independent priors representative of the “true” values. For the required prior on 
productivity, this is solved through online databases which contain such priors for practically all 
commercial species, based either on previous assessments or on life history traits. For the other 
required prior on relative stock size, it is either derived from expert knowledge or better from 
typically available independent data such as length frequencies, as shown here for 38 data-limited 
stocks. 



Summarizing the results of this proof-of-concept study, AMSY seems to be well suited for estimating 
productivity r and thus Fmsy = ½ r as well as relative stock size B/Bmsy. Estimates of relative 
exploitation F/Fmsy may come with wide margins of uncertainty and may be less suitable for 
management, especially at low levels of exploitation. As a first application of AMSY, the first MSY-
level stock assessments are presented for 38 data poor stocks for which no reliable catch data are 
available.  

 

Acknowledgement 

The authors wish to thank the Minderoo Foundation for supporting an AMSY workshop in April 2019 
in Kiel, Germany. RF acknowledges support from the German Federal Ministry for the Environment, 
Nature Conservation and Nuclear Safety (BMU) on behalf of the German Federal Agency for Nature 
Conservation (BfN). MLDP and DP are supported by the Sea Around Us, which relies on grants from 
the Oak, Marisla, and other foundations. ACT acknowledges support from Thalassa Foundation and 
DD was partly supported by the European DG-MARE funded project “PROTOMEDEA” (Contract no: 
SI2.721917). 

References 

Ahrens, R, Walters C. 2005. Why are there still large pelagic predators in the oceans? Evidence of 
severe hyper-depletion in longline catch-per-effort. In: 1st Meeting of the Scientific 
Committee of the Western and Central Pacific Fisheries Commission, Nouméa, New 
Caledonia, 8-19 August 2005.  WCPFC-SC1 ME-WP-3, 13 p.  

Arreguín-Sánchez F. 1996. Catchability: a key parameter for fish stock assessment. Reviews in Fish 
Biology and Fisheries. 6(2):221-242. 

Barrowman, N.J., and Myers, R.A. 2000. Still more spawner-recruitment curves: the hockey stick and 
its generalizations. Canadian Journal of Fisheries and Aquatic Sciences, 57: 665–676. 

Cadima, E.L. 2003. Fish stock assessment manual. FAO Fisheries Technical Paper No. 393, FAO, Rome 
161 p. 

CFP 2013. Common Fisheries Policy. Regulation (EU) No 1380/2013 of the European Parliament and 
of the Council of 11 December 2013 on the Common Fisheries Policy. Official Journal of the 
European Union 354, 22–61. 

Fox, W.W. 1970. An exponential yield model for optimizing exploited fish populations. Transactions 
of the American Fisheries Society. 99: 80-88.    

Froese, R., Branch, T.A., Proelß, A., Quaas, M., Sainsbury, K. and Zimmermann, C. 2011. Generic 
harvest control rules for European fisheries. Fish and Fisheries 12:340-351 

Froese, R., Coro, G., Kleisner, K. and N. Demirel. 2016. Revisiting safe biological limits in fisheries. 
Fish and Fisheries 17:193-209 

Froese, R., Demirel, N., Gianpaolo, C., Kleisner, K.M., Winker, H. 2017. Estimating fisheries reference 
points from catch and resilience. Fish and Fisheries 18(3):506-526 

Froese, R., Pauly, D. 2019. Editors. 2019. FishBase. World Wide Web electronic publication. 
www.fishbase.org, version (05/2019) 



Froese, R., Winker, H., Coro, G., Demirel, N., Tsikliras, A.C., Dimarchopoulou, D., Scarcella, G., Probst, 
W.N., Dureuil, M. and D. Pauly. 2018. A new approach for estimating stock status from 
length frequency data. ICES Journal of Marine Science 75(6): 2004-2015 

Froese, R., Winker, H., Coro, D., Demirel, D., Tsikliras, A.C., Dimarchopoulou, D., Scarcella, G., Quaas, 
M., Matz-Lück, N. 2018. Status and rebuilding of European fisheries. Marine Policy 93:159-
170 

Froese, R., Winker, H., Coro, G., Demirel, N., Tsikliras, A.C., Dimarchopoulou, D., Scarcella, G., Probst, 
W.N., Dureuil, M. and D. Pauly. 2019. On the pile-up effect and priors for Linf and M/K: 
response to a comment by Hordyk et al. on “A new approach for estimating stock status 
from length frequency data”. ICES Journal of Marine Science, 76(2): 461–465. 

Froese, R., Winker, H., Gascuel, D., Sumaila, U.R., Pauly, D. 2016. Minimizing the impact of 
fishing. Fish and Fisheries, 17(3):785-802. 

Graham, M. 1935. Modern theory of exploiting a fishery and application to North Sea trawling. Journal 
du Conseil International pour l’Exploration de la Mer 10:264-274 

Graham, M. 1939. The sigmoid curve and the overfishing problem. Rapports et Procès-Verbaux du 
Conseil International pour l'Exploration de la Mer 110: 17-20. 

Haddon, M. 2018. Blue-Eye Auto-Line and Drop-Line CPUE Characterization and Catch-per-Hook 1997-
2015. P. 247-297 In Tuck, G.N. (ed.) 2018. Stock Assessment for the Southern and Eastern 
Scalefish and Shark Fishery 2016 and 2017. Part 1, 2016. Australian Fisheries Management 
Authority and CSIRO Oceans and Atmosphere Flagship, Hobart. 629p. Downloaded on 28 
March 2019 from https://www.afma.gov.au/sites/g/files/net5531/f/stock-assessment-for-
the-southern-and-eastern-scalefish-and-shark-fishery-2016-and-2017-part-1-reduced-
size2.pdf 

Hairston NG, Tinkle DW, Wilbur HM. Natural selection and the parameters of population growth. 1970. 
The Journal of Wildlife Management.  1:681-690. 

Harley, S.J., Myers, R.A., Dunn, A. 2001. Is catch-per-unit-of-effort proportional to abundance? 
Canadian Journal of Fisheries and Aquaculture Sciences 58(9):1760-1772.  

Hjort, J., Jahn, G., Ottestad, P. 1933. The optimum catch. Hvalradets Skrifter 7: 92-127. 

Hutchings, J.A. 1996. Spatial and temporal variation in the density of northern cod and a review of 
hypotheses for the stock's collapse. Canadian Journal of Fisheries and Aquatic Sciences 53: 
943-62. 

HSP 2018. Commonwealth Fisheries Harvest Strategy Policy, Department of Agriculture and Water 
Resources, Canberra, June. CC BY 4.0., 23 p. 

ICES 2016. Advice basis. In Report of the ICES Advisory Committee, 2016. ICES Advice 2016, Book 1, 
Section 1.2 

ICES 2017. ICES Advice on fishing opportunities, catch and effort. Celtic Seas and Greater North Sea 
Ecoregions. Brill (Scophthalmus rhombus) in Subarea 4 and divisions 3.a and 7.d-e (North Sea, 
Skagerrak and Kattegat, English Channel). Published 30 June 2017. DOI: 
10.17895/ices.pub.3058 



Kleisner, K., H. Mansour and D. Pauly. 2014. Region-based MTI: resolving geographic expansion in 
the Marine Trophic Index. Marine Ecology Progress Series, 512: 185-199. 

Maunder, M. N., and Punt, A. E. 2004. Standardizing catch and effort data: a review of recent 
approaches. Fisheries Research, 70: 171–195. 

Morato, T., R. Watson, T.J. Pitcher and D. Pauly. 2006. Fishing down the deep. Fish and Fisheries 7(1): 
24-34. 

MSA 2007. Magnuson-Stevens Fishery Conservation and Management Reauthorization Act of 2006. 
Public Law No. 109-479 (01/12/2007) 

Palomares, M.L.D. and D. Pauly. Editors. 2019. SeaLifeBase. World Wide Web electronic publication. 
www.sealifebase.org, version (02/2019). 

Palomares, M.L.D. and D. Pauly. 2019. On the creeping increase of vessels’ fishing power. Ecology and 
Society 24(3):31.  

Pauly, D., M.L.D. Palomares and F.C. Gayanilo. 1987. VPA estimates of the monthly population length 
composition, recruitment, mortality, biomass and related statistics of Peruvian anchoveta, 
1953 to 1981, p. 142-166. In: D. Pauly and I. Tsukayama. (eds.). The Peruvian anchoveta and 
its upwelling ecosystem: three decades of change. ICLARM Studies and Reviews 15. 

Pedersen, M.W. and C.W. Berg. 2017. A stochastic surplus production model in continuous time. Fish 
and Fisheries 18: 226-243 

Pella, J.J. and P.K. Tomlinson. 1969. A generalized stock production model. Bulletin of the Inter-
American Tropical Tuna Commission 13: 419-496 

Quinn, T.J. and R.B. Deriso. 1999. Quantitative fish dynamics. Oxford University Press, Oxford, 542 p. 

Ricker, W.E. 1975. Computation and interpretation of biological statistics of fish populations. Bulletin 
of the Fisheries Research Board of Canada, 191: 382 p. 

Sadovy de Mitcheson, YS, Cornish A, Domeier M, Colin PL, Russell M, Lindeman KC. 2008. A global 
baseline for spawning aggregations of reef fishes. Conservation Biology 22(5):1233-1244. 

 Schaefer, M. (1954) Some aspects of the dynamics of populations important to the management of 
the commercial marine fisheries. Bulletin of the Inter-AmericanTropical Tuna Commission 1, 
27–56. 

Silliman, R.P. and J.S. Gutsell. 1958. Experimental exploitation of fish populations. Fishery Bulletin 
58(113): 214-252. 

Smith, T. D. 1994. Scaling Fisheries: The Science of Measuring the Effects of Fishing, 1855-1955. 
Cambridge University Press, Cambridge, U.K. 395p. 

Söffker M, Trathan P, Clark J, Collins MA, Belchier M, Scott R. 2015. The impact of predation by 
marine mammals on Patagonian toothfish longline fisheries. PloS ONE 10(3):e0118113. 

Sporic, M. 2018. CPUE standardizations for selected shark SESSF species (data to 2015). In Tuck, G.N. 
(ed.) 2018. Stock Assessment for the Southern and Eastern Scalefish and Shark Fishery 2016 
and 2017. Part 1, 2016. Australian Fisheries Management Authority and CSIRO Oceans and 
Atmosphere Flagship, Hobart. 629p. Downloaded on 28 March 2019 from 



https://www.afma.gov.au/sites/g/files/net5531/f/stock-assessment-for-the-southern-and-
eastern-scalefish-and-shark-fishery-2016-and-2017-part-1-reduced-size2.pdf  

Sporic, M. and M. Haddon. 2018. Statistical CPUE standardizations for selected SESSF species (data 
to 2015). p. 39-246 In Tuck, G.N. (ed.) 2018. Stock Assessment for the Southern and Eastern 
Scalefish and Shark Fishery 2016 and 2017. Part 1, 2016. Australian Fisheries Management 
Authority and CSIRO Oceans and Atmosphere Flagship, Hobart. 629p. Downloaded on 28 
March 2019 from https://www.afma.gov.au/sites/g/files/net5531/f/stock-assessment-for-
the-southern-and-eastern-scalefish-and-shark-fishery-2016-and-2017-part-1-reduced-
size2.pdf 

Tsikliras, A.C. and Froese, R. 2019. Maximum Sustainable Yield. p. 108–115 In: Fath, B.D. (ed) 
Encyclopedia of Ecology, 2nd edition, vol. 1,. Oxford: Elsevier 

UNCLOS (1982) United Nations Convention on the Law of the Sea. 1833 UNTS 3. Retrieved from 
http://www.un.org/ Depts/los/convention_agreements/texts/unclos/unclos_ e.pdf in 
January 2010.  

UNFSA (1995) Agreement for the Implementation of the Provisions of the United Nations 
Convention on the Law of the Sea of 10 December 1982, Relating to the Conservation and 
Management of Straddling Fish Stocks and Highly Migratory Fish Stocks. 2167 UNTS 88. 
Retrieved from http://www.un.org/Depts/los/convention_agreements/ 
texts/fish_stocks_agreement/CONF164_37.htm in January 2010. 

Winker, H., Carvalho, F., and Kapur, M. 2018. JABBA: Just Another Bayesian Biomass Assessment. 
Fisheries Research, 204: 275–288. 

Yoshinaga T, Hagiwara A, Tsukamoto K. 2001. Why do rotifer populations present a typical sigmoid 
growth curve? Hydrobiologia. 446(1):99-105. 

 


