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Very Important Paper

Continuous Flow Single-Atom Catalysis: A Viable Organic
Process Technology?**
Mario Pagliaro,[a] Cristina Della Pina,*[b] and Rosaria Ciriminna*[a]

This article is dedicated to Professor Laura M. Ilharco on the occasion of her recent retirement from University of Lisboa’s Instituto
Superior Técnico.

Heterogeneous catalysis under continuous flow conditions is
increasingly used by the chemical industry to synthesize fine
chemicals. Is single-atom catalysis under flow a technically and
economically viable organic process technology? Early results

suggest valuable insight en route to the industrial uptake of
single-atom catalysis in the production of fine and specialty
chemicals.

1. Introduction

Called in 2019 the foundation of a “forthcoming revolution in
chemistry”,[1] single-atom catalysis (SAC) merges the advantages
of homogeneous catalysis employing organometallic complexes
(high selective activity) with those of heterogeneous catalysis
(no need for catalyst separation and stable performance of the
catalyst during prolonged use). In the decade following its
inception in 2011,[2] plentiful studies have shed light on the
reaction mechanisms, including the influence of the reaction
environment and SAC deactivation pathways.[3]

Investigating the technical viability of SAC with Karimi and
Luque, some of us recently concluded that the industrial uptake
of SAC for chemical productions and for hydrogen fuel cells and
water electrolysers will be rapid, once single-atom catalysts of
sufficient metal load and prolonged stability will be
developed.[4]

Heterogeneous catalysis under flow conditions using leach-
proof solid catalysts provides so numerous economic and
technical benefits that it will become the key enabling
technology of the 21st century fine and specialty chemical
industries.[5] The advent of new generation leach-proof and

highly selective supported metal catalysts and flow chemistry
indeed addresses the fine chemical industry’s historic reluctance
to use supported transition metal catalysts.[6]

Any new chemical technology “is ultimately evaluated in
terms of profitability”.[7] On the other hand, technology
valuation based on technical and financial aspects is rarely
taught to chemists.[7] We agree with Cannon and Bree: research
chemists should be competent in basic financial analyses and
the language necessary to communicate with the chemical
industry.[7]

Filling this educational gap is particularly urgent today
when the chemical industry is undergoing a profound trans-
formation in which chemical productions shifting towards
advanced catalysis technologies under continuous flow that
intrinsically lead to decentralized, smaller production plants for
the manufacture of low-volume, high-value chemicals with
limited by-product (waste) formation.[8]

Closing a cycle of techno-economic studies in heteroge-
neous catalysis,[4,5,8] in this study we aim to provide an answer
to the question: is continuous flow single-atom catalysis a
viable organic process technology?

Early results suggest valuable insight in the transition of
SAC from a fundamental research topic to an issue of practical
relevance for the fine chemical industry.

Heterogeneous catalysis under flow using heterogenized
metal nanoparticles, metal complexes, organocatalysts or
enzymes fulfills the grand objective to make the production of
valued fine chemicals in flexible tonne-scale production plants
similar to Taiichi Ohno’s lean manufacturing of goods.[9] The
additional advantage of using SACs under flow in catalytic
microreactors is, as shown in the following, of synergistic
nature.

2. SAC under Continuous Flow Conditions

The first main requirement to be addressed en route to practical
uptake of SACs is to synthesize catalytic materials of high metal
load. From synchronous pyrolysis-deposition through mechano-
chemical “precursor-dilution” strategy, several methods have
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been developed to produce SACs of sufficient metal load.[4] One
such method involves the use of mesoporous graphitic carbon
nitride obtained via copolymerization,[10] followed by simple
stirring of the as synthesized mpgC3N4 (400 mg) in the presence
of a relatively large amount of CuCl2 · 2H2O dissolved in ethanol
under prolonged stirring at 80 °C.[11] It is enough to heat the
resulting doped solid at 500 °C for 2 h under Ar flow to obtain
an atomically dispersed copper catalyst in which Cu is uniformly
distributed across the mesoporous carbon nitride crystals in the
form of Cu(I) coordinated to four N atoms at a distance of 1.9 Å
and four C atoms at a distance of 2.7 Å.

The large surface area (several hundreds m2 g� 1) and
mesoporous nature of graphitic C3N4 synthesized via the
copolymerization method,[10] ensure that the resulting pow-
dered catalyst (Cu1@mpgC3N4) has a large metal load of
1.2 wt%, while retaining large surface area (~ 200 m2 g� 1) and
pore specific volume (~ 0.7 cm3 g� 1).[11]

The latter catalyst was recently dip-coated alongside an
alumina-based wash-coat layer onto a 3D printed oxide dubbed
“catalytic static mixer” (CSM) quickly and reproducibly manufac-
tured at low cost by three-dimensional (3D) printing via an
electron beam melting method developed in Australia by
Hornung and co-workers.[12] The resulting coated catalyst is
then placed inside a tubular stainless steel microreactor and
used for continuous catalytic conversions.[12] Providing low
pressure drop, the structured and regular shape of the 3D-
printed CSM oxide minimizes flow maldistribution, while the
steel tube ensures enhanced heat transfer and controlled
reaction conditions.

Employed to mediate the continuous-flow heterogeneous
hydrogenation of benzaldehyde and furfural with H2 gas, the
resulting CSM coated with Cu1@mpgC3N4 achieved very high
turnover frequency values, 551 h� 1 for benzaldehyde and
1563 h� 1 for furfural, under the relatively harsh conditions
(24 bar and 120 °C) affording the highest yields of the
corresponding alcohols.[11] Running the furfural hydrogenation
for 150 min at steady state, no drop in the formation of furfuryl
alcohol was observed (Figure 1).

Carrying out the reaction both in Australia and in Italy using
the same CSM over seven months for a total accumulative
reaction time/time-on-stream beyond 200 h,[11] the catalyst
remained stable and active. Its weight before the first hydro-
genation (7.458 g) and after seven months of use (7.461 g)
nearly did not change.

The catalyst was found to be leach-proof since the amount
of Cu concentration (and also of other metals contained in the
stainless-steel scaffold, such as Cr, Fe, Ni, and Mo) detected by
ICP-MS was below the detection limit regardless of the
relatively harsh reaction conditions (24 bar and 120 °C).

Considering possible industrial uptake, the reaction con-
ditions are harsh, the yield in alcohol is low (31 %), and the flow
rate (30 mL h� 1) slow, but the work established the needed
proof of concept that SACs employed under flow are as stable
as when employed under batch conditions,[13] while the reaction
rate is several orders of magnitude higher when compared to
turnover frequency (TOF) values for similar aldehyde reductions
mediated under batch conditions by electroplated CSMs
incorporating Pd(0), Pt(0) or Ni(0) nanoparticles, having TOFs
between 0.1 and 40 h� 1.[14]

Now that at least two major methods exist for the large-
scale fabrication of SACs with high metal loadings, namely the
solvent-free mechanochemical synthesis[15] and the two-step
adsorption of metal complexes with 1,10-phenanthroline onto
commercial carbon black followed by pyrolysis,[16] several other
leach-proof SACs will be employed under flow.

Indeed, another SAC-catalyzed chemoselective reduction of
nitro compounds to produce multifunctional anilines under
flow achieving a high TOF (>8000 h� 1) and relatively high
productivity (5.8 g h� 1 of aniline) was recently demonstrated
using a Pt1-MoS2-GF catalyst (GF stands for graphite felt), in a
bench-top flow cell operated under fast flow condition at high
reactant concentration (0.2 M).[17]

The stability tests conducted at low conversions (<10 % and
<30 %) for a continuous 12 h operation at 70 °C showed no
decay in activity, despite minor fluctuations in yield due to
temperature fluctuation and GC-MS sampling. Further stability
examination conducted in the quantitative conversion regime
for 24 h clearly showed the steady production of aniline
(Figure 2).

Figure 1. Hydrogenation of furfural over CSMs coated with Cu1@mpgC3N4.
Reproduced from Ref. [11], under a Creative Commons Attribution 4.0
International License.

Figure 2. 24 h on-stream demonstration of the Pt1-MoS2-GF catalyst in the
quantitative conversion regime of nitrobenzene to aniline under flow.
Condition: 0.025 M nitrobenzene with 0.050 M ammonia borane in
acetonitrile/H2O mixture (5 : 1, v/v) at a flow rate of 1 mL/min. Yield vs. flow
rate test shown in the inset as performed at 20 h. Reproduced from Ref. [17],
under a Creative Commons Attribution 4.0 International License.
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Showing again evidence of the advantages provided by
using the single-atom catalyst under flow, values of 0.02–
0.07 g h� 1 were reported for the same SAC-mediated reaction
under batch conditions.[18,19]

SAC under flow is also ideally suited to carry out important
synthetic organic chemistry reactions that are known to be
catalyzed by trace amounts of the catalytic metal species.[20]

Embedding the single-atom species in a stable heterogeneous
SAC indeed eliminates the intrinsic uncontrollable nature of
trace metal catalysis easily poisoned by impurities in the
reaction medium.

This was recently demonstrated by China-based scholars
who developed a palladium SAC deposited on large surface
area porous organic ligand polymer (POL) showing a remark-
ably high selective catalytic activity in the hydrosilylation of
allenes.[21]

In detail, the 772,358 turnover number of the Pd1@POL-5
catalyst was 200 times higher than the state of the art catalyst,
whereas the catalyst employed in the continuous flow system
full retained its selectivity and activity in 10 consecutive
reaction runs affording the reaction product diphenyl(undec-1-
en-3-yl)silane without reduction in activity and selectivity (Fig-
ure 3).

Even though carried out on small laboratory scale
(0.25 mmol allene substrate), the work according to the
researchers lays the foundation for the large-scale application
of SAC employing trace amount of catalyst in the synthesis of
valued molecules including silicones.[21]

3. Industrial Uptake?

The fine chemical industry, we anticipate in the following, will
shortly uptake SACs for the synthesis of many of its valued
products under flow conditions. First, a SAC catalyst can replace
a conventional metal nanoparticle-based heterogeneous cata-
lysts in a drop-in replacement of the type sought by the
chemical industry.[22]

Second, whether in the form of “catalytic reactors” of
tailored geometries in which the catalytic species are coated on
the channel wall of the reactor reproducibly made by 3D metal
printing, or as large surface area organic, inorganic or organic-
inorganic hybrid materials, SACs under flow are ideally suited to
further lower production costs due to enhanced stability of the
catalyst, and largely enhanced TOF (when compared to reaction
under batch conditions).

The real obstacle to the industrial uptake of heterogeneous
catalysis in flow reactors to replace homogeneous catalytic
processes carried out in batch reactors was and is the need to
completely replace the existing (and expensive) batch reactors
with the new flow reaction systems. Commenting on the slow
but inevitable industrial uptake of heterogeneous catalysis in
the fine chemical and pharmaceutical industries, in 2013 some
of us concluded that this evolution would “slowly but
inevitably” lead to the ultimate objective of green chemistry in
this important industry, namely “chemical manufacturing with
no waste generation and with minimal energy use”.[23]

In the subsequent decade several fine chemical companies
have shifted the production of valued fine chemicals to new
flow systems.[24] This is a rather unique case of fast uptake of
completely new manufacturing technology in an industry that,
besides advances in control technology, had never changed its
manufacturing basics since its inception in the 1930s.

The reason is simple. Under continuous flow, production
costs are lower and product purity (i. e., quality) is better also
due to enhanced lot-to-lot consistency.[25] For example, in fine
chemical productions water (32 %) and solvents (56 %) contrib-
ute to ~ 80 % of the typical production process mass intensity.[26]

The use of flow chemistry dramatically reduces the use of
solvents and water, directly translating into financial savings. In
addition, inventories (including catalyst inventory) are substan-
tially lower, further reducing costs.

As suggested by Kappe, “flow means green”,[27] but it also
means cost-efficiency (i. e., money), because shifting chemical
productions from batch to continuous flow reactors maximizes
value production, and minimizes waste. In 2013, some of us
associated the aforementioned waste, namely the large material
waste testified by the 25–200 E-factor (Environmental factor,
the ratio of waste over product) of the fine chemical and
pharmaceutical companies,[28] to the price of non-conformity
(PONC) paid by any manufacturing organization when carrying
out activities not required to produce a product meeting its
requirements.[23]

In brief, the overall cost of a production process (C), includes
the intrinsic production process cost (Ci) plus the PONC cost of
producing (and disposing of) unwanted by-products
[Equation (1)]:[23]

Figure 3. Yield and selectivity in ten consecutive hydrosilylation reactions
between allene 1a (0.25 mmol) and Ph2SiH2 (0.275 mmol) mediated by the
same Pd1@POL-5 catalyst. Reproduced from Ref. [21], with kind permission
from Tsinghua University Press.
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C¼Ci þ PONC (1)

In a highly competitive marketplace, successful fine chem-
ical companies are not those that are “greener” but those able
to supply customers with products, including pharmaceutical
ingredients, at the lowest price, highest purity and best lot-to-
lot consistency.[23] Catalytic processes under flow are signifi-
cantly greener than conventional processes in batch reactors.
Yet, more importantly from a practical viewpoint, catalysis
under flow dramatically reduces production costs,[25] because it
reduces the value of both addends in Equation (1), namely the
intrinsic production cost to produce the desired product (Ci)
and the PONC.

In the fine chemical industry, homogeneous catalysis has
been the dominant technology in the last four decades.[29]

Though clearly underutilized by the industry, such as in the
case of heterogeneous catalysis for cross-coupling reactions,[30]

the use of heterogeneous catalysis in continuous productions
clearly lowers production costs. As noted by Kobayashi and co-
workers, heterogeneously catalyzed processes under flow not
requiring purification processes allow flow reactions to be
assembled in a multi-step and continuous manner for the
synthesis of complex molecules.[31]

Moreover, reactions taking place in the confined space
surrounding the immobilized catalytic species translate into
high catalyst concentration allowing to overcome reactivity
problems or conversion issues.[31] Kobayashi’s team, for exam-
ple, recently demonstrated the continuous-flow synthesis of (R)-
tamsulosin, one of the world’s most prescribed drug, using
three sequential heterogeneous catalytic reactions under flow
without requiring isolation of any intermediates and with only
volatile or easily removed by-products.[32]

Three noble metal heterogeneous catalysts comprised of
supported metal nanoparticles were employed: Pt/C, Pd on
dimethylpolysilane-modified silica, and Pd on activated carbon/
calcium phosphate. The continuous-flow reactions were much
more efficient than the batch reactions for the key reductive
amination step, and the final deprotection step based on
hydrogenolysis could also be performed in continuous-flow.
“We believe our heterogeneous catalysis-based multistep
continuous-flow synthesis”, concluded the researchers, “pro-
vides a benchmark model for future pharmaceutical
manufacturing”.[32]

Whenever a SAC is available to replace a nanoparticle-based
heterogeneous catalyst, this will be the case for the manufactur-
ing not only of APIs and vitamins, but also of the wide variety
of the fine chemical industry’s products, especially considering
that from the industrial utilization viewpoint, structured cata-
lytic reactors such as those 3D-printed have several advantages
compared with traditional packed-bed reactors.[11]

4. Perspectives and Conclusions

Reviewing selected examples of the first utilization of SACs
under continuous-flow conditions, this study shows evidence

that employed under flow, SACs are not different from state of
the art supported metal nanoparticle catalysts[5] in affording
significantly higher TOFs compared to the same catalysts
employed in batch reactor conversions.

As shown for example by Vilé and co-workers investigating
the hydrogenation of furfural with H2 mediated by
Cu1@mpgC3N4 coated on a ceramic support,[11] new generation,
high load (1.2 % in this case) SACs under flow conditions are
stable and do not rearrange into nanoparticle catalysts via
movement on the surface or via the leaching/precipitation
mechanisms. This is important because, as suggested by Pérez-
Ramírez and co-workers lately reviewing single-atom catalysis
for synthetic organic chemistry, loss of SAC stability and the
regeneration of SACs so far have received little attention.[3]

Being generally comprised of customer manufacturing
organizations (CMOs), namely companies supplying active
ingredients to variety of industrial customers including the
pharmaceutical industry, fine chemical enterprises compete on
cost, quality and speed of delivery.

Heterogeneously catalyzed processes under flow reduce
both the intrinsic production cost to produce the desired
product [Ci in Equation (1)] and the cost of producing unwanted
by-products, dramatically reducing production costs when
compared to traditional production processes carried out in the
multi-purpose and multi-product plant (MPP) with stirred tank
reactors equipped with reflux condensers (costing in excess of
$30 million) typical of fine chemical companies.[33]

Production under flow, furthermore, enhances the lot-to-lot
consistency and dramatically lowers production times and thus
time of customer delivery.

The technology of continuous processing in the manufac-
ture of fine chemicals that a large fine chemical manufacturer
found to be “moving from embryonic to maturity” in 2013,[34] in
the late 2010s started to be widely adopted by fine chemical
and API manufacturers.[35] A variety of modular, advanced flow
reactors and auxiliaries for commercial manufacturing of
excellent productivity (0.6–5 kg/min) are now commercially
available from different suppliers. Companies already exist
owing multipurpose industrial flow systems installed in API
manufacturing plants regularly inspected by the drug regula-
tion authorities.[36] Furthermore, such flow equipments are
portable and readily installable in any plant to develop, scale-
up and validate flow chemistry processes under good manu-
facturing practices (GMPs).

Driven by substantially lower production costs, since the
early 1990s fine chemical and pharmaceutical companies based
in Japan, western Europe and north American countries
relocated API production to fine chemical companies based in
China and India. Those countries became therefore dependent
on imports. Alongside frequent shortage of fundamental drugs,
the COVID-19 outbreak revealed the “irresponsible reliance”[37]

for the supply of life-saving APIs.
It may therefore not be surprising to learn that the

governments of USA,[38] European countries,[39] India, and of
several European countries including France are now support-
ing fine chemical companies manufacturing both APIs and key
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starting materials (KSMs) to bring back production in their
home countries (“reshoring”).

Production of organic molecules via catalytic processes
carried out in continuous flow not only minimizes the
production and the total installed cost, but it also accelerates
the design, construction and installation of the new flow plants.
Indeed, commenting on the reshoring efforts of both API and
KSM productions from China, the director of India’s largest
pharmaceutical industry association recently noted how:

“India’s National Institutes of Pharmaceuticals Education
and Research (NIPER), scientific institutions and companies are
working on improved processes to provide cost-efficient
options. With advanced technology, there are many drugs that
can be produced faster, cheaper and with a smaller environ-
mental footprint.”[40]

The advanced technology mentioned above is flow
chemistry, and its cleanest and economically most advanta-
geous version makes use of heterogeneous catalysts. Amid
these catalysts, SACs stand out as the ultimate advanced
heterogeneous catalysis technology made available by the
ingenuity of research chemists. In addition, 3D printing enables
cost-efficient manufacturing of flow reactors for heterogene-
ously catalyzed processes,[12] with full freedom of design to
meet the different process needs for the specific class of
chemical reactions (oxidations, hydrogenations, nitration, hy-
drosilylation, cross-coupling reactions etc.).

Alongside many other heterogeneous catalysts including
immobilized enzymes,[41] high metal load, leach-proof SACs will
be regularly used across the world’s companies comprising the
fine chemical industry.

Driven also by the need to remain competitive the shift to
clean fine chemical productions based on continuous processes
will inevitably take place also in China where in 2017 more than
40 % of the world’s API output was produced (until the mid
1990s, western Europe, the USA and Japan produced 90 % of
the API global output).[40]

China hosts a huge fine chemical industry that after more
two decades of investments in pollution control, especially
reduction of wastewater, was recently found to be ready to
uptake clean technology oriented to pollution prevention.[42]

The Asian country, where also single-atom catalysis was
discovered,[2] leads by far the world in terms of scientific articles
published every year in the field of chemistry.[43] A large share
of said articles reports achievements of research in green
chemistry.

Based on the outcomes of the present analysis, we
anticipate and forecast that the fine chemical industry will
progressively, but inevitably, switch to heterogeneous catalysis
under continuous-flow conditions to manufacture most of its
valued products. Driven by lower production costs, quicker
production times and enhanced lot-to-lot consistency, the
technology will make use of a variety of newly developed
heterogeneous catalysts, including supported biocatalysts, elec-
trocatalytic species, organocatalysts, metal nanoparticles and
also single-atom catalysts.

Compared to other catalytic materials, the latter SACs will
progressively replace most other metal catalysts due to their

intrinsic higher stability and lower amount of the heterogenized
catalytic species which are often rare and expensive.

In conclusion, as shown by the India’s efforts involving
National Institutes of Pharmaceuticals Education and
Research,[40] the industrial uptake of new production technology
based on heterogeneous catalysts (including SACs) under flow,
requires universities to educate and train a significantly larger
number of research chemists and chemical engineers skilled in
both flow chemistry and heterogeneous catalysis. This, in its
turn, requires to enhance education in catalysis founding its
teaching and learning of catalysis on a unified approach based
on reaction mechanism, visualization and renewed laboratory
activities.[44]
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