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Systemic delivery of a specific antibody 
targeting the pathological N‑terminal truncated 
tau peptide reduces retinal degeneration 
in a mouse model of Alzheimer’s Disease
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Abstract 

Retina and optic nerve are sites of extra-cerebral manifestations of Alzheimer’s Disease (AD). Amyloid-β (Aβ) plaques 
and neurofibrillary tangles of hyperphosphorylated tau protein are detected in eyes from AD patients and transgenic 
animals in correlation with inflammation, reduction of synapses, visual deficits, loss of retinal cells and nerve fiber. 
However, neither the pathological relevance of other post-translational tau modifications—such as truncation with 
generation of toxic fragments—nor the potential neuroprotective action induced by their in vivo clearance have 
been investigated in the context of AD retinal degeneration. We have recently developed a monoclonal tau antibody 
(12A12mAb) which selectively targets the neurotoxic 20–22 kDa NH2-derived peptide generated from pathological 
truncation at the N-terminal domain of tau without cross-reacting with its full-length normal protein. Previous studies 
have shown that 12A12mAb, when intravenously (i.v.)-injected into 6-month-old Tg2576 animals, markedly improves 
their AD-like, behavioural and neuropathological syndrome. By taking advantage of this well-established tau-directed 
immunization regimen, we found that 12A12mAb administration also exerts a beneficial action on biochemical, mor-
phological and metabolic parameters (i.e. APP/Aβ processing, tau hyperphosphorylation, neuroinflammation, syn-
aptic proteins, microtubule stability, mitochondria-based energy production, neuronal death) associated with ocular 
injury in the AD phenotype. These findings prospect translational implications in the AD field by: (1) showing for the 
first time that cleavage of tau takes part in several pathological changes occurring in vivo in affected retinas and vitre-
ous bodies and that its deleterious effects are successfully antagonized by administration of the specific 12A12mAb; 
(2) shedding further insights on the tight connections between neurosensory retina and brain, in particular following 
tau-based immunotherapy. In our view, the parallel response we detected in this preclinical animal model, both in the 
eye and in the hippocampus, following i.v. 12A12mAb injection opens novel diagnostic and therapeutic avenues for 
the clinical management of cerebral and extracerebral AD signs in human beings.
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Introduction
Basic and translational researches have recently focused 
their attention on the eye as an initial site of extra-cer-
ebral manifestations of Alzheimer’s Disease (AD), a 
neurodegenerative disorder which has been historically 
perceived as confined to the brain [1, 2]. In particular, 
among ocular tissues, the retina is a sensory extension 
of the CNS which shares many structural and functional 
features with cerebral tissues, including the presence of 
neurons, glial cells and a blood barrier characterized by a 
tight regulation in endothelial cell organization [3].

The two classical cerebral lesions of AD pathology—
i.e. amyloid β (Aβ) plaques and NeuroFibrillary Tangles 
(NFT) comprising hyperphosphorylated tau (ptau) pro-
tein—have been described in the eyes of both affected 
patients and experimental transgenic animal models 
[4–13] in correlation with an early local activation of 
inflammatory signaling and a reduction in synaptic con-
tacts [14–17] and with functional impairment of visual 
abilities [18]. Moreover, other signs of ocular degenera-
tion—such as loss of retinal ganglion neurons, atrophy 
of nerve fiber layer, thinning of the macular ganglion cell 
complex, axonal degeneration in the optic nerve, altera-
tion of blood flow rate—reflect, and even anticipate, the 
hallmarks of AD cerebral deterioration [1, 2, 13, 19]. 
Higher incidence of age-related macular degeneration 
occurs in patients with AD [20]. Impaired contrast sen-
sitivity, reduced visual acuity, abnormal spatial vision and 
motion perception are found in AD subjects in tight cor-
relation with the severity of cognitive and behavioural 
defects [21–32]. Interestingly, ocular defects can manifest 
even before the appeareance of clinical signs of dementia 
[33–37]. Of note, 33% of individuals diagnosed with Mild 
Cognitive Impairment (MCI), a prodromal stage of AD, 
have substantial visual motion perception deficits and 
retinal layer thickness together with microvascular altera-
tions [36, 38–42]. In postmortem retinas of MCI and AD 
patients, extensive retinal pericyte loss along with vascu-
lar platelet-derived growth factor receptor-β deficiency 
are closely associated with increased retinal vascular 
amyloidosis and predict the cerebral amyloid angiopathy 
scores [43, 44]. Visual electrophysiology testing has dem-
onstrated significant differences in pattern electroretino-
gram (PERG), and pattern visual evoked potential (PVEP) 
in correlation with the retinal nerve fibre layer (RNFL) 
thickness between AD subjects and healthy controls [45]. 
Furthermore, utilizing data from retina to develop novel 
biomarkers for AD offers unique access for direct and 
non-invasive imaging of pathological changes occurring 

in the brain [46, 47]. Advances in retinal imaging and evi-
dence of a positive response to immunotherapy of AD 
animal models prospect widespread population screen-
ing, early diagnosis, monitoring before the disease mani-
fests with irreversible clinical symptoms and, eventually, 
developing disease-modifying intervention [48].

While there are several evidences for the presence of 
Aβ and phosphotau in eyes from human and animal AD 
paradigms, efforts are currently being made to identify 
and validate additional post-translational modifications 
of tau occurring in the neurosensory retina during dis-
ease progression, especially in view of the findings that 
tau better correlates with the duration and the sever-
ity of cognitive decline [49, 50]. In this framework, 
whether tau cleavage with generation of toxic frag-
ments contributes to visual deterioration and whether 
their in vivo immunoneutralization evokes a protective 
action, on both AD retinal and cerebral neurodegenera-
tion, is still lacking.

Our research group has extensively investigated a 
20–22  kDa peptide generated from pathological trun-
cation at the N-terminal domain of tau (aka NH2htau) 
which: (1) is detected in cellular and animal AD models 
[51]; (2) accumulates at human AD presynaptic termi-
nals and is present in CSF from patients suffering from 
AD and other related tauopathies [52–54]; (3) nega-
tively impacts on synaptic and cognitive functions, both 
in vitro and in vivo [55, 56]. More recently we have devel-
oped a functional cleavage-specific, monoclonal Anti-
body (mAb)-named 12A12mAb (formerly CCP-NH2-tau 
antiseum (D25-(QGGYTMHQDQ) epitope, phosphoryl-
ation-independent state [53])—which in  vivo selectively 
neutralizes this harmful specie(s) without significant 
cross-reaction with the physiological full-length pro-
tein. 12A12mAb, when systemically (intravenously, i.v.) 
injected into 6-month-old Tg2576 and 3xTg mice—two 
AD models which respectively express the human Amy-
loid Precursor Protein (APP)695 with Swedish mutations 
(K670N-M671L), alone or in combination with MAPT 
P301L and PSEN1 M146V—markedly alleviates into their 
hippocampi the characteristic biochemical (tau hyper-
phosphorylation, Aβ accumulation, activation of pro-
inflammatory markers), cognitive (spatial memory and 
orientation), electrophysiological (Long Term Potentia-
tion, LTP induction) and morphological (spine density) 
alterations [57].

By taking advantage of this well-established tau-
directed immunization protocol, we investigated symp-
tomatic (6-month-old) Tg2576 transgenic mice to assess 
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whether: (i) tau cleavage contributes to altering several 
biochemical, morphological and metabolic parameters of 
their retina and vitreous body; (ii) 12A12mAb i.v. deliv-
ery is able to exert a protective action on the signs of ocu-
lar injury associated with the AD phenotype, as shown to 
occur for the brain parenchyma. This APPSwe-expressing 
mouse model was chosen because it displays cerebral Aβ 
deposition and tau modifications, synaptic dysfunction, 
gliosis, age-dependent memory deficits along with ocular 
Aβ and tau pathologies [5, 6, 9, 58], thus representing an 
ideal model to study the AD-associated changes, both in 
the retina and in the brain.

Here, we show that: (i) tau protein cleavage at the 
N-terminal extremity is closely associated with other 
characteristic neuropathological features of AD into 
retinas and vitreous bodies of Tg2576 animal model; (ii) 
these ocular changes—which resemble similar modifica-
tions occurring in their brain (i.e. APP/Aβ processing, 
tau hyperphosphorylation, gliosis, loss of synaptic pro-
teins, microtubule breakdown, mitochondrial energetic 
deficits, neuronal death)—positively respond to systemic 
treatment with 12A12mAb. These observations are con-
sistent with the contextual improvement of cognitive 
functions due to antibody-mediated neutralization of 
N-terminal truncation in the brains of immunized trans-
genic animals [57], suggesting that the in vivo treatment 
with 12A12mAb is able to exert parallel beneficial effects 
on both cerebral and extra-cerebral manifestations asso-
ciated with the AD phenotype in this preclinical mouse 
model.

Materials and methods
Animals and ethical approval
All animal experiments were complied with the ARRIVE 
guidelines and were carried out in accordance with the 
ethical guidelines of the European Council Directive 
(2010/63/EU); experimental approval was obtained from 
the Italian Ministry of Health (Authorization n. 524/2017 
PR; Authorization n. 1038-2020-PR).

Heterozygous female Tg2576 mice (Tg-AD) (n = 6–8 
per group/treatment), expressing the human Amyloid 
Precursor Protein (APP) with the Swedish mutation 
KM670/671NL [59] and their sex-matched wild-type 
(Wt) littermates (n = 5–6 per group/treatment) were 
used at 6  months of age. The housing conditions (four 
or five animals per cage) in pathogen-free facilities were 
controlled (temperature 22  °C, 12  h light/12  h dark 
cycles, humidity 50–60%) with ad  libitum access to 
food and water. Animals were examined in their overall 
health, home cage nesting, sleeping, feeding, grooming, 
and condition of the fur and body weight throughout 
the whole study and any gross abnormalities were noted. 

Genotyping was carried out to confirm the presence of 
human mutant APP DNA sequence by PCR.

Immunization scheme
The N-terminal tau 12A12 monoclonal antibody (26-
36aa) was produced and characterized by Monoclonal 
Antibodies Core Facility (MACF) at EMBL-Montero-
tondo, Rome, Italy (Dott. Alan Sawyer), as previously 
described in [55]. 12A12mAb was purified from hybri-
doma supernatants according to standard procedures 
and its purity was determined using SDS-PAGE and 
Coomassie staining. In detail, the hybridoma supernatant 
was precipitated by ammonium sulfate (336  g/l). After 
precipitation, the solution was centrifuged at 10 000  g 
for 1 h and the pellet was dissolved in PBS and dialyzed 
against the same buffer. The solution was centrifuged at 
10 000 g for 30 min and loaded on a HiTrap Protein G HP 
(GE Healthcare) equilibrated with PBS. The column was 
washed with PBS (5 column volumes). 12A12mAb was 
eluted with 0.1  M Glycine–HCl, pH 2.7. The fractions 
containing the antibody were neutralized by 1  M Tris–
HCl, pH 9.0, collected and immediately dialyzed against 
PBS. 12A12mAb concentration was determined by meas-
uring the absorbance at 280  nm. The average yield was 
8 mg per liter of cell supernatant. 12A12mAb was ≥ 95% 
pure and contained ≤ 1 U/mg of endotoxin (LAL Chro-
mogenic Endotoxin quantitation kit; Thermo Scientific).

To minimize experimental variability, all mice were 
initially grouped according to their body weight (20–
25 g) and age and mice from the same litter were finally 
assigned to different groups. The grouped mice were 
randomized into: (1) wild-type mice treated with saline 
vehicle; (2) age-matched Tg2576 mice treated with saline 
vehicle; (3) age-matched Tg2576 mice treated with 
12A12mAb (30  μg/dose). Animals were infused over 
14 days with two weekly injections administered on two 
alternate days to the lateral vein of the tail. The dose and 
route of immunization were based on previously-pub-
lished studies by our and other independent research 
groups using Tg2576 as AD transgenic mouse model [57, 
60]. In details, mice were placed in a restrainer (Braintree 
Scientific), and an inch of the tail was shaved and placed 
in warm water to dilate veins. After injection via the 
lateral tail vein, mice were returned to home cages and 
kept under general observation. Abnormalities in over-
all health, home cage nesting, sleeping, feeding, groom-
ing, body weight and condition of the fur of animals were 
noted.

Notably, this immunization regimen was previously 
demonstrated to successfully deliver in  vivo a suffi-
cient amount of biologically-active (antigen-competent) 
anti-tau antibody to promote the clearance of the del-
eterious NH2htau peptide accumulating into animals’ 
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hippocampus and to significantly alleviate their behav-
ioural, biochemical, electrophysiological and anatomo-
pathological disease-associated signs [57].

After the immunization schedule, animals were eutha-
nized with CO2 and perfused transcardially with ice-cold 
phosphate buffered saline (PBS). Eyes were removed, dis-
sected, snap-frozen and stored at − 80  °C until further 
analyses according to [61, 62].

Western blot analysis and densitometry
Animals from the three experimental groups (wild-type, 
naive Tg-AD, Tg-AD + mAb) were sacrificed and retinas 
and vitreous bodies protein extracts were quantified and 
analyzed for Western blotting according to [63]. In detail, 
equal amounts of proteins were subjected to SDS-PAGE 
7.5–15% linear gradient or Bis–Tris gel 4–12% (NuPage, 
Invitrogen). After electroblotting onto a nitrocellulose 
membrane (Hybond-C Amersham Biosciences, Pis-
cataway, NJ), filters were blocked in TBS containing 5% 
non-fat dried milk for 1 h at room temperature. Proteins 
were visualized using appropriate primary antibodies, all 
diluted in TBS and incubated with the nitrocellulose blot 
overnight at 4 °C. Incubation with secondary peroxidase 
coupled anti-mouse, anti-rabbit or anti-goat antibodies 
was followed by the ECL system development and final 
visualization with the iBright’s digital camera (Thermo 
Fisher West Pico Plus, U.S.A.; Amersham, Arlington 
Heights, IL, U.S.A.). Normalization of vitreous and retina 
samples was carried with β-actin used as loading control 
[61]. Final figures were assembled by using Adobe Photo-
shop 6 and Adobe Illustrator 10 and quantitative analy-
sis of acquired images was performed by using ImageJ 
(http://image​j.nih.gov/ij/).

The following antibodies were used:
Caspase-cleaved protein (CCP) NH2-tau antibody 

rabbit (D25-(QGGYTMHQDQ) epitope, phosphoryl-
ation-independent state) [51, 53, 64]; Tau Antibody 
(BT2) mouse MN1010 ThermoFisher Scientific; anti-
N-tau (45-73aa) DC39N1 mouse T8451 Sigma-Aldrich; 
Phospho-PHF-tau pSer202+Thr205 mouse MN1020 
ThermoFisher Scientific; PC1C6 Tau1 Ser-195/Ser-198− 
epitopes mouse MAB3420 Merck Millipore; anti-pan 
tau protein HT7 (1-150aa of N-terminus) rabbit sc-5587 
Santa Cruz Biotechnology; anti-Aβ/APP protein 6E10 
(4-9aa) mouse MAB1560 Chemicon; GFAP antibody 
(2E1) mouse sc-33673 Santa Cruz; anti-GFAP (clone 
GA5) mouse MAB360 Millipore; Iba1 antibody (1022-5) 
mouse sc-32725 Santa Cruz; anti-Iba1 rabbit 019-19741 
Wako; NMDAζ1 antibody (C-20) goat sc-1467 Santa 
Cruz; anti-synapsin I antibody rabbit AB1543P Milli-
pore; anti-synaptophysin antibody (D-4) mouse sc-17750 
Santa Cruz; anti-syntaxin 1 mouse S1172 Sigma-Aldrich; 
anti-SNAP25 antibody (clone SMI 81) mouse 836301 

BioLegend; anti-α synuclein antibody (clone 42) mouse 
610786 BD Transduction Laboratories; cleaved caspase-6 
(Asp162) antibody rabbit 9761 Cell Signaling; anti-
choactase antibody (H-95) rabbit sc-20672 Santa Cruz; 
anti-mAChR M1 antibody (H120) rabbit sc-9106 Santa 
Cruz; anti-vGLUT1 antibody rabbit 135 302 Synaptic 
System; anti-vGAT antibody rabbit 131 003 Synaptic Sys-
tem; anti-VDAC/Porin antibody rabbit ab34726 Abcam; 
Tomm20 antibody (FL-145) rabbit sc-11415 Santa Cruz; 
cytochrome C (136F3) rabbit 4280 Cell Signaling Tech-
nology; acetylated α Tubulin (6-11B-1) mouse sc-23950 
Santa Cruz; rat anti tubulin alpha mouse MCA77G Bio-
Rad; OPA1 antibody mouse 612606 BD Transduction 
Laboratories; SOD II (MnSOD, mitochondrial superox-
ide dismutase) rabbit SOD-110D Stressgen Biotechnolo-
gies; anti-β-actin antibody mouse S3062 Sigma-Aldrich; 
anti-mouse IgG (whole molecule)-Peroxidase antibody 
A4416 Sigma-Aldrich; anti-rabbit IgG (whole molecule)-
Peroxidase antibody A9169 Sigma-Aldrich; donkey anti-
goat IgG-HRP antibody sc2056 Santa Cruz.

Immunofluorescence, Epifluorescent acquisition 
and integrated optical densitometry
Animals of the three experimental groups (wild-type, 
naive Tg-AD, Tg-AD + mAb) were sacrificed and eyes 
were rapidly dissected out. Post-fixed eyes were dehy-
drated and paraffine included. Sections (5 µm thickness; 
HM325 rotary microtome; Microm, Rijswijk, Nether-
land) were produced and placed on BDH slides (Milan, 
Italy), air-dried and stored at − 20  °C. Dewaxed sections 
were exposed to quenching (50 mM NH4Cl, 5 min), anti-
gen retrieval (0.05% trypsin–EDTA solution, 2 min) and 
blocking/permeabilizing (1% BSA and 0.5% Triton X 100 
in PBS, 30  min) steps, and probed overnight with pri-
mary antibody (Caspase-cleaved protein (CCP) NH2-tau 
antiserum (D25-(QGGYTMHQDQ) epitope, phospho-
rylation-independent state [51, 53, 64]) diluted (1:200) 
in PBS (10  mM phosphate buffer and 150  mM NaCl; 
pH 7.5). The secondary antibody was Cy2 (green) con-
jugated species-specific antibody (1:1000; donkey; Jack-
son ImmunoResearch, Europe Ltd, Suffolk, UK) diluted 
in PBS. Washing steps were performed in PBS contain-
ing 0.05% Tween 20. Nuclear counterstaining was per-
formed with 1 μM DAPI solution (D9542; Sigma-Aldrich, 
St. Louis, MO, USA). Negative control (isotype) was car-
ried out in parallel with the omission of primary antibody 
and used for appropriate background subtractions. Serial 
images were analyzed and selected images were digitally 
acquired (8-tiff) by NIS software connected to epifluores-
cent direct microscope (Eclipse Ni; Nikon, Tokyo, Japan). 
For Integrated optical Density (IntDen), the 8-bit TIFF 
saved digital images (512 × 512 or 1024 × 1024 dpi; n = 4 
sections/slide; × 40/dry 0.75 DIC M/N2) were subjected 
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to single analysis with the ImageJ v1.43 (NIH-http://rsb.
info.nih.gov/ij/) and expressed in arbitrary units (A.U.) 
Values were subjected to statistical analysis (wild-type, 
n = 4; Tg2576, n = 4; Tg2576 + mAb, n = 4).

Confocal analysis of microglia and astrocytes
For immunofluorescence experiments, mice of the 
three experimental groups (wild-type, naive Tg-AD, 
Tg-AD + mAb) were sacrificed by cervical dislocation, 
eyes were gently removed and kept in 4% PFA solution. 
After 16  h, eyes were passed into 30% sucrose solution 
and, after precipitation, were frozen in isopentane and 
stored at − 80  °C. Sections  (50  µm thickness) obtained 
by a Leica cryostat were treated for immunofluorescence 
experiments. In brief, slices were treated for 40 min with 
a warm solution of antigen retrieval (10 mM Na-citrate, 
0.05% Tween 20, pH 6.0, 90 °C) to facilitate the exposure 
of the antigen (when required) and, then, incubated for 
45 min in a blocking solution (3% goat serum and 0.3% 
Triton X-100 in PBS). Primary antibodies were then 
incubated overnight at 4 °C in a solution with 1% of goat 
serum and 0.1% of Triton X-100 at different concentra-
tions (anti-Iba1, Wako #019-19741, 1:300; anti-GFAP, 
Millipore, #MAB360, 1:200). The day after, slices were 
left 30 min at room temperature, washed three times in 
PBS, stained with the fluorophore-conjugated antibody 
and Hoechst for nuclei visualization for 1 h and, finally, 
mounted in DAKO (Agilent Technologies, CS70330-2) 
and assessed by confocal microscope (FV10i, Olympus).

For microglia density analysis, images were acquired 
by using an inverted confocal laser scanning microscope 
(FV10i Olympus) with a × 60 water immersion objec-
tive and a z-step of 1 µm with slices immunolabeled for 
Iba1. Image processing was performed by using ImageJ 
software, in order to obtain a maximal intensity projec-
tions of z-series stacks. Confocal images were analyzed 
to count the number of iba1+ cells inside the acquisi-
tion fields calculated as number of cells per volume 
(mm3): the number of cells within each acquired field was 
divided by the area of the slice multiplied by its thickness. 
The value obtained was multiplied by 109 to get the num-
ber of microglia present in a mm3 of the slice. Only cells 
whose cell body and processes were fully included in the 
slice field were included in the analysis.

To assess astrogliosis, slices labeled for GFAP (Glial-
Fibrillary Acidic Protein) were acquired by confocal 
microscopy. Images were then analyzed by Metamorph 
image analysis software to obtain a maximal intensity 
z-projection based on GFAP signal. Astrogliosis was then 
quantified as fluorescence intensity: the threshold was 
adjusted to accurately represent the number of GFAP-
positive cells and data were expressed as area occupied 
by fluorescent cells versus total slice area.

Mitochondrial analysis

a)	 Tissue homogenate preparation.

	 For mitochondrial analyses, retinas from three 
experimental groups were stored at − 80  °C until 
assayed. The PBI-Shredder, an auxiliary high-reso-
lution respirometry (HRR) Tool, was used to pre-
pare homogenate—in 0.2  M phosphate buffer (pH 
8.0)—of frozen tissue specimens, according to [65], 
with high reproducibility of mitochondrial function 
as evaluated with HRR by means of Oxygraph-2  k 
OROBOROS®. Homogenate protein content was 
determined as in [66].

b)	 Enzymatic activity measurements.
	 Citrate synthase (CS) and cytochrome c oxidase 

(COX) activities were measured by spectrophoto-
metric standard methods [65, 67]. Each assay was 
performed at least in triplicate by using homogenate 
retinas subjected to three freeze–thaw cycles to dis-
rupt membranes and expose mitochondrial enzymes.

c)	 Measurement of mitochondrial respiratory chain 
complex (MRC) activities.

	 Complex I–V enzymatic activities were assayed pho-
tometrically at 25 °C, as in [67]. Each assay was per-
formed at least in triplicate by using retina homogen-
ates subjected to three freeze–thaw cycles to disrupt 
membranes and expose enzymes. Homogenate from 
each tissue sample was suspended in 0.3  ml of the 
respiration medium (consisting of 210 mM mannitol, 
70  mM sucrose, 20  mM Tris/HCl, 5  mM KH2PO4/
K2HPO4, (pH 7.4), 3 mM MgCl2) and subdivided to 
perform three assays [68], which rely on the sequen-
tial addition of reagents to measure the activities 
of: i) NADH:ubiquinone oxidoreductase (complex 
I) followed by ATP synthase (complex V), ii) succi-
nate: ubiquinone oxidoreductase (complex II) and 
iii) cytochrome c oxidase (complex IV) followed by 
cytochrome c oxidoreductase (complex III).

d)	 Measurement of ATP levels.

Retinas were subjected to perchloric acid extraction as 
described in [69]. Briefly, tissues were homogenized in 
600  μl of pre-cooled 10% perchloric acid and then cen-
trifuged at 14,000g for 10 min, 4 °C. The amount of tissue 
ATP was determined enzymatically in KOH neutralized 
extracts, as described in [70].

Data management and statistical analysis
Biochemical data were expressed as means ± standard 
error of the mean (S.E.M.) and were representative of 
at least three separate experiments (n = independent 
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experiments). Statistically significant differences were 
calculated by one-way analysis of variance (ANOVA) 
followed by Bonferroni’s post-hoc test for multiple 
comparison among more than two groups. p < 0.05 was 
accepted as statistically significant (*p < 0.05; **p < 0.01; 
***p < 0.0005; ****p < 0.0001). All statistical analyses were 
performed using GraphPad Prism 8 software.

For Integrated optical Density (IntDen), the 8-bit TIFF 
saved digital images (512 × 512 or 1024 × 1024 dpi; n = 4 
sections/slide; × 40/dry 0.75 DIC M/N2) were subjected 
to single analysis with the ImageJ v1.43 (NIH-http://rsb.
info.nih.gov/ij/). IntDen data (mean ± SD per retina field) 
were calculated, grouped and subjected to statistical 
analysis.

Results
Tau cleavage at the N‑terminal domain occurs in retina 
and vitreous bodies of symptomatic Tg2576 AD mice 
and is reduced by intravenous (i.v.) delivery of 12A12mAb
Post-translational modifications of tau crucially con-
tribute to brain neuropathology of human tauopathies, 
including AD [71], but the relationship between the 
truncation and the disease-associated ocular damage 
has never been studied. Therefore, based on the simi-
larities described between the visual system and the 
Central Nervous System (CNS) both in human and 
rodent experimental models of AD neurodegeneration, 
we investigated whether: (i) tau cleavage—in particular 
at its N-terminal extremity—could be detected in eyes 
of symptomatic Tg2576 mice, as we previously found in 
the hippocampus; (ii) the systemic delivery of 12A12mAb 
targeting the pathogenic 20–22  kDa NH2htau fragment 

could represent a valuable therapeutic opportunity to 
ameliorate the retinal injury, known to be associated with 
their phenotype [1, 6, 9, 72].

To this aim, we examined and compared, in the eyes 
of 6-month-old animals from three experimental groups 
(littermate wild-type, naive/vehicle-treated Tg-AD, 
Tg-AD + mAb) (Fig. 1a), the pattern of tau truncation at 
the N-terminal domain along with its in vivo sensitivity 
to specific antibody-mediated engagement/clearance. 
Western blotting SDS-PAGE analyses were carried out 
on soluble homogenates of retinas and vitreous bod-
ies by probing with Caspase-Cleaved Protein (CCP)-
NH2tau antiserum (D25-(QGGYTMHQDQ) epitope, 
phosphorylation-independent state [51, 64]) followed 
by semi-quantitative densitometry. As shown in Fig.  1 
b, c, we found that the endogenous steady-state expres-
sion level of the toxic NH2htau peptide was significantly 
increased in ocular samples from 6-month-old Tg2576 
AD mice in comparison to their wild-type littermate 
controls (***p < 0.0005). This finding was also confirmed 
with BT2 (194-198aa) and DC39N1 (45-73aa), two other 
commercial tau antibodies reacting against different 
epitopes located around the extremity and middle N-ter-
minal end of tau (***p < 0.0005). In line with its aberrant 
release from cortical synapses [73] and its accumula-
tion in peripheral CerebroSpinalFluids (CSF) from AD-
affected subjects [52], this soluble N-terminal truncated 
tau specie(s) turned out to be present in the vitreous 
body, an ocular fluid whose protein composition depends 
on secretion from surrounding tissues (ciliary body and 
retina) [74]. Notice that, as previously detected in hip-
pocampus [57], the immunoreactivity signal of the toxic 

Fig. 1  Pathological N-terminal tau truncation occurs in eyes of symptomatic Tg2576 mice and is successfully immunodepleted by 12A12mAb 
systemic delivery. a Study design. 6-month-old Tg2576 Alzheimer’s disease (AD) mice were intravenously (i.v.) injected with 12A12mAb or 
mouse IgG (isotype control). On day 15, mice were sacrificed and eyes were used for biochemical (Western blotting) and morphological 
(immunofluorescence) evaluations. Wild type (WT) mice immunized with vehicle (saline) or mouse IgG under the same experimental conditions 
(antibody dosage, time of treatment, administration route) were used as controls. Picture was assembled by means of Biorender online software 
(https​://biore​nder.com). Western blotting analyses (b) and semi-quantitative densitometric analysis (n = 6) (c) carried out on soluble extracts from 
three experimental groups (wild-type, Tg2576 and Tg2576 + mAb) showing the presence of the NH2htau peptide in retina and vitreous body 
of Tg2576 mice and its 12A12mAb-mediated neutralization following i.v. administration. Filters were probed with three different tau antibodies 
reacting against different epitopes located around the extremity and middle N-terminal end of protein, including caspase-cleaved protein 
(CCP)-NH2 tau (26-36aa) [51, 64], BT2 (194-198aa) and DC39N1 (45-73aa). β-actin was used as loading control. Arrows on the right side indicate the 
molecular weight (kDa) of bands calculated from migration of standard proteins. Statistically significant differences were calculated by one-way 
analysis of variance (ANOVA) followed by Bonferroni’s post-hoc test for multiple comparison among more than two groups. p < 0.05 was accepted 
as statistically significant (*p < 0.05; **p < 0.01; ***p < 0.0005; ****p < 0.0001). D-E: Representative merged panels (d) of epifluorescent analysis (n = 4) 
showing the distribution of the NH2htau peptide (green channel) in retinas from three experimental groups (wild-type, Tg2576 and Tg2576 + mAb). 
Tissues were counterstained with DAPI (blue channel) to aid the visualization of the GCL (Ganglion Cell Layer) and INL (Inner Nuclear Layer). 
Haematoxylin and eosin stainings were also provided to display the cellular morphology. Histogram (e) shows that 12A12mAb immunization is 
effective in decreasing the NH2htau immunoreactivity in transgenic mice (**p < 0.01 versus untreated counterpart, One-way ANOVA, post-hoc 
Bonferroni test). Values of fluorescent intensity were expressed in arbitrary units (A.U.) Scale bar = 25 µm. Notice that, unlike not-immunized Tg2576, 
the GCL organization/integrity is well preserved in Tg2576 retinas following 12A12mAb treatment in correlation with a significant diminution in 
signal of the NH2htau

(See figure on next page.)
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NH2htau peptide in Tg2576 mice was strongly reduced 
following 12A12mAb immunization in comparison with 
their naïve not-vaccinated counterparts (***p < 0.0005).

To further validate these biochemical observations, 
morphological studies of epifluorescence microscopy, 
followed by integrated optical densitometric analysis, 
were carried out for the detection and/or distribution 
of the NH2htau fragment in retinal sections. As shown 
in Fig.  1d, e, the labeling with Caspase-Cleaved Pro-
tein (CCP)-NH2tau antiserum (D25-(QGGYTMHQDQ) 
epitope, phosphorylation-independent state [46, 59]) 
showed a strong increase in the intracellular positivity 
in AD transgenic mice (**p < 0.01 versus wild-type con-
trols) with a granular, dot-like aspect which appeared 
to be mainly distributed to the Ganglion Cell Layer 
(GCL) consisting of retinal ganglion cells and displaced 
amacrine cells (arrows). These findings are in agree-
ment with previous investigations reporting an apical 
localization of pathological tau in diseased retina [10, 
63, 75]. On the contrary, no staining was clearly detect-
able either in the superior or in the inferior retinal part 
of littermate wild-types. Interestingly, a statistically-sig-
nificant general reduction in signal intensity was found 
in 12A12mAb-immunized transgenic animals (**p < 0.01 
versus untreated counterpart), consistent with results 
from Western blotting (Fig. 1b, c).

By extending previous studies on the presence of 
epitope-specific phosphorylation and accumulation of 
tau in the eyes of AD subjects [15, 76] and transgenic 
mouse models [6, 63, 77–80], these results show that 
protein cleavage is a pathological alteration detectable in 
ocular samples of 6-month-old Tg2576 AD animals, as 
previously shown for the brain parenchyma [57]. More 
importantly and consistent with promising results on 
the clearance of retinal Aβ in an animal model of Age-
related Macular Degeneration (AMD) [81], this preclini-
cal study supports the in  vivo feasibility of tau-based 

immunotherapeutic approach—which specifically inter-
cepts the pathologically-relevant species of the protein—
as strategy to contrast the eye damage and vision loss 
occurring in AD development.

Systemic administration of 12A12mAb mitigates tau 
hyperphosphorylation and APP/Aβ misprocessing 
in the retina and vitreous body of Tg2576 AD mice
A significant increase in the immunoreactivity of APP 
along with the deposition of insoluble Aβ-positive aggre-
gates and pathological site-specific tau hyperphospho-
rylation have been found in the retinas of aging Tg2576 
animals [6, 9, 82] and in human affected subjects [1, 15]. 
Likewise, changes in the levels of total tau and Aβ1-40/1–
42 peptides in vitreous humor from AD patients are clin-
ically predictive of their neuro-cognition state evaluated 
by Mini-Mental State Exam (MMSE) [76]. Therefore, by 
SDS-PAGE Western blotting with specific antibodies 
(AT8/Tau-1 6E10), we further analyzed the soluble ocu-
lar homogenates from mouse retina and vitreous bodies 
to evaluate whether the treatment with 12A12mAb could 
impact on the AD-like tau hyperphosphorylation and 
APP/Aβ misprocessing/accumulation.

As shown in Fig.  2a, b (upper panel) and in line with 
results from ocular samples of 3xTg-AD paradigm carry-
ing the human mutations tauP301L/PS1M146V/APPSwe 
[63], semi-quantitative densitometry of the signal from 
AT8 mAb (pSer202/pThr205 epitopes) revealed a strong 
upregulation in the intensity of the 55–70  kDa  MW 
bands from retinas of 6-month-old Tg2576 (***p < 0.0005 
versus littermate wild-type controls). This finding fits 
well with the strong immunoreactivity of AT8-hyper-
phosphorylated tau described in the brain parenchyma 
[57, 83–86] and in cross retinal sections from aged 
(10-month-old) Tg2576 [6] and human AD cases [15]. 
Strikingly, the 12A12 passive immunization reduced 
the specific AT8 tau-positive pattern (**p < 0.01 versus 

(See figure on next page.)
Fig. 2  The epitope-specific AD-like tau hyperphosphorylation and APP/Aβ dysmetabolism found in eyes from Tg2576 animals are strongly 
reduced by 12A12mAb i.v. injection. Western blots (a) of soluble retinal homogenates from three experimental groups (wild-type, Tg2576 and 
Tg2576 + mAb) probed with specific antibody against total (HT7), phospho- (AT8, P + Ser198/Ser202 epitopes) and dephospho- (Tau-1, P-Ser198/
Ser202 epitopes) tau protein. Arrows on the right side indicate the molecular weight (kDa) of bands calculated from migration of standard proteins. 
Semi-quantitative densitometric analysis (n = 6) of all retinal tau isoforms was shown in (b) by using β-actin for normalization. Values are from at 
least three independent experiments and statistically significant differences were calculated by one-way analysis of variance (ANOVA) followed 
by Bonferroni’s post-hoc test for multiple comparison among more than two groups. p < 0.05 was accepted as statistically significant (*p < 0.05; 
**p < 0.01; ***p < 0.0005; ****p < 0.0001). Western blotting probed with 6E10 (anti-Aβ/APP protein, 4-9aa) (c) showing that the immunoreactive 
bands of Amyloid Precursor Protein (APP)-derived, Aβ-containing processing intermediates were significantly reduced in retina and vitreous body 
from 12A12mAb-injected transgenic AD animals. Semi-quantitative densitometric analysis (n = 6) (d) was calculated by normalizing the smeared 
signal ranging between 12 and 95 kDa of each lane/sample (the region of interest, ROI) to corresponding β-actin intensities on the same blots. 
Values are from at least three independent experiments and statistically significant differences were calculated by one-way analysis of variance 
(ANOVA) followed by Bonferroni’s post-hoc test for multiple comparison among more than two groups. p < 0.05 was accepted as statistically 
significant (*p < 0.05; **p < 0.01; ***p < 0.0005; ****p < 0.0001)
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naive, saline-treated animals), as we previously reported 
to occur in the brain parenchyma [57]. Consistently with 
the upregulation in AT8 tau immunoreactivity of the 
55–70 kDa MW band, an inverse decrease in reciprocal 
signal was detected in Tg2576 mice (***p < 0.0005 versus 
wild-type controls) and in a 12A12mAb-dependent man-
ner (**p < 0.01 versus naive, saline-treated counterpart) 
by probing the filter with the complementary Tau-1 anti-
body (non-phospho Ser198/Ser202 epitopes) [87]. It is 
noteworthy that AT8 and Tau-1 antibodies specifically 
stain in a similar reciprocal pattern diseased tau from 
affected brain areas in late AD subjects [88]. Further-
more, by using an anti-pan tau HT7 mAb (159-163aa of 
N-terminus) which detects the total tau irrespective of 
its phosphorylation state, we found a significant eleva-
tion/accumulation of all protein isoforms in Tg2576 
samples (***p < 0.0005 versus littermate wild-type con-
trols), indicating that the APPSwe mutation induces per 
se an upregulation of endogenous murine tau protein in 
retinas of this transgenic animal strain. Interestingly, the 
steady-state expression level of the 100  kDa  MW band, 
a less predominant tau isoform which is more likely to 
correspond to the High-Molecular-Weight big tau pre-
sent only in peripheral neurons [89–91], also slightly 
increased under pathological conditions. However, as 
we previously found in the corresponding hippocampi 
[57], following 12A12mAb injection, the 55–70 kDa MW 
signals remained largely unchanged when transgenic 
animals were compared with their not-immunized coun-
terpart (p > 0.05), indicating that immunization per se did 
not aspecifically affect the overall expression of tau.

By probing retinal extracts from animals’ cohorts with 
the anti-Aβ/APP protein 6E10 (4-9aa) antibody (Fig. 2c, 
d), an increase in the expression level of APP full length 
holoprotein along with a prominent heterogeneous lad-
der of Aβ sequence-containing processing intermediates 
ranging between 14 and 70  kDa was clearly discernible 
in 6-month-old Tg2576 AD mice when compared with 
littermate wild-type controls (***p < 0.0005). As matter 
of fact a pronounced degradation of full-length over-
expressed APP was detectable at 6  months in this AD 
model, thus extending previous investigations on reti-
nas of 14-month-old aged animals [9]. Consistent with 
results from their diseased brain parenchymas [57], an 
overall weaker immunoreactivity pattern was calculated 
in the same animals’ ocular samples following immu-
nization with 12A12mAb (***p < 0.0005 versus naive 
not-injected conterpart). Notably, in retinal extracts of 
Tg2576 as well as in other mutated APP-overexpressing 
mouse strains, there was only a faint signal for Aβ pep-
tide at the expected apparent electrophoretic mobility of 
4 kDa [9]. This is in agreement with the evidence that the 
4 kDa Aβ peptide is generated in the peripheral nervous 

system at a lower extent than in the brain [9, 82], regard-
less of the local expression of APP and related amyloi-
dogenic processing secretases [74, 92]. Besides, when 
ocular fluids and vitreous bodies were analyzed by West-
ern blotting we found out a similar but less pronounced 
6E10-positive trend in extracellularly-secreted ocular 
amounts of APP/Aβ-derived immunoreactivity, further 
confirming the local anti-amyloidogenic effect following 
12A12mAb systemic treatment (***p < 0.0005 Tg2576 ver-
sus wild-type; **p < 0.01 Tg2576 + mAb versus not-immu-
nized counterpart).

Taken together, these data demonstrate that pathologi-
cal N-terminal truncation of tau with generation of the 
toxic 20–22  kDa tau fragment occurring in the eyes of 
Tg2576 AD is linked to the other two well-established 
pathognomonic features (AT8 site-specific tau hyper-
phosphorylation and APP/Aβ amyloidogenic processing) 
detected in their ocular structures (retina and vitreous 
body) and in a 12A12mAb-reversible manner, as we pre-
viously reported to occur in animals’ hippocampi [57].

The up‑regulation of inflammatory markers in retina 
of Tg2576 AD mice is relieved following 12A12mAb‑based 
immunization
The proper interaction between glia and neurons is 
known to contribute to retinal homeostasis [93]. Glial cell 
activation and related inflammatory responses have been 
previously described in retinas from human cases [17, 
94, 95] and from different transgenic mouse AD models, 
including Tg2576, together with neurodegeneration [5, 6, 
78, 96–99]. Therefore, we further examined the expres-
sion of Glial Fibrillary Acidic Protein (GFAP) and Iba1—
two cell-specific markers of astrocytes and microglia, 
respectively—to evaluate the degree of astrogliosis and 
microglia infiltration under our experimental conditions. 
Semi-quantitative densitometry of Western blotting anal-
yses carried out on soluble retinal extracts (Fig. 3a, b) dis-
played a significant upregulation of both GFAP and Iba1 
immunoreactivity intensity signals in naive 6-month-old 
Tg2576 mice when compared with wild-type controls 
(***p < 0.0005; **p < 0.01, respectively). More importantly, 
in relation with the antibody-mediated reduction of the 
NH2htau amount in ocular samples (Fig. 1a, b) and in a 
similar way we previously detected in hippocampi [57], 
the high expression levels of both GFAP and Iba1 mark-
ers—which are known to be linked with destruction 
of retinal functionality [6, 10]—were strongly reduced 
in Tg2576 retinas following 12A12mAb immunization 
(***p < 0.0005 versus sham-immunized counterpart).

Confocal analysis of GFAP staining in the Tg2576 mice 
retina showed marked astrogliosis (measured as fluo-
rescence intensity) localized at the level of the ganglion 
cell layer. Even though astrogliosis may arise also as a 
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Fig. 3  The inflammatory activation (reactive astrocytes and microglia) in retinas from AD transgenic animals is dampened by 12A12mAb treatment. 
Retinal homogenates extracts from animals of three experimental groups (wild-type, Tg2576 and Tg2576 + mAb) were analyzed by Western blotting 
for inflammatory proteins (GFAP, Iba1) (a). Semi-quantitative densitometric analysis (n = 6) of intensity signals (b) indicates lower levels of GFAP 
and Iba1 in Tg2576 mice + mAb compared to not-immunized counterpart. β-actin was used as loading control. Arrows on the right side indicate 
the molecular weight (kDa) of bands calculated from migration of standard proteins. Values are from at least three independent experiments and 
statistically significant differences were calculated by one-way analysis of variance (ANOVA) followed by Bonferroni’s post-hoc test for multiple 
comparison among more than two groups. p < 0.05 was accepted as statistically significant (*p < 0.05; **p < 0.01; ***p < 0.0005; ****p < 0.0001). 
Representative images of retinal slices from animals of three experimental groups (wild-type, Tg2576 and Tg2576 + mAb) immunolabeled with 
anti-GFAP antibody (red) and Hoechst for nuclei visualization (blue); Scale bar 35 μm (c). Quantification of GFAP area covered by fluorescent signal/
field of view (*p < 0.05 Tg2576 versus wild-type; *p < 0.05 Tg2576 versus Tg2576 + mAb; n = 8 slices/3 mice for each group; One-way ANOVA, 
post-hoc Bonferroni test) (d). e, f Representative images of retinal slices from animals of three experimental groups (wild-type, Tg2576 and 
Tg2576 + mAb) immunolabeled with anti-Iba1 antibody (green) and Hoechst for nuclei visualization (blue); Scale bar 35 μm (e). Quantification of 
number of microglia cells in the volume of each field of view (***p < 0.0005 wild-type versus Tg2576;***p < 0.0005 wild-type versus Tg2576 + mAb; 
n = 8 slices/3 mice for each group; One-way ANOVA post-hoc Bonferroni test). IL: inner layer; OL: outer layer
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consequence of aging, the amount of astrocyte activa-
tion was more pronounced in the AD retina compared to 
controls (Fig. 3c middle and left; *p < 0.05), as quantified 
by fluorescence intensity in each field of view. The level 
of astrogliosis was significantly reduced by 12A12mAb 
immunization (Fig. 3c, right; Fig. 3d; *p < 0.05 vs Tg2576).

Increased microglia reactivity in the retina, visualized 
as positive staining for Iba1 microglial marker, revealed 
that this cell type was mainly present in two layers: the 
inner plexiform and the outer plexiform layers (Fig. 3e). 
Microglia cell density was increased in Tg2576 retinas 
compared to age matched controls (***p < 0.0005, Fig. 3e 
left, middle). However, while 12A12mAb immuniza-
tion was able to reduce total Iba1 protein levels in retinal 
extracts, we did not find statistically-significant rescue of 
microglia cell density following treatment (Fig. 3f ).

Collectively, these findings indicate that the toxic 
NH2htau peptide can participate in  vivo to the patho-
logical glial activation occurring in eyes of symptomatic 
Tg2576 animals and that its antibody-mediated neu-
tralization is beneficial to the AD phenotype by exert-
ing an overall anti-inflammatory effect, as we previously 
reported in their brains [57].

Synaptic and microtubule retinal changes are mitigated 
and apoptosis is inhibited by i.v. 12A12mAb delivery 
in Tg2576 AD mice
Reduction of synaptic connectivity is considered the ear-
liest pathological change preceding the neuronal loss in 
AD subjects [100, 101] and early activation of apoptotic 
markers is causally associated with pathological tau trun-
cation in AD brains [102–105]. Therefore, we evaluated 
the effect of NH2-truncation of tau on the retinal nerve 
terminals and the degree of cell death in 6-month-old 
Tg2576 mice before and after the 12A12mAb immuni-
zation. SDS-PAGE resolution of soluble extracts from 

retinas of the three experimental groups was analyzed 
with antibodies against known pre- and post-synaptic 
proteins, including the N-Methyl-D-aspartate (NMDA) 
receptor subunits 1 (NR1), synapsin I, syntaxin 1, synap-
tophysin, SNAP25, α-synuclein and the cleaved (Asp162) 
caspase-6 active form (Fig. 4a, b). Semi-quantitative den-
sitometric analysis of immunoblots from synaptic pro-
teins showed that, unlike SNAP25 and α-synuclein, the 
intensity of signals of the 120  kDa NR1, 75  kDa synap-
sin I, 38KDa synaptophysin and 35 kDa syntaxin 1 bands 
were significantly lower in transgenic mice than in litter-
mate controls (*p < 0.05; **p < 0.01; ***p < 0.0005). Under 
these experimental conditions, the normal retinal expres-
sion of synaptic markers [106, 107] was strongly affected 
by tau truncation, in line with previous in  vivo studies 
referring a major role of protein hyperphosphorylation 
in promoting the reduction of synaptophysin protein 
abundance during eye injury [108]. Furthermore, the reti-
nal neurodegeneration measured as immunoreactivity 
of cleaved caspase-6—which is known to be activated in 
injured adult retinal ganglion cells [109, 110]—was higher 
in naive Tg2576 mice (***p < 0.0005) in comparison with 
wild-type controls. This finding is in line with previous 
investigations reporting that apoptotic signs are detected 
early in the eyes of 3xTg mice, another AD-relevant ani-
mal model with retinal tau accumulation and degenera-
tion [99]. More importantly, loss in retinal synapses was 
largely sensitive to 12A12mAb immunization because 
the steady state level of synaptic markers appeared to be 
significantly upregulated in the Tg2576 group following 
antibody delivery in comparison with the not-injected 
counterpart (**p < 0.01; ***p < 0.0005). Likewise, the acti-
vation of caspase-6 effector found in transgenic retinas 
was significantly decreased following 12A12mAb injec-
tion (***p < 0.0005).

(See figure on next page.)
Fig. 4  Immunotherapy with 12A12mAb mitigates the AD-associated synaptic and apoptotic changes and prevents the microtubule destabilization 
in retinas from diseased animals. Western blotting analyses (a) were carried out on equal amounts of total protein extract (50 µg) from retinas of 
animals of three experimental groups (wild-type, Tg2576 and Tg2576 + mAb). Immunoblots were probed with antibodies against several pre- and 
postsynaptic proteins—including the N-Methyl-D-aspartate (NMDA) receptor subunits 1 (NR1), synapsin I, synaptophysin, syntaxin 1, SNAP25, 
α-synuclein and the active (cleaved) form of caspase-6 (Asp162). Data were quantified for molecular weight size ranges for each antibody and 
normalized to β-actin which was used as loading control. Relative intensity of each protein was calculated and semi-quantitative densitometric 
analysis (n = 7) is shown (b). Arrows on the right side indicate the molecular weight (kDa) of bands calculated from migration of standard proteins. 
Statistically significant differences (see details in the main text) were calculated by one-way analysis of variance (ANOVA) followed by Bonferroni’s 
post-hoc test for multiple comparison among more than two groups. p < 0.05 was accepted as statistically significant (*p < 0.05; **p < 0.01; 
***p < 0.0005; ****p < 0.0001). The functional integrity of axonal track was evaluated by probing the immunoblots with antibodies against the 
acetyl- and tyrosinylated-α-tubulin, as markers for stable and unstable/dynamic microtubule respectively (c). Data were quantified for molecular 
weight size ranges for each antibody and normalized to β-actin which was used as loading control. Relative intensity of each protein was calculated 
and semi-quantitative densitometric analysis (n = 6) is shown (d). Arrows on the right side indicate the molecular weight (kDa) of bands calculated 
from migration of standard proteins. Statistically significant differences (see details in the main text) were calculated by one-way analysis of variance 
(ANOVA) followed by Bonferroni’s post-hoc test for multiple comparison among more than two groups. p < 0.05 was accepted as statistically 
significant (*p < 0.05; **p < 0.01; ***p < 0.0005; ****p < 0.0001)
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Cytoskeleton destabilization followed by impairment in 
axonal transport is a crucial factor contributing to synap-
tic deterioration in AD. Tau, which belongs to the fam-
ily of microtubule-associated proteins (MAP), is crucially 
involved in the maintenance of microtubule assembly 
and integrity [53]. Therefore, we investigated the dynamic 
state of microtubule network in retinal homogenates 
from the three experimental groups by Western blotting 
(Fig.  4c, d) with antibodies against acetyl (stable)—and 
tyrosinylated (unstable)-α-tubulin, which are considered 
two reliable markers for stable and unstable/dynamic 
microtubules respectively. Interestingly, in Tg2576 AD 
mice, the immunoreactivity level of stable acetylTub was 
strongly decreased when compared with their littermate 
controls (***p < 0.0005) but significantly restored after 
injection with 12A12mAb (*p < 0.05). Consistently, an 
inverse trend was detected for the tyrTub-signal whose 
increment in naive transgenic animals (***p < 0.0005) was 
significantly downregulated up to physiological baseline 
after administration of 12A12mAb (***p < 0.0005). These 
results are in good agreement with the 12A12mAb-
dependent reciprocal changes in AT8/Tau-1 intensity 
pattern (Fig.  2a, b) that we detected under the same 
experimental conditions. These findings suggest that the 
treatment with antibody is more likely to normalize the 
cytoskeleton dynamics via site-specific phosphorylation 
of endogenous murine tau, which is critically involved in 
modulating the assembly/polymerization of the microtu-
bule network.

Taken together, these results demonstrate that, in addi-
tion to stimulating the inflammatory response, the toxic 
NH2htau peptide can also impinge on retinal synaptic 
proteins—likely as a consequence of the microtubule 
breakdown—and on the extent of local caspase-depend-
ent cell death in Tg2576 AD model.

Intravenous delivery of 12A12mAb partially normalizes 
the neurochemical alterations in retinas of Tg2576 AD mice
Aberrant excitatory activity and compensatory remod-
eling of inhibitory hippocampal circuits, which lead to 
neural network dysfunction, play a crucial role in cogni-
tive deficits in hAPP-expressing mice including Tg2576 
[111, 112] and, possibly, also in humans suffering from 
AD. In the inner retina, the functional circuitry is mainly 
controlled by cooperative glutamatergic, cholinergic and 
GABAergic mechanisms involving the amacrine cells 
which establish glutamatergic synapses with bipolar 
cells in Outer Plexiform Layer (OPL) and Inner Plexi-
form Layer (IPL) and receive GABAergic and cholinergic 
inputs from other amacrine cells [113]. Amacrine cells, 
together with horizontal cells, modulate neurotransmis-
sion along the synaptic axis, including photoreceptors 

(cones and rods), bipolar and ganglion cells whose axons 
(optic nerve) convey the signal to the visual cortex.

Thus, we investigated whether the ocular changes in 
synaptic protein expression were also associated with 
concomitant neurochemical alterations in 6-month-old 
Tg2576 mice and in a 12A12mAb-dependent manner. 
To these aims, Western blotting analysis was carried 
out on retinal homogenates from the three experimen-
tal groups with antibodies against Choline AcetylTrans-
ferase (ChAT), Muscarinic acetylcholine receptor (M1), 
vesicular GLUtamate Transporter1 (vGLUT1) and 
vesicular GABA Transporter (vGAT) (Fig.  5a). Interest-
ingly, a statistically significant (***p < 0.0005) reduction 
in 68  kDa ChAT signal was detected in naive Tg2576 
when compared to their littermate wild-type controls 
accompanied by an inverse, likely compensative, increase 
in 52  kDa M1 immunoreactivity (*p < 0.05). Strikingly, 
12A12mAb immunization restored the protein expres-
sion levels of these two cholinergic markers from trans-
genic AD mice up to physiological baseline (***p < 0.0005; 
**p < 0.01). A similar trend was detected for the gluta-
matergic vGLUT1 signal, whose upregulation was found 
to be pronounced (**p < 0.01) in the untreated transgenic 
group but significantly diminished after i.v. injection 
with 12A12mAb (*p < 0.05). On the contrary, 12A12mAb 
delivery appeared to be ineffective in balancing the inten-
sity of vGAT, a GABAergic marker found to be slightly 
increased in Tg2576 AD animals (*p < 0.05), because no 
significant difference was found when the untreated 
transgenic group was compared to its antibody-treated 
counterpart (n.s. = not significant).

Collectively, these results show that the pathological 
accumulation of the toxic NH2htau peptide in eyes of 
Tg2576 mice is associated with changes in cholinergic, 
glutamatergic and GABAergic neurotransmission in a 
way resembling the disruption in the excitatory-inhib-
itory balance occurring in the vulnerable circuitries of 
their AD-affected brains.

Mitochondrial metabolism and ATP production 
in the retinas of Tg2576 AD mice are restored by treatment 
with 12A12mAb
Mitochondrial perturbations and axonopathy are promi-
nent features of human tauopathies, including AD [114, 
115]. Similarly to the brains, the accumulation of patho-
logical tau impairs the mitochondrial metabolism and 
axonal transport in 3xTg mouse retinas [63] and in a 
model of diabetic retinopathy [108].

In view of these considerations, by Western blotting 
analysis on retinal protein extracts from three experi-
mental groups, we investigated the mitochondrial sta-
tus with antibodies against several key structural and 
functional proteins, including the Optic Atrophy Type 1 
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(OPA1), a dynamin-related GTPase controlling the orga-
nelle dynamics (mitophagy), the mitochondrial outer 
membrane translocase 20 (TOMM 20) and the Voltage-
Dependent Anion-selective Channel 1/porin (VDAC 1), 
which allow for the conductance of molecules into and 
out of the organelle, the Manganese SuperOxide Dis-
mutase (MnSOD), which is an antioxidant enzyme with 

reactive oxygen species (ROS) scavenging activity and the 
Cytochrome c (Cyt c), which catalyzes the last steps in 
the ETC for ATP synthesis.

Strikingly, semi-quantitative densitometry of signal 
intensities from immunoblots (Fig.  6a, b) showed that 
the steady-state expression levels of VDAC 1, MnSOD, 
TOMM 20, and Cyt c were downregulated in Tg2576 

Fig. 5  Neurochemical abnormalities occurring in the retinas from Tg2576 AD mice are responsive to treatment with 12A12mAb. Representative 
images of Western blotting analyses (a) carried out on equal amounts of total protein extract (50 µg) from retinas of animals of three experimental 
groups (wild-type, Tg2576 and Tg2576 + mAb). Filters were probed with antibodies against the Choline acetyltransferase (ChAT), the muscarinic 
acetylcholine receptor (M1), the vesicular GLUtamate transporter1 (vGLUT1), the vesicular GABA transporter (vGAT). Data were quantified for 
molecular weight size ranges for each antibody and normalized to β-actin which was used as loading control. Relative intensity of each protein 
was calculated and semi-quantitative densitometric analysis (n = 6) is shown (b). Arrows on the right side indicate the molecular weight (kDa) of 
bands calculated from migration of standard proteins. Statistically significant differences were calculated by one-way analysis of variance (ANOVA) 
followed by Bonferroni’s post-hoc test for multiple comparison among more than two groups. p < 0.05 was accepted as statistically significant 
(*p < 0.05; **p < 0.01; ***p < 0.0005; ****p < 0.0001)
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AD mice in comparison with their littermate wild-
type controls (***p < 0.0005; **p < 0.01) but signifi-
cantly rescued after i.v. administration of 12A12mAb 
(***p < 0.0005; **p < 0.01). Conversely, no significant 
change was detected among the three experimen-
tal groups in the immunoreactivity of OPA 1 whose 
genetic knockdown is linked to Autosomal Domi-
nant Optic Atrophy (ADOA), a hereditary disorder 

characterized by progressive loss of vision following 
alteration in mitochondrial network [116].

To further deepen these findings, we performed analy-
ses of the mitochondrial content, the repiratory chain 
activity and the ATP content (Fig.  7a–c). In detail, the 
mitochondria content as well as mitochondrial respira-
tory capacity were estimated in total homogenates from 
animals’ retina specimens by measuring spectropho-
tometrically the activities of citrate synthase (CS) and 

Fig. 6  Targeting of tau truncation by i.v. 12A12mAb injection protects against the alterations in expression level of mitochondrial proteins 
occurring in the retinas from Tg2576 AD mice. a, b Equal amounts of total protein extract (50 µg) from retinas of animals of three experimental 
groups (wild-type, Tg2576 and Tg2576 + mAb) were analyzed by SDS-PAGE with specific antibodies against several mitochondrial markers, including 
the Optic Atrophy Type 1 (OPA1), the outer membrane translocase 20 (TOMM 20), the Voltage-Dependent Anion-selective Channel 1/porin (VDAC 
1), the Manganese SuperOxide Dismutase (MnSOD) and the Cytochrome c (Cyt c). Data were quantified for molecular weight size ranges for each 
antibody and normalized to β-actin which was used as loading control. Relative intensity of each protein was calculated and semi-quantitative 
densitometric analysis (n = 6) is shown (b). Arrows on the right side indicate the molecular weight (kDa) of bands calculated from migration of 
standard proteins. Statistically significant differences were calculated by one-way analysis of variance (ANOVA) followed by Bonferroni’s post-hoc 
test for multiple comparison among more than two groups. p < 0.05 was accepted as statistically significant (*p < 0.05; **p < 0.01; ***p < 0.0005; 
****p < 0.0001)
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Fig. 7  Mitochondrial ATP-production is significantly recovered in retinas from Tg2576 AD mice following passive immunization with 
12A12mAb. Analyses of mitochondrial functionality (n = 8) carried out on homogenates from retina specimens are shown. a Citrate synthase 
(CS) and cytochrome oxidase (COX) specific activities measurements. b MRC complex activities: the activities of complex I (NADH:ubiquinone 
oxidoreductase), complex II (succinate:ubiquinone oxidoreductase), complex III (cytochrome c reductase), complex IV (cytochrome c oxidase) 
and complex V (ATP synthase). A schematic representation of OXPHOS system is also reported in the inset. c The cellular ATP content. Statistically 
significant differences were calculated by one-way analysis of variance (ANOVA) followed by Bonferroni’s post-hoc test for multiple comparison 
among more than two groups. p < 0.05 was accepted as statistically significant (*p < 0.05; **p < 0.01; ***p < 0.0005; ****p < 0.0001)
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citochrome oxidase (COX), respectively. Of note, CS is 
an enzyme of the Krebs cycle, encoded in cell nucleus, 
synthesized on cytoplasmic ribosomes and transported 
into the mitochondrial matrix. It is one of the best indi-
cators for mitochondrial content in tissues [117], since it 
is considered as a stably-expressed enzyme in a specific 
tissue [118–120]. COX activity, an enzyme controlled 
by both nuclear and mitochondrial genomes, catalyzes a 
step in the mitochondrial electron transfer chain (ETC) 
and was chosen as the reference for the oxidative phos-
phorylation (OXPHOS) system activity because this 
enzyme constitutes the last step in the mitochondrial 
respiratory chain (MRC) and, likely, it is limiting its elec-
tron flux [65]. Results displayed large differences in the 
specific activities (normalized by the total tissue homoge-
nate protein content) of CS and COX occurring among 
ocular specimens. Consistent with the notion that cells 
losing mitochondrial mass are unable to efficiently meet 
bioenergetic needs [121], a positive and highly significant 
correlation (R2 = 0.968) was found between CS and COX 
activities per cell indicating that the samples having the 
lowest/highest COX activity also had the lowest/highest 
CS activity.

As shown in Fig.  7a, both CS and COX activities 
were found to decrease in Tg2576 AD mice when com-
pared with littermate wild-type controls (****p < 0.0001) 
and significantly rescued after i.v. 12A12mAb delivery 
(****p < 0.0001). We then investigated bioenergetic fea-
tures of the OXPHOS system (Fig.  7b), by determining 
the individual activities of mitochondrial complexes I–V 
composing the mETC and the cellular ATP levels. When 
compared with wild-type controls, the analysis of the five 
MRC complexes in retinas from Tg2576 mice revealed a 
significant reduction in the activities of complexes I and 
IV (****p < 0.0001) which were recovered by 12A12mAb 
injection nearly up to the physiological wild-type control 
baselines (****p < 0.0001). On the contrary, no signifi-
cant difference in the activity of complex II and complex 
III was detected among the three experimental groups 
(p > 0.05). Besides, the ATP synthase (complex V) activ-
ity was also markedly downregulated in Tg2576 samples 
(****p < 0.0001) and restored, althought to a lesser degree, 
following 12A12mAb immunization in statistically-sig-
nificant manner (****p < 0.0001). Consistent with a strong 
impairment of OXPHOS in Tg2576 AD mice, the over-
all content of ATP—which is generally considered a good 
indicator of the cellular healthy conditions [122]—was 
drastically lower in AD transgenic mice than in their lit-
termate wild-type controls (****p < 0.0001) with a nearly 
complete rescue to control values following 12A12mAb 
immunization (****p < 0.0001) (Fig.  7c). In combina-
tion with biochemical data on synaptic expression and 
cytoskeleton integrity (Fig.  4a–d), these results strongly 

support the hypothesis that in Tg2576 AD mice the 
endogenously-generated NH2htau fragment can impinge 
on retinal degeneration, and possibly on animals’ visual 
disability, via direct and/or indirect changes of mito-
chondrial metabolism: (1) by promoting the microtu-
bule breakdown which causes impairment of axonal 
trafficking, including mitochondria and synaptic vesi-
cles, towards the terminal ends; (2) through inhibition of 
OXPHOS energy production which further exacerbates 
the synaptic starvation and derangement.

These findings confirm and further extend our pre-
vious studies reporting a noxious effect exerted by 
NH2htau fragment on the normal physiology of neu-
ronal mitochondria in AD [52, 53], demonstrating that 
its 12A12mAb-mediated in vivo clearance could be also 
exploited to mitigate the visual deficits associated with 
mitochondrial dysfunction due to the retinal accumula-
tion of pathogenetic tau species [63, 108].

Discussion
It is now largely recognized that the retina faithfully mir-
rors some pathological events occurring in the brain [14]. 
The importance of studying the ocular manifestations in 
AD pathology stems from the evidence that the retina, 
being a simple and accessible experimental system, can 
be used as a molecular proxy to diagnose early degen-
erative alterations in the brain before the neuronal loss 
is irreversible and/or to refine therapeutic strategies [1, 
123–125]. Alterations in APP/Aβ and tau metabolism, 
mitochondrial dysfunctions, defects in axonal transport, 
synaptic remodeling, neuroinflammation are all patho-
physiological changes detected in both AD and retinal 
decay [14, 126], enabling thus the interchange of knowl-
edge in terms of underlying pathogenetic mechanisms 
and therapeutic intervention [16].

The current study unveils for the first time that, in 
addition to Aβ deposits and tau-positive aggregates [16, 
18, 127], the aberrant tau cleavage is another common 
pathological feature shared by AD-affected neuroretina 
and brain. Consistent with this finding, we discover that 
truncation at the N-terminal domain of tau is closely 
linked to degeneration both of the retinas and vitreous 
bodies from 6-month-old Tg2576 transgenic mice which 
overexpress a mutant form of amyloid precursor protein 
(APP), APPK670/671L, linked to early-onset familial AD. 
This well-established animal model carrying endogenous 
murine not-mutated tau, represents an ideal model to 
study the AD-associated changes, both in the retina and 
in the brain. Indeed, Tg2576 mice show progressive reti-
nal ganglion cell loss and visual disabilities, features that 
develop together with other known ocular pathologi-
cally-relevant changes such as APP/Aβ misprocessing 
[128], tau hyperphosphorylation/oligomerization [63, 
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78], gliosis [129, 130], loss of synaptic proteins, altera-
tion in mitochondrial functions and neuronal death [1, 
16, 108]. Alterations of tau metabolism (aggregation, 
hyperphosphorylation) have been previously associated 
with deterioration of retinal structures in AD subjects 
and tauopathies of animal models [7, 8, 15, 77, 78, 80]. 
Increased susceptibility to excitotoxic injury and changes 
in pathways of neurotrophic factor signal transduction 
are detected in the retina of the P301S mutant human 
tau transgenic animals [131, 132]. Consistently, genetic 
reduction of tau accumulation occurring in Retinal Gan-
glion Cells (RGC) and optical nerves of 3-month-old 
3xTg-AD mice significantly improves cell density and 
functionality [63]. Interestingly, tau-mediated patho-
genic mechanisms are also involved in other age-related 
oculopathies, as shown by decreased tau levels in the 
retina [133] and increased levels of tau in the vitreous 
of patients bearing glaucome and diabetic retinopathy 
[134]. In this context, our in vivo results linking the tau 
truncation to pathological ocular changes occurring in 
symptomatic Tg2576 mice offer new insights into the tau-
dependent events characterizing the retina and vitreous 
humor in AD conditions. Besides, our biochemical evi-
dence show that upregulation in the immunoreactivity of 
the APP695 isoform and AT8 phospho-tau can be already 
detected in eyes of these mice at 6  months of age, fur-
ther extending previous in vivo studies on older animals 
(14/18-month-old) [6, 9]. With regard to Western blot-
ting analysis on the expression levels of selective synap-
tic proteins, the alterations are partially in contrast with 
other immunohistological investigations showing that 
the density of PSD95 and synaptophysin—two markers of 
postsynaptic and presynaptic integrity—are unchanged 
in Tg2576 retinal sections up to 14  months of age [72]. 
We think that this discrepancy could be due to the use 
of experimental procedures with different sensitivity 
(biochemical versus histologic methods), the dissimilar-
ity between the analyzed retinal regions and the poten-
tial occurrence of compensative age-related changes in 
dendritic complexity which can, indirectly, preserve the 
synaptic number and, then, the synaptic density. Of note, 
in this study [72], only female Tg2576 are used while, in 
another one [135], only male Tg2576 are employed with 
no apparent differences in retinal degeneration among 
the two sexes. Moreover, the detrimental action we found 
on retinal synaptic and mitochondrial functions exerted 
in  vivo by tau truncation fits well with investigations 
referring a pivotal role of AD-like site-specific hyper-
phosphorylation at serine 396 (S396) and 404 (S404) 
and threonine 205 (T205) and 231 (T231) of protein, in 
causing the visual deficits associated with diabetic reti-
nal neurodegeneration [108]. It’s also worth noting that, 
in this mutated APP-overexpressing genetic background, 

we are unable to discriminate between the direct and 
indirect effects induced by in  vivo neutralization of the 
toxic NH2htau fragment following 12A12mAb immuni-
zation. Besides, a tight connection between pathological 
tau and APP/Aβ dysmetabolism would drive the disease 
pathway through truncated N-tau with further increasing 
APP/Aβ levels along a self-perpetuating destructive cycle 
[136]. Therefore, the present study strengthens and fur-
ther extends our previous results [57] showing that: (i) an 
interplay occurring between APP/Aβ misprocessing and 
post-translational modifications of endogenous murine 
tau is more likely to drive the AD-like neurodegeneration 
in APP-expressing Tg2576 animal model and (ii) reduc-
ing tau pathology via the Aβ pathway can be a good ther-
apeutic strategy, both in the retina and brain.

From a translational point of view, an interesting find-
ing of this study is the evidence that the pathogenic 
N-terminal truncated 20–22 kDa tau peptide is expressed 
at high levels both in different ocular structures (retina 
and vitreous body) and in brain parenchyma of Tg2576 
AD mice [57]. Considering that the eye is structur-
ally less complex and more accessible than the brain, 
the current observation features the retina and vitre-
ous humor—which can provide indirect information on 
retinal microenvironment [92, 126]—as reliable sources 
of clinically-predictive, tau-based ocular biomarkers of 
AD cerebral neurodegeneration. Consistently, by using 
a qualitative cross-sectional approach, den Haan et  al. 
[15] have recently reported that statistically-significant 
differences in tau hyperphosphorylation (AT8, AT100, 
AT270) are distinctly visible in the retina of AD autop-
tic specimens in comparison with age-matched not-
demented controls. In this framework, since the retinal 
staining by 12A12mAb is mainly confined to the Gan-
glion Cell Layer (GCL, the output neurons of the eye) as 
shown for hyperphosphorylated tau in eyes of tauopathy 
transgenic models [79] and AD cases [15], the pathogenic 
N-truncated tau could be exploited as feasible and acces-
sible candidate for the visual exploration of AD pathology 
by in  vivo-imaging techniques [124, 137]. Furthermore 
this tau peptide, as demonstrated for APP/Aβ-derivates 
[92], appears to follow in ocular fluids of the Peripheral 
Nervous System (PNS) a similar pattern to that observed 
in the Central Nervous System (CNS) where it is pri-
marily generated in neurons and released into the Cer-
ebroSpinal Fluid (CSF). To this regard, we and other 
reasearch groups have reported that this tau-derived sol-
uble specie(s) accumulates at human AD presynaptic ter-
minals [53, 54, 64, 73] and is present in CSF from patients 
suffering from AD and other related tauopathies [52, 
138]. Besides, the future employment of not-invasive reti-
nal imaging and eye-based protein biomarkers for early 
diagnosis and monitoring therapeutic efficacy is widely 
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fostered by the recent finding that the quantification of 
Aβ1-40/1–42 and total tau levels in the vitreous, an ocu-
lar fluid which is considered to be a direct indicator of 

the underneath suffering retina, has predictive clinical 
utility in the clinical practice of AD [76].

The preclinical results from this study show that the 
neuroprotective effects offered by 12A12mAb delivery 

Fig. 8  12A12mAb as novel tau-directed immunotherapeutic tool for the clinical treatment of retinal degeneration associated with AD. a A 
graphical illustration showing the parallel neuroprotective effects of 12A12mAb on both aging brain [136] and eye. b Schematic representation 
showing the 12A12mAb-mediated neutralization of the AD-relevant N-truncated tau fragment residing in ocular structures and its beneficial 
actions on alterations associated with visual impairment in Tg2576 animal model
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on the eyes from Tg2576 AD model (Fig. 8) are paralleled 
by the contextual improvement in hippocampal-depend-
ent cognitive functions owing to antibody-mediated 
paired reduction of the 20–22  kDa tau fragment [57]. 
This observation demonstrates that the production and/
or the clearance of this AD-relevant pathogenic tau 
specie(s) [139], either in the neuroretina and in the brain, 
are tightly interwined and both strongly responsive to 
immunotherapy. Consistent with this finding, the in vivo 
12A12mAb-mediated neutralization of the 20–22  kDa 
tau fragment in eyes occurs, as in the brain [57], in the 
absence of reactive gliosis which, on the contrary, appears 
to be a harmful byproduct of the mechanism of action 
of Aβ-directed antibodies. However, the evidence that 
delivery of 12A12mAb dampens the local retinal inflam-
mation (as evidenced by astroglial and microglial activa-
tion) suggests that a more complex neuron-glia interplay 
occurs in  vivo since the reduction of Aβ retinal depos-
its, following vaccination with Aβ oligomer antigens, is 
shown to provoke in Tg2576 mice an opposite exacerba-
tion of microglial infiltration and astrogliosis followed by 
disruption of retinal architecture [6]. Besides, these find-
ings confirm previous investigations reporting that the 
genetic reduction of tau expression by intravitreal injec-
tion of targeted siRNA, ameliorates the axonal transport 
[63], the synaptic and mitochondrial defects [108] in 3xTg 
AD mice and in a High-Fat Diet (HFD)-induced animal 
model of diabetic retinopathy, leading to improvement 
of their visual abnormalities [108]. It is also worth noting 
that 12A12mAb is a cleavage-specific neoepitope anti-
body which selectively engages the 20–22 kDa neurotoxic 
form of tau [57], prospecting thus its safe administration 
in human beings in the absence of deleterious “loss of 
function”of the physiological full-length protein [140–
143]. Our in vivo study is also consistent with the signifi-
cant protection afforded by systemic administration of an 
Aβ-targeting specific antibody in a model of age-related 
macular degeneration (AMD) [81, 144]. APOE4-targeted 
replacement mice fed with a High Fat Cholesterol (HFC)-
enriched diet present Aβ-containing deposits in the 
retinal pigmented epithelium (RPE) and deficits in the 
electroretinographic response, which are indicative of an 
impaired visual function. Ding et al. [81, 144] report that 
the passive immunotherapy by means of i.v. delivery of 
an antibody targeting the C-termini of Aβ40 and Aβ42 is 
able to significantly reduce ocular Aβ deposits in APOE4-
HFC mice and, then, to preserve retinal function through 
a mechanism which is consistent to the peripheral sink 
hypothesis [145]. Alternatively, the glymphatic pathway 
of CSF—which enters the optic nerve via spaces sur-
rounding blood vessels bordered by AQuaPorin (AQP)4-
positive astrocytic end-feed [146–148]—could be also 
taking part in  vivo in the antibody-mediated draining 

of pathological tau. The effectiveness of 12A12mAb on 
retinal decay of Tg2576 mice is also confirmed by the 
experimental evidence that the microtubule stability, 
the amount and metabolic state (evaluated on both the 
activities of respiratory chain and energy production) of 
mitochondria are markedly recovered after its in  vivo 
systemic administration, nearly up to their physiological 
baselines. Relevantly, post-mitotic neurons have reduced 
glycolytic capacity and, then, strongly rely for energy pro-
duction on mitochondria which are largely abundant and 
crucial for the survival of in RGCs endowed with great 
metabolic demand [149]. An interesting study [150] has 
recently reported parallels between retinal and brain 
pathology and in response to immunotherapy with Glati-
ramer acetate, an FDA‐approved drug which promotes 
microglial-mediated Aβ clearance in old APPSWE/
PS1∆E9 ADtg mice. In this study, paired brains and eye-
balls were collected at the end of the last injection and 
processed for biochemical and morphological analyses. 
We have immunized animals under the identical/overim-
posable experimental conditions (age, sex, antibody dos-
age, administration route, time of treatment and so on) 
that we previously carried out in analyzing their brain 
tissues [57]. As a matter of fact, although brain and eye 
are not part of the same animal, we have detected a frank 
correlation between retinal and hippocampal pathol-
ogy and in response to immunotherapy. Finally, here we 
provide biochemical and morfological assessments and 
evaluation of mitochondrial metabolic activity and ATP 
production. We neither monitored the retinal activ-
ity by analysis of b-wave ElectroretinoGrams (ERGs) 
and nor performed the visual acuity performance test 
on the three experimental groups (wild-type, Tg2576, 
Tg2576 + mAb), but these functional parameters are 
under current investigation.

Conclusions
This preclinical study, carried out on the well-established 
AD-like Tg2576 animal model indicates that the assess-
ment of retinal tau truncation can be reliably used to 
diagnose and monitor brain pathology and cognitive sta-
tus before neuronal loss becomes irreversible. In addi-
tion, these data provide for the first time the feasibility of 
tau-directed immunotherapy in ameliorating both cer-
ebral and extracerebral manifestations associated in vivo 
with AD pathology.
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