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Abstract. The problem of defining and computing proximity of regions constraining objects from
generic mekric spaces is investigated. Besides other possibilities, the proximity measure can be ap-
plied to improve the performance of metric data indexes through eptimized gplitting and merging
of regions, pruning regions duving similarity retrioval, ranking regions for besb case matching, and
declustering regions to achieve parallelism. Approximate, computationally fast, approach is devel-
oped for pairs of metric ball regions, which covers the needs of current systems lor processing of
distance data. The validity and precision of proposed solution is verified by extensive simulation on
tliree substantially different data files. The results of experimcnts are ve

v positive,

Categories and Subject Descriptors: E.1 [Data Structures): Trees; E.5 [Files]: Search-
ing: H.2.2. [Database Management]: Plysical Design - Access methods

Other Keywords: information retrieval, distance-only data, metric regions, algoritluns, per-
formance evalnation

1 TIntroduction

[n order to speedup retricval in large collections of data objects, storage (index) structures are
developed and used. Contrary to traditional databases organizing simple sets of formatted items,
current multimedia data occupy much more space and have very complex imbernal structures.
The search is not performed at the level of actual (raw) multimedia objects, but on characteristic
fentures that are oxtracted from these objects. Featnres are typically high-dimensional vectors
or some other objects for which nothing more than pair-wise distances in specilic melric space
can be measured. The latter type of data is sometimes designated as the metric data or the
distance data. T stch environments, exach match has little meaning and concepts of girnatarily,
(dissimilority) ave typically used for searching.

Though numerous designs of storage structures exist, the common underlying principle is
the partitioning of object files into subgroups, called partitions, and hounding them in specific
regions. The motivation is to achieve a structure where, once a query is issued, only some of its
regions have to be examined in order to find qualifying obiects. However, contrary to partitions,
which contain disjoint sets of objects, regions can overlap.

Inn traditional databases of sitaple sortable domains, regions do not overlap. But with multi-
dimensional keys, non-overlapping regions are difficult to maintain, and structures such as the
R-trec [Gu84d] or X-tree [BKKI6] allow for overlapping regions. Consequently, the namber of



searched regions for a query increases, and index search cfficiency goes down. In order to devise
strategies aiming at creation of non {(or little) overlapping regions, the phenomenon of region
prozimity has been defined to provide an objective support for answering questions such as: how
close two regions are, how much they overlap? In multi-dimensional vector spaces, the proximity
can be expressed in termns of volumes and intersections of hyper-rectangles. As an example,
[KF92] shows how proximity can be used to decluster nodes of R-trees to achieve parallelism.

In order to betier capture objects’ content, thus trying to enlarge the sot of data types for
which efficient search is possible, more recent approaches to index multhnedia, genomic, and
many non-traditional databases have considered the case where keys are not restricted to stay
in a vector space, and only pair-wise object distances can he computed. This approach, which
subsumes the case of multi-dimensional keys, has generalized the notion of similarity gueries
and resulted in the design of so-called metric trees. Although several metric storage structures
have been proposed, see for example [Ch94.Br95.BO97,CPZ97,B0Y9], their algorithms for par-
titioning and organizing objects in regions are based on heuristics that have no clearly defined
guiding principles to rely upon. Naturally, the performance of such structures is not optimum,
and practical experience confirvins that there is still a lot of space for improvement. We believe
that the basic reason for this state of affairs is the absence of the notion of region prowimaty in
generic metric spaces ~ due to the absence of coordinates, the techniques used in vector spaces
cannot be applied here.

Since our rather theoretical problem is strictly motivated by pragmatic needs, we have sought
for practical solutions. As a result, we propose technigues of computing proximity that satisfy the
following criteria: (1) the measures are reliable indications of the reality and provide proximity
with suflicient precision; (2) the cost of calculating the measures is low; (3) the measures are
able to adapt to changed environments, i.c. different metrics and different data files; (4) the
necessary storage overhead is moderate.

In the following. Section 2 introduces some application scenarios where region proximily
can be useful, Section 3 formalizes the problem and proposes a solufion, Scction b presents
experimental resulis ihatb validate the proposed approach, aud finally Section 6 concludes with
suggestions for luture research.

2  Application Considerations

[n order to lustrate the dominant role of metric vegions” proximity in the development of search
mwechanisms, consider the issues of partilioning. allocation, and venking.

Partitioning Partitions constrained by regions are typically stored in storage buckets (free
nodes, pages, or blocks of data) that require some costs to access. Static regions arve nob very
ific splilling and

typical and the cvolution process in storage structurcs is regulated by spec
merging procedures. When a region R splits, two new regions. say ®; and Rs, are created.
By analogy, two regions, Ry and R, can merge to form a single region R. Notice thatl regions
R1 and Ro can have arbitrary positions, so they are not necessarily disjoint. Considering a
specific objective Tunction, one way of splitting a region can be more advantageous than another
gplit - content of a region can fypically be split in several ways. In particular, when after aplit
regions overlap a lot, the probability of accessing hoth of the regions for some queries is high.
Similarly, when specific region is to be merged with other region from a candidate set, not all



these possibilities are of equal significance. That means, a quantitative measure of the quality of
pariibioning (splitting or merging) is important,

Allocation When a new region appears, it must be placed in storage system. In such situation,
metric region measures can be usetul for finding a suitable storage bucket in which the partition
is to be allocatad. Obviously, the strategy is different for single and multiple (independent) disks
— multiple disks can support parallel processing. If parallel disks are available, regions with high
proximity should not be put on the same disk, i.c. the regions should be declustered. On a single
disk, regions with high probability to be accessed together should be placed as close as possible,
i.e. clustered. Naturally, the problems of clustering and declustering of data on secondary storage
are quite complex, but main problem again is to quantify the regions” proximity.

Ranking Queries in traditional databases divide objects into two parts. One part contains
objects that do not satisfy the query while the other part contains objects satisfying the query
and forms the query response seb. Objects in both the groups are of equal relative importance.
In metric databases, queries are based on similarity and a degree of membership is important.
Response to a similarity query is a ranked sef, ordered on relative distances, which is actu-
ally the only possible linear arrangement of objects in such case. However, there are also very
sood reasons for ranking regions. Examples of such situations include ranking of object clusters
[GRG199), organizing priority quetes for searching [HS99], and approximate retrieval [ZSATO8]
In all these cases. the proximity of regions determines efficiency of proper algorithins.

3 The Problem of Metric Region Measures

Supposc a metric space M = (D.d), defined by a domain of objects, D, (i.c. the keys or
indexed features) and by a total (distance) function, d, which satisfies for cach triple ol chiects
0., 0,, 0, € D the following properties:

(i) d(O,.0y) = d(0,, O) (symmetry)
(i) 0 < d{0;. 0,) < 00,0, # Oy and d(0, 0y) =10 {non negotivity)
(iii) (O, 0,) <d(0,, 02) + A0, Oy) (triangle ineguality)

Provided the objects arce vectors, the traditional way to measure distances in vector spaces
i to nse a Minkowski-form distance. This set of distance measures is often designated as the Ly
distance and is defined for vectors v, and vy, as Ly, vy) = (3272 | ve ] = wylg] 1P Wep > 1,
with L known as the eify-block or Manhattan distance and Lo the Buclidean distance. since all
coordinates of the vectors are assumed independent, Ly, distances are proportional to clogeness
of vectors in multi-dimensional space.

However, vector coordinates can be dependent or correlated. Good examples of such data
arc color histograms with each dimension representing a color. Obviously, orange and pink
are certainly more similar than red and blue colors. In order to measure a distance between
histograms, this natural (though also subjective) cross-talk of dimensions should properly be
taken into account [Fa96]. A way to haudle this problem is to use the quadratic-form distance.

dé’r(’i);—l;, vy) = (Vg — ’Uy)TA('U_T — ), 0
where A = [a; ;] is a similarity matrix between dimensions of vectors v, and vy, and the su-
perscript T’ idicates matrix transposition. Naturally, there is no linear correspondence between



distances and positions of vectors in the space, though the measure is still a distance metric
provided the matrix is symmetric and a;; = 1.

Other example of » distance only measure is the Levenstein (also called the edit) distance to
quantify similarity over strings. It is defized as the minimal namber of string symbols that have
to be inserfed, deloted, or substituted to transform a string O, into a string O, see e.g. [HD80].

Similarity of seis is another measure that is still & metric and applies for non-vector data.
Civen two sets A and B, the similarity is defined as the ratio of the munber of their common
elements to the number of all different elements.

n{AnB)

n{AUB) (2)

ST(A: B) =

where n(X) is the nuber of clements in set. X. Notice that a generalization of {his measure is
the Tanimote similarity measure [Ko84]

(s 'Uy) ‘
(' l"}
IE'”.?:EEQ + ”""y”‘3 — (- 'UU) 8

St({vg, vy} =

the

which is defined for vectors with {w,,v,) being the scalar product of u, and w,. and [Jv,|
Euclidean norm of v,. As a final example, consider the Hausdor(f disiance, which is used to
compare shapes of images [HKR93|. Here the compared objects are sets of relevant, e.g. high
curvature, points.

3.1 Partitions and regions

Given a file of metric dota F C D, it is convenient to pre- process (or partition) F inte simaller
now-redundant uzits so that the retrieval process might perforin in sub-lincar thme,

Definition 1. Partitioning is a separation of a set into subsets such thet every element belongs
to one subsel and no two subsets hove an element . common. O

According to [Uh91), there are two elementary strategies how to partition a set of webric
data into two subsets:

ball partitioning choose an object from O € F and compute the average distance with respect
to (2. Then, cue partition contains ohject with distance smaller than the average and the
other one containg the rest of the file.

generalized hyperplane choose two objects Oy, Oy € F. Then for all objects, (J;, in the first
partition d(O, O;) < d(Oy, ;) is true while for objects in the sccond partition the predicate
is false.

Naturally, the content of a partition is sufficiently defined by explicitly listing ali its el
ements. Notice that the relationships between elements are implicitly given hy the distance
function. Naturally, such representation is not very practical. In order o characterize gemeric
properties of partitions, space effective abstractions are nsed in practice. To this aim, partilions
are congirained by regrons satisfying specific properties.

Definition 2. A region R = {OQ € D | Cr(Q)} is the set of objects of D which satisfy the
constraint Cr(-). O



I order the constraints to be efficient (i.e. simple and small}, they usnally define regions which
arc bigger than necessary. Consequently, a region of partition coutains all objects of this partition,
but it might contain other objects that also satisfy the constraint. In any casc, a region covers
a certain amount of tolal obiect space, the fraction of which is designated as the coverage.

Contrary to disjoined partitions of data elements, regions of the same metric space cai have
significantly different relative positions. Regions can be quite far from each other, they can
overlap. or one of the regions can even be included in other regions.

3.2 The approach taken

Though the volume of metric regions cannot be decided, 16 is obvious that regions intersect if
an ohject belongs to more regions. 1t could be correctly argued that the proximity of regions
should be proportional to the amount of space shared by the two regions, and the largey their
intersection is the higher the proximity of these regions. However, n order to implement such
idea, the following three arguments should carefully be considerec:

— no space coordinate system for computing a region volume can e used, since only relative
distances, constrained by the triangle inequality property, define the objects’ geometry. In
-, there is no generic formula for computing the volume of a metric space ard no

particuls
volure of & region can be computed.

— goro proximity is fypically assigned to disjoint regions, regardless of how “far” they actually
are. Intuitively, this is only appropriate for eract-match (point) queries — non-intersecting
data regions cannot shave a point. However, a third region might contain points, which are
also shared by the other two, though nonintersecting, regions. A correct proxinily measure
st be able to reflect such situation.

— depending on metric, some distances are far more requent than the others. For example, in
high-dimensional space, distances for sets of uniformly distributed elements are practically
the same. In real files. data objects are not uniformly distributed, they typically occur in
clusters. [n any cage, distance distributions arve skewed and this fact must carefully be taken

nto account,

[uspired by [KF92], where a proximity measure for vector spaces was p roposed, we define prox-
imity of metric regions with respect to another suhject. It is again a melric region, buf this
rogion is a random variable. For convenience, we call it the guery region. Then, we define the
proximity measuve as the relative munber of cases in which a query region intersects the com-
pared regions to the total munber of possible query regions. Notice that a query region has got
the general meltric region properties as given by Definition 2.

Definition 3. The n-prozimity X*(Ri, Ra... Ry} of regions Ry to Ry is the probubility that
a randomly chosen query region @ over the same metric spuce M finds qualifying objects in ull
regions Ri to R, d.e. 30, ..., O, | O € R, .. O € Ry and Oy, ..., 05, € Q. O

Since onr rather theoretical problem is motivated by purely pragmatic needs, we search for
practical solutions to be used in the field of storage structures for metric data. In particular, the
required measures should satisly the following eriteria:

Accuracy In order to be useful, the measures must be accurate indications of the reality as
formalized by Definition 3.



Fast computation The cost of calculating the measures should be "low”. Such requirement is
necessary so that the measures could also be used at run- time.

Flexibility Good measures should easily be able to adapt to changed environments. They
should work equally well for different metrics. The measures should also be able to reflect
peculiarities of specific files, such as distance distribution.

Low storage cost Though some use of pre-calculated (auxiliary} data is fully acceptable, a
possible storage overhead, needed to support the computation, should certainly not he ex-
CessIve.

3.3 Ball Regions

Up to now, we have not considered any specific type of regions. In order to come out with a
solution, lel us concentrate on the ball regions for measures with levels n < 2. To the best of our
knowledge, ball regions are practically the only type of regions which are used in practice.

Definition 4. A ball B, = By(Oy. 1) = {05 € D | Cr, (0;) = d{O,. 0;) < vy}, ds the region,
determined by o center O, € D and a radius r, > 0, defined as the set of objects in D for which
the distance to O, is less than or equal fo vy, O
Ball regions are more amenable (o cffective analysis, because they arve the simplest regiou types
thal can he defined in a metric space. Since I-proximity is not only equal but also quite easy to

solve, we mostly concentrate on case of n = 2. Before we proceed, let’s consider some facts that
appear on the qualitative level of analysis.

In order to see if two balls. B,, B, C D, overlap, i.e. there exists (J; € D which belongs to
both B, and B, it is sufficient to check if the sum of their vadii is greater than or equal to the
distance between the balls’ centers, specifically

B.nB,#0 <«— r.+r,>d0,. 0

It is quite intuitive that, for given radii values, the proximity of B, and B, should increase
if d(Oy, Oy) goes down (the two balls™ centers get closer). Similarly, XE(B;E, B,) will decrease i,
for a given d{O,, O}, the sum ry + ry, grows.

Query Regions In order to be consistent, we consider the relevant case where query regions
are balls too. In this case, cach gquery region € is univocally identified by a guery key. (7. and a
query radius, . thus @ = Q(Q, ).

When queries with the radius » are considered, we can explicitly designate the fact chat
the measures depend on v by using the notation X7 (5, Ba, ..., B,) and referring to it as the
n-prosimdly for v-query regions. Note that when » = 0, point queries are used. When the query
radiusg is not constant, the expected value of proximity can still be deterinined in obvious way.

From the application point of view, point queries in files of chjccts from complex metric
spaces are nol very typical — exact match rarely exists thus similerity range (or nearest neighbor)
queries are prevalent.

Range queries are characterized hy an object and radius, which defines the surroundings of
the object, in which, everything found forins the response set. The choice of a proper radius
is left on the user. Since the response set should not typically be large, small radii values arce
more likely than the large ones.



Nearest neighbor queries are again specified by a query object. Instead of limiting the r agult
by & radins, the response set is constrained by the number of best cases, i.c. the most similar
objects with respect to the query. However, also in this case, the query object radius plays
an important role while evaluating the query. The radius for a given query object is changing
dynamically, starting with a very large {usually the maximum} radins and narrowing down
its value until the minimum region (containing the required number of neighbors) is reached.

In order to see the effects of query radii on our metric space measures consider the following
observation.

Observation 31 Suppose a query object Q with distances to two specific ball centers O and
Oy as d(0, Q) = ry + 7 ond d{0,, Q) = ry +r. Provided v > 0, it is obwious thal € is not
included in B, and By. However, in both the balls, there is al least one object, say (O € By and
0; € By, which is sure o belong to the query ball, i.e. O, Oy € Q(Q.r). It follows that such Q
should be considered as a region able to intersect both B, and By,. More precisely, o query ball
QUQ,v) intersects both By and By if A0, Q) <y +1 and {0y, Q) Sy +r.

Accordingly, the following lemma specifies the effects of range queries on the metric ball
ITHeASTITES.

Lemma 1. Prozimity for query balls with v > 0 can be transformed to point querics by using
the following substitution.

X"(By, Bay. ... By) = X§{By Ba, ... . By)
wheve By is an enlarged region B, such that O, =0; and 7 =r; + 7. O

According to Lemnua 1, positive query radii can be transtorwed to point queries, so it 18 correct
to consider only point queries in the following. For such situation, we simplify notation and use
X" instead of X

To conclude this scetion, we can say, with a slight abuse of terminology, that the proximity
strongly depends on the “size” of regions’ intersection. However, the problem is to determine
which are the actual arguments governing the region proxinuty.

4 Computing Ball Region Proximity

I this section, we concentrate on developing computational procedures fhat arve able to deter-
mine ball region measures for n = 1 and 2. From now on, we assuine that the maximum distance
is d,, < oo, thus consider a bounded metric space.

4.1 A note on distance distributions

Before we proceed, we fivst define necessary terms for precise discussion. Let fo(x) represent
the distance densily function that 2 determines the probability of distances from object O. The
corresponcdling distance disiribuiion, that is the probability Fo (z) of a distance to O to be at
mast x. can be determined as

Folw) = | " folt) dt (@)



Remember that x is assumed to be bounded by d,,, i.e. 2 < dy,. Notice also that we consider
the distribution and density relative to an object, becauge in general, distributions with respect
to different objects can vary.

Given two different objects O, O, € D, the corresponding distrifutions Fp, and Fo, ave
generally different, functions. We can also say that Fp, represents the O;'s point of view of the
domain D. However, it is not possible to know distance distributions with respect to all objects.

An alternative solution suggests to consider the overall distribntion of distances over D. This
can he defined as

Fla) = Pr{d(01,02) <}, (5)

where Oy and Oz are two independent random objects of D. However, even if we neglect
the computational complexity of a procedurc that would determine F(x), all objects from D
are simply not known. What only seems feasible to computbe is an approximation of F(z), or
alternatively f(x), by considering pair-wise distances between a sample of objects of size .

The problem of distance distribution for metric data has been studied in [CPZ98] to derive a
cost model for similarity queries. In particular, to meagsure the compatibility of two viewpolnts
in M. the concept of discrepancy is defined. Then, in order to quantify the possible vartation of
different viewpoints, another measure, called the homogeneily of viewpoints ig also established.

The problem of distance distribution for metric dala has been studied in [CPZI§] to derive a
cost model for similarity queries. In particular, in order to quantify the homogeneity of behaviour
of viewpoints, a measnre, called the homogeneily of viewpoints, was defined. In order to justify
the possibility of using the approximated overall distribution of distances, instead of distribution
with respect to specific obiects, numercus synthetic and real-life files were tested. For all these
data sets, the homogeneity of viewpoinls was very high.

Accordingly, we use in our experiments the approximated overall distance distribution instead
of Fo, and Fg, for all @ and .

4.2 Definition of the Proximity Measure

Given a ball region By = {0y, r) and the distance distribution with respect to its ceuter Fo,,
the probability that a randomly chosen query region belongs to this region is Fiy, (1}, The proof
comes from the definition of distance distribution. Naturally, the probability of any query point
in metric space bounded by maximum distance d,, 15 1, because Fo, (d,,) = 1. Respecting our
definition of proximity, the 1- proximity is given by the following cquation.

- ) §
X By = Fo, ()
As a consequence of the discussion in Section 4.1, it is approximated by
1 — T o o
XUBY) e F(r) (6)
Proximity of a pair of regions is defined as follows:

Definition 5. The prozimity X (B, By) of bell regions By, By s the probability thal o randomly
chosen object O over the sume metric spoce M appears in bolh regions:

X*B,, By) = Pr{d(0,0,) < r; Ad(O,0,) < ry}



4.3 Computational Difficulties

The computation of proximity according to Definition 5 requires the knowledge of distance
distributions with respect to regions’ centers. Since any object froms M can become a ball
center, such kuowledge is not realistic to oblain. However. as discussed in [CPZ98], we can
assume that the distributions depend on the distance belween the centers (dgy}, while they are
(practically) independent from the centers themselves. Such assumption is realistic when distance
distributions with respect to different objects have small discrepancies, which was found true in
[CPZ98] for many data files. Thus, we can modify owr definition as

X%By, By) 2= Xq,, (re.ry) = Pr{d{0, Ox} <7y A d(0,0y) <1yl (7)

where Oy, Oy, and O arc random objects such that d{Ox, Oy) = duy-

Now, consider the way how Xdl,y(fr‘m,'ry) can be computed. Let X,Y and Dxy be contin-
wous random variables corresponding, respectively, to the distances d(O, Ox), d(0,0y), and
d(Ox, Oy). The joint conditional density f)(,}'|.0,\-y(3‘:C‘J"dwy) is the probability' that distances
d(0, 0,) and d(0, Oy) are, respectively, @ and y, given that d(Ox. Oy) = dyy. Then, Xy, (rz,7y)
cant be computed as

Tao [Ty
Xy, (rasry) /0 /o Fx v |Dyy (5 Yldey ddyde {8)

Tn general, fxv|oyy (5 4dey) 7 Fxy (s, y), because the joind density [xy (z,y) gives the prob-
ability that the distances d(O, Ox} and d{O, Oy) are x and y, no matter what is the distance
betwoen Oy and Oy. The difference between the two densities is immediately obvicus when
we consider the metric space postulates. Accordingly, [y Dy (0 4l day) 18 0 1F 2., and dyy
do not satisfy the triangular inequality, because such distances cannot simply exist. However,
fyy (. y) is not restricted by such constraint, and any paiv of distances < dp, I8 possible. For
ilustration, Figure 1 shows the joint conditional density fx v, (%, yldyy) for afixed dyy, and

+ e
L, ok

the joint density fyy(z,y). They are both obtained by sampling from the same data
their characteristics are significantly different.

Unfortunately, an analytic form of fxyio,, (2,4 dyy) is unknown. In addition, computing
and maintaining it as a discrete function would result in very high number of values, Indeed, the
function depends on three arguments so that the storage space required is O(n?), where n is the
numher of samples for cach argument. This makes such approach ot obtaining and maintaining
the probabilities totally nnacceptable.

On the other hand, the joint density is simpler to obtain. Since X and Y are independent
random variables, fyy(z,y) = fv(z)- fi-{y). Given the definition of the random variables X
and Y, it is easy to show that fx(d) = fy(d), so we can omit the name of the random variable
and designate the joint density as f(d). Notice that f{d) can be easily obtained by sampling
from the data sct.

In this article, we develop an approach able to compute the proximity measure by expressing
Iy ey (2 Yy ) in terms of fxy-(2,y), which is available by means of f{d). From the storage
point of view, such approach is feasible, but the problem is to find the necessary transform. In
the Appendix A we show how the joint conditional density can be obtained for a two dimengional

! We are using conlinuous random variables so, to be rigovous, their probability is by definition always 4. However,
in order to simplify the explanation, we slightly abuse the terminology and use the term probability to give an
intuisive idea of the belavior of the density function heing defined.
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Fig. 1. Comparation of fv vy (o yldey) and fxv-(zy)

Euclidean space. However, even in this special case, a correct evaluation of [y v, (0, yldey)
is computationally untractable and, as a consequence, not suitable for a correct cvalnation of
proximity. That is why we have decided to investigate some approximations that would satisfy
efficiency requirements, and at the same time gnarantee good quality of results.

Before we proceed, we define as reference an approximation of the proximity that is generally
used i current applications.

0 i ry vy < oy

L Soiod e e, 1 N . N
X{ﬂ;{i‘..’wﬁ;,’,u.l( Peity) = STy e (ry,, ry) > omin(r, ry) + day (9)

z_r’::z'y

otherwise

T

iy
For convenience, we call this approximation trivial, because it completely ignores distributions
of distances though, as Figure 1 confirms, distances in specific filles can bave very peculiar

distributions, so their omission in proximity measures must result in high errors.

4.4 Approximate Proximity

Given two objects O and O, such that d(0,, O,) = dyy, the space of possible distances @ =
d{0,0,) and y = d{0,0,), measured from the object O. is coustrained by the triangular
inequality, i.e. £ 4+ 4y = dyy, # + dyy >y, and y + dgy > 2. Figure 2 helps to visually identify
these constraints: in the gray area, called the bounded areq, the triangular inequality is satisfied;
in the white area, called the external area, the triangular inequality is not satisfied. Notice that
the graph of the joint conditional density in Figure 1 has values greater than zero only in the
bounded area, and that quite high values are located ncar the edges.

Such observations form: the basis for our heuristics to approximate the joint conditional
density by means of the joint density. The intunitive idea can be outlined as follows:

Coollect values of fxyv(z,y) for o, y, end dyy from the external area and add them inside
the bounded area.
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When =z, 3, and dy, satisfy the triangular inequality, the value of f XYWXV(J:,Q_/ dyy) depends
on specific stralegy used to implement the previous idea, but f XY | Dy (w,9|dyy) = 0 when .

y, and dy, do not satisty the triangular inequality. Notice that our approximations preserve the
properties of density functions, and the integral over the bounded area is 1. This is the basic
assuption of any probabilistic wodel that would be violated provided the joint densities were
simply trimmed out by the triangle inequality constraints.

Tn order to come out with specific solntions, we have tried four differcent implementations of
this heuristic, varying the strategy applied to move density values. Figure 3 provides a visual
representation of the methods. The circles represent the joint density function, while $he arrows
show how points are moved from the external area to the bounded area.

Orthogonal approximation collects points oubside the bounded area and moves them on top
of the corresponding constraint following a direction that is orthogonal to the constraint.
Parallel approximation collects points outside the hounded area and moves them on top of the

corresponding constraint following a direction that is parallel to the axis.
Diagonal approximation collects points outside the bounded area and moves them on top of

the corresponding constraint following o direction that always passes through d,y,.
Normalized approximation eliminates densities outside the constrained space and normalizes

the ones found inside so that the integral over the whole constrained space is equal to one.
T this way, an approximation of the proximity can be computed according to Equation 8, but
using [({ﬁ ?;7‘ Dy \_’(:Il:f!j‘(ia;y) instead of fx oy (2, 9] dey ). Morcover, the orthogonal, parallel and
diagonal approximations can be computed directly throngh the joint density [y (2, y), provided
the integration limits are modified as follows:

- bl duy ey} by (Tt v iy)
X (rg,ry) = / o / j fay (m,y)dydz (20)
. a

thy
k ) by (2, e o7 e Ty )

In the following, we simplify the terminology by omitting the dey, vz, 7y parameters and use for
the integration bounds only the symbols by, ("Jé(iif) ancl bff,(:r:).
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in fact correctly considered, obtaining the same result as of integrating jX,YIU\' . (2, y|dyy) itself.
In fact, by, b;;(;r;), and bf/(r) are functions, specific for each approximation method, that bound
the integral as illustrated by the gray marked areas highlighted in Figure 3. In general, b, gives

. - . . 1 " . N . ; 2 .
the intcgration range alomg the @ axis, bé(ﬁ) is the lower bound of the gray arvea, and by(x) is
the upper bound of the gray area.

In fact, a similar technique can also be adopted for the normalized method, if we consider

’ I :

the approximation as the ratio between the integral om the gray arca and the integral on the
{ry,7y), using Equation 10, as the integral on the gray area
(. i), 28 the mtegral on the whole

whole bounded area. Let’s define I,

iy

highlighted for the normalized method. and Ty, = Iy

ha

- . . e ey Dty (1o y) .
bounded area. Then the novialized approximate proximity is X7 (v, 1y) = ﬁi’_f—mﬂm. In this
' Yy ‘ day

way, all our technigues are based on the joint density fxv (z,y).



The delinition of the bounding functions b,, b;(;x:) and hé(rr;), which depend on the approxi-
mation method used, is discussed in Section 4.5.
The proposed way of approximation can also significantly reduce the computational com-

plexity by using the fact that [fx,v (x,y) = f(x) - fly) as follows

by pbE(x) by .
[0 pevtdpz = [ @) (PO (@)~ FO{a)da (1)

)

The computational complexity of Equation 11 is O{n), where n is the pumber of samples (gran-
nlarity) used to compute the integral as a discrete [unction. Naturally, the digtance density
function f{d} and the distance distribution function F{d} of high granularity can easily be kept
in the main memory. Concerning the Normalized method, we can see that g, only depends
oD dyy, thus can also be maintained in main memory. Consequently, it can also be computed in

O{n).

4.5 Bounding functions

Tn this section we will formally define the bounding fonctions b, !)L(:L‘) and bi(:x:) of the four
approximation mnethods described above. Even though the graphical representation of the inte-
gration areas seams to be easy and clear, its formalization is not straightforward, becanse several
special cases should be taken into account to obtain the correct behaviour. Notice that in our
simplified formalisation of the problem, the function fxv(z, y) can assume arguments outside
the range [0, d,,]. In those cases we suppose that the returned value is 0.

We decompose the problem in subcases that can be considered separately - sec Figure 4 as
a convenicnt graphical reference. Fivst, we identify two different sitnations: (1) 7y << day and (ii)
ry = . Distinguishing these two situations, we identify some intervals along the x axis:
LT =0, dyy —ry),
2. 1 = [duyy — 7y ran(dyy, + 1y, 7ra)), and
3. I, = [min{dyy, + ry. ra)s dinl-

In case (i), we identify another three intervals:

1 dY = [0, manlr, — dyy )},
2. 14 = [?H‘:‘;’I.‘,(’r‘y — gy 7y ) min{dyy 4 1y, va)), and
300 = Vmin{da, £ ryre), din).

Using the intervals defined above, we define the upper bouued bf;(:::}. First suppose thaf
ry < dyy. When el !, and the regions do not intersect (that is dyy — 75 > 7y), then proximiby
is 0 {sec Fignre 4-a3) so the upper bound is 0 too. Otherwise, the upper bound is the stright
line, which is specific for a method used, and passing by point A shown in Figure 4-(a; and
ao). We call a{z) that stright line. When = € T}, the upper bound is always equal to ry. When
x € 14, the upper bound is the minimum between the two, method specific, stright lines passing
respectively. by point By and Ba. We call b(z) the stright line passing by By and c(x) the one
passing by Ba. Figures 4-(a; and ay) show two different situations. In the first case, the minimum
is b(x). in the other case, the minimum is ().

Now suppose that ry > dg,, that is there is always an intersection between the two regions.

When 2 € I}, the upper bound is the minimum between the two, method dependent, stright



lines passing, respectively, by point Ay and Az, We call d(z) the line passing by Ay and efx)
the one passing by Ay, Figures 4-(be and bs) show two different situations. In the first case the
minimum is e{x), while in the other case the minimum is d{z). When x € IJ, the upper bound
is always equal to ry. Since I is defined exactly as 73, the same arguments apply as can be seen
in Figures 4-(by and be).

More formally, Z)ﬁ(ur,) can be defined as follows:

ifteel
(3 elsewhere !

{ olw) i dyy — 1y <1y
iy <dyy

, Ty ifz el
bé () = man(b(z}, e(x)) itaeld (12)
min{d(z),elz)) if v € I
Ty ifrely elscwhere

min{b(z), clx}) if © € 1

where a(x), b(z), c(z), d(z), and e{z) are defined for the individual approximation methods as

foliows. ‘

First, we start with the Ovthogonal method. To define b;;j,(fﬂ); that is the upper bound of the
integration area, the required stright lines are the following:

Ty — dyy + T

Ty oty — T

2o Fdyy —x
=2-r, —dy —

()
()
clw) =21 —dyy —
(@)
{x)

On the other hand. f);f.(.’l}}, that is the lower bound of the integration area, can be defined as
Ay — 21y +w il dyy — 1y <ry .,
| ry & i mox Ty e ry < ﬂ:u:.y
by () = 0 elsewhere §
iy elsewhere

That is, when 7, i smaller than dyy,. and v, ds sach that dy, — v < ry, the lower bound is the
stright line y = » + dyy, — 27, passing by point B see Pigure 4-hby. I all other cases the lower
bhound is 0.

Last, we need to define b, that is the range of the infegration. If v, is smaller than d,, the
integration is made in the interval [0,7,], otherwise in the interval [0, min{r,r2)], where ry and
ry are such that, respectively, b(r1) = 0 and ¢(rs) = 0. We can make it explicit as follows:

b — o e, <dyy
* a2 1y dpy, 2Ty = day ) i vy >y,

To define b;(af:) for the Parallel method, we use again the outline of equation 12 and define a(x),
b(x), c(x), d{z) and ez} as follows:
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Fig. 4. Situations to be taken into account when defining boundiug functions



b,;(:r;) is always 0 so:

Last, &, is defined as follows:

b — T 1f Ty < d;zr,y
. il 7y > da?.,y

That is, it v, is smaller than dy,, then the integral is made in the interval [, ry], otherwise in
the interval [0, dpy].

To define bff(:z:) for the Diagonal method, we use agaiu the layout of equation 12 and define a(r).
blx), e(x), d{x) and e(x) as follows:

r 7
)= Y - Y
b('L) - _'— - 'I’ + ]4.“7—— : djrf
dyy — Ty — C'T':A:y Gy — Ty = Ll

Yo — drg -

tyy,
‘ dip — dpy — 72
dio) =~ G TV
L
o, — 1
elrn) = =t 3+ dyy

Ty — dyy

Bounding functions f),i,(:!,‘) and b, for the Diagonal method are defined exactly the same as
for the Parallel method so we will make ne Murther disenagion on them.

Last, we have to consider the Normalized method. Becanse of the different nature of this method,
also the definitions of the bounding functions have a different layout. In particular, there is not
need of extending the integration area, 80 just the intersection between the original constraints
(z <r, and y < r,) of the infegration area and the triangular inequality constraint arc needed.
The result is the following:

by =14

i’)i,(:;f:) = | — duy

bf,(J) =2 + dyy
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Fig. 5. Overall distance density functions of the used data sets

5 Verification

In this section, we investigate the effectivencss of the proposed approaches. Before presenting

our simulation results, we first characterize the data sets, describe the evaluation process, and

define comparison metrics.

5.1 Data sets

To be more confident on obtained results. we have used three data sets: one synthetic and two
real-life data sets reprosenting color features of images. Bach of the data sets contained 10.600
ohiects.

The synthetic data set, called UV, is a set of vectors nniformly distributed in 2-dimensional
space where veelors are compared through the Euclidean (L) distance. The second data set, des-
ignated as HV1, coutains color features of images. Color features arc represented as 9-dimensional
vectors containing the average. standard deviation, and skewness of pizel values for each of the
rad, green. and blue channels, see [SO95]. An image is divided into five overlapping regions,
cach one represented by a 9-dimensional color feature vector. That results i a 45-dimensional
vector as a deseriptor of one image. The distance function used to compare two feature vectors
is again the Euclidean (1) distance. The third data set, called HV3, contains color histograims
represented in 32-dimensions. This data set was obtained from the UCT Knowledge Discovery
in Databases Archive {[Bay99]). The color histograms were extracted from the Corel image col-
Jection as follows: the HSV space is divided into 32 subspaces (32 colors: 8 ranges of hue and 4
ranges of saturation). The value in each dimension of the vector is the density of each color in
the entire image. The distance function used to compare two feature vectors is the histogram
intersccetion implemented as Ly,

The range of distances and corresponding distance density functions can be seen in Figure 5.
Notice the dilferences in densities for individual files: the UV data set presents the most frequent
distances on the left of the distances range, the HV1 on the center, and the HV2 ou the right.
Tu this way we have tried to cover a large spectrum of possible data.
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Fig. 6. Average and variance of errors

5.2 Experiments and comparison metrics

Tn order to form the basis for comparison, we have experimentally computed the actual proximity
X g';:f"""!(7‘;,_;.,'{‘3) for all data sets. We have chosen several values of dy,, in the range of possible
digtances and 100 x 100 values of {r,,r,). The value of )\’(‘,‘f:;’”“” (72, 7y) was computed for all their
possible combinations. To accomplish this Lask, we have found, for eacl dy,, 400 pairs of objects
(Oy, Oy), i.e. the balls’ centers, such that [d(Oy, Oy) — dgy| < p, where p was the smallest real
number that allowed to obtain at least 400 pairs. For each pair of objects we have generated
100 x 100 balls by varying correspondingly r, and 7, in the range of possible radii. For each pair
of halls we have counbed the number of objects in thelr intersection. Xf,ff‘_’jfj‘”'”'i {re.ry) was finally
obtained by computing the average munber of objects in the intersection for each gencrated
configuration of dyy, rs, and ry, and normalizing such values to obtain the probabilify.

Notice that we did not consider distances dy,, of very low densities. In such cases, 400 pairs
were only possible to obtain for large values of p, thus the actual proximity was not possible



U Talvisl wethod vv; Perallel awulhidl

HY2: Trivial method

il
.

if
i

Fig. 7. Comparison between the errors of the frivial method and the parallel method

f0 establish with sufficient precision. However, such situabions, Le. relative positions of regions’
centers, are not likely to occur in reality.

Having obtained the actual proximity, we have computed the approximate proximities pro-
posed in this article for the same values of variables dgy, rs, and 7, The comparison between
the actual and the approximate proximity was quantified for each possible configuration as the
errot €{7g, 7y, day) = | X !_‘j';’i""“l(rl,,r.g) — X(}Lﬂ” (ry,7y)|- Given the high amount of resulting dala,
we have summarized them by computing the average over the radii v, and ry al a given distance
between the centers, €, (day, ), and the average over the distance between the balls’ centers dyy
at a given pair of radii, € (v, 7;), specifically:

61,’((114;»;;'11.) = Avgr,r, (¢(Tx, Ty, dry))

atid
1z, 1y) = Avga,, (e{ry. Ty, dxy ).



In similar way, we have computed the variance of the ervor for a given distance dy,;
f o -
3 (d’ﬂ?y) = Var Pyty (('(rx-, Ty, d;‘:;'y))

The value of e;L makes possible to evaluate the average error of approximations for specific
distance between the balls’ centers. However, EL alone is not guflicient to correctly judge upon
the quality of approximaticn. In fact, it is obtained as the average error for all possible values
of rp and r, so that some peculiar behavior can remain hidden. In $his respect, the stability
of the error must also be considered. Such measure can be obtained by using the variance €.
Notice that high average errors and small variances may still provide good approximations.
To illustrate, suppose that we want to use the proximity to order (rank) a set of regions with
vespect to a reference region. It can happen that the ranking results obtained through the
actual and approximate proximity are identical even though (L is quite high. In fact, when the
variance of error is very small, it means that the error is almost constant, and the approximation
somehow follows the behavior of the actual proximity. In this case, it is highly probable that the
approximated proximity increases (or decreases) according to the behavior of the actual one,
guaranteeing the correct ordering.

On the other hand. the value of e;i represents the average error from a different point of view.
It is determined for a given pair of radii (r,.,r,) varying dq,y, thus it can indicate the quality of
approximalion as a function of the sizes (radii} of balls. This measure offcrs a finer grained view
on the error behavior, since the average is only computed varying the distance d,,.

In fact, the measures ei , and e;’, are complementary. The first allows one to judge the guality
of approximnation as a function of the distance between the centers of the balls, while the second
helps to judge the quality of approximation as a function of balls® sizes.

5.3 Simulation results

For all data sets, the actual proximity was compared with the proposed approximations, the
trivial approximation, and, only for the UV data set, with a proximity measnure obtained using
the analytic technique described in the Appendix A that as we have mentioned earlier has
untrectable computational costs. Figure § presents the average error eii and its varlance €. [t
is immediate that all approximation methods outperform the trivial one, since the error of the
trivial method is even one order of magnitude higher compared to all other methods. The same
consideration also holds for the variance of the exvors: for all proposed lechniques, € is one
order of magnitude smaller than the value obtained with the trivial technique. This implies that
in specific situations the trivial approximation may provide significantly different results wish
respect to the actual proximity. On the other hand, the proposed approximations show a very
good and stable behavior. They have a small variance as well as small errors, so that they can
be reliably used in practice.

If we compare the proposed methods for the UV data set, we can gsee that the parallel
method is the best for values of dy, up to the middle of the range of distances. However, the
quality of this method decreases, both in ferms of E;J‘ and ¢, for high values of dy,. In this
range of distances, the best method is the analytic method (with the disadvantage of very high
computational costs), followed by the normalized method. Netice that the nermalized method
presents a very stable behavior. '

In the HV1 and HV?2 data sets, the differences between the various methods are less evident.
However, we can see again that the parallel method demonstrates the best porformance. In



HV2, the quality reduction is limited and is noticeable just for very high values of dy,. Here,
again, the best method is the normalized approximation. On the other hand, she decrease in
performance of the parallel method disappears for HV2, and a complete overlap of the graphs
can be observed.

Consider now the average crror for a given pair of radii ej’, Since the parallel method has
always been the best, we only consider e;’, for this method and the trivial one. The results are
sketched in Figure 7. As an additional confirmation of the observation that we have made for
c,, and el bhe error e:i for the parallel method is again smaller than the one measured for the
trivial method i all shree data sets. In particulay, the error of the trivial methed is never close
to 0, while for a substantial range of v, and r; values the error of Lhe parallel method is alinost
0. This, in particular, is evident for the real-life data sets HV1 and HV2.

In the UV and HV1 data sets, the highest errors measared for the parallel method occur
for values of r, and r, around the middle of the considered distance range. In the HV2 data
set, the error is high for very large balls. The step effect, which can be abserved in the graph
corresponding to the UV data set, is due to the sampling gramularity of dy, and the fact that
high values of the ervor e are accumulated near to the constraint x + 1y > dy, of the triangular
inequality. This cffect is not noticeable in the other data scts, where the error e observerd near
that constraint is much smaller.

6 Conclusions

In order to support development of meiric data indexes, approximation methods to quantify
the proximity of metric ball regions have been proposed and evaluated. In accordance with our
objectives, the proposed methods are flexible and do not depend on distance measure, provided
it is & metric. Accuracy of the methods is high and only depends on global distance distribution,
which is casy to obtain and store. The computation of proposed proximity measures is fasi. lts
computational complexity is linear, thus it is also applicable at run-time. The storage overhead
of distance distribution histograimns is low.

We are currently working on application of the method to improve the performance of metric
trees. The specific problems concern the tree node split and merge functions, ranking of mefric
regions in priority quene for the best case malching, declustering of regions {partitions) to achieve
parallelism, and pruning for approximate similarity retrieval.

Future rosearch should concentrate on proximity measures of regions other than balls and
on proximily of more than 2 regions. More effort should also he spend on developing other
applications and possibly on developing new, more efficient, metric indexes,

References

[Bay99] DBay, S. D. The UCI KDD Archive [hstp:/ /kdd.ics.uct.edn].  Irvine, CA: University of Califernia,
Departient of Information and Computer Science.

[BIKIK96] S. Berchtold, DA, Keim, and H.P. Kriegel. The X-tiee: An Index Structure for High-Dimensional Data.
Proceedings of the VLDBY6, Bombay, India, 1996.

[BO97] T. Bozkaya and M. O=soyoglu. Distance-based indexing for high-dimensional metric spaces. ACM
SIGMOD, pp.357-368, Tucson, AZ, May1987.

[BOSY]  T. Borkaya and Ozsoyoglu. Indexing Large Melric Spaces for Similarity Search Queries. ACM TQDS,
24(3):361-404, 1399.

[Br95] . Brin. Near neighbor search in large metric spaces. In Froceedings of the 21st VLDB Internotional
Conference, pp. 574 584, Zurich, Switzerland, September 1995,



Fig. 8. Analytical approach

[Ch94]  T. Chiueh. Content-based image indexing. Tu Proceedings of the 20th VLDE Internationoel Conference,
pages h82-593, Santiago, Chile, September 1994,

[CPZ97] P. Ciaccia, M. Patella, and P. Zezula. W-tree: An Efficient Access Method for Siwilarity Search in
Metric Spaces. Proceedings of the 28rd VLIOE Conference, Athens, Greece, 1997, pp. 426-435.

[CPZO8] P. Ciaccia, M. Patella, and P. Zezula. A Cost Model for Similarity Queries in Metric Spaces. In
Procecdings of 7th ACM SIGACT-SIGMOD.-SIGART Symposium on Principles of Dalebase Systems.
POLS 1888, Seattle, Washington, 1998, pp. 59- 68.

[Fa96] C. Faloutsos. Searching Multimedio Databases by Content. Kluwer Academic Publishers, 1996,

[Gusd] A Guttman. R-trees: A dynamic index skructnre for spatial searching. In Proceedings of the 1884 ACM
SIGMOD International Conference on Management of Data, pages 47-57. Boston, MA, June 1984

[GRGT99] V. Ganti, . Ramakrishnan, J. Gehrke, A. Powell, and J. French, Clustering Large Data Sets i
Arbitrary Metric Spaces, In Proceedings of the 10th International Conference on Dote Enginecring,
ISDE99, Sydney, Australia, IEEE, pp. 302-511, 1998

[[ID80] AV Hall and G.R. Dowling. Approximate String Matching, ACM Compuling Surecys. 12{4):381-402,
December 1980.

(HK1RS3] DI Huttenlocker, G.A. Klanderman, and W.J. Ruckdidge. Comparing images nsing the Hausdorff
distance. IBEE Trensactions on Pottern Anolysis and Machine Intelligenece, 15(8):850-863, September

1993,
[11599]  G.K. Hjaltason and H. Samet. Distance Browsing in Spatial Databases. ACM TODS, 24(2): 265-318
1599,

[KFg2] L Kamel and C. Faloutsos. Parallel R-trees. Proc. of the ACM SIGMOD Conf., June 1992, pp. 195-204.

[Kogd]  T. Kohonen. Self-Organization ond Associative Memory Springer-Verlag, 1984

[SO95] M. Stricker and M. Orengo. Slmilarity of Color heages. In: Storage and Hetrieval for Image and Video

) Databuses TH, SPIE Proceedings 2420, 1995, pp. 381-392.

[That] LK. Uhlmann. Satisfying general proximity /similavity queries witlt moetyic trees. Information Processing
Letters, AD{A):175 178, Novemnber 1981

[ZSAT98] P. Zeznla, P. Savino, G. Awmato, and F. Rabittl, Approximate Similarity Rotrieval with M-trees. VLDB
Journad, 7(4):275-293, 1998,

A The analytic approach for the two dimension case

dyy) can be obtained analytically for the two dimensional

Here we discuss how fx v/ py, (1
Case.

Let us suppose to have the continuous random variables X, Y, and Dyy as defined in
Section 4. In addition let us deline the two random variables A and B. A corresponds to the
angle between the straight line passing through O and Oy and the straight line passing trough
0, and O,. B corresponds to the angle between the straight line passing through O and Oy

k4 5 1 s S
and the straight line passing trough Ox and Oy Figure 8 sketches of these variables.



Il we suppose that A has uniform distribution (this is an approximation, since it has been

proven that it is not always true}, we can define
Frasn) = 1) (13)

and by symunetry we have that [y g(z,8) = fy.aly, o)

Of conrse Equation 13 is true only in two dimensional vector spaces and in particular it
cannot be applied to pure metric spaces.

Let’s suppose that we have fixed y and dyy,. Let’s suppose that we have an object O such
that the angle A is 8. In corvespondence of these values we can compute the values of X and
B. We denote them «(#) and A(#) respectively. Let’s now consider Fajy p,, (ely, dyy) that s
the probability that a random object O has and angle smaller than «. given that the distance
between O, and O, is dy, and the distance between Oy and @ is y. It can be computed as the
ration between good cases and all possible cases. Good cases correspond to the probability that
O is on the arc of circumference of radius y, centered in Oy, corresponding to an angle of «
and can be computed as the curvilinear integral of fy g(x(6), 8(0)) over the circumference when
i < < . All possible cases correspond to the probability that O is on the whole circumference
of radius y, centered in Oy, and can be computed as the curvilinear infegral of I s(z(8), 5(9))
over the circumference when 0 < 6 <.

This results in the following:
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An equatiou for z:(#) can easily be obtained as follows:
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aud by differentiating we obtain the density
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Now using fajy, 0., (01, day) we obtain fx |y pyy- (2|1, day ). In fact we have that
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Fxyipgy (2 :ly, dyy) can be obtained by differentiating Fiyy py, (@], dey )
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Now we can obtain fx yvin, (2, yldyy) that was our initial goal:
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Notice that the cost of evalnating Bquation 14 is O(n}, where n is the munber of samnples
used to compnte the integral. Computing proximity using Equation 8, when the joint conditional
density is obtained by Equation 14, has complexity O(n®) that is of course not suitable for the
applications where it should be used.



