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Abstract

We derive bounds for the objective errors and gradient residuals when finding

approximations to the solution of common regularized quadratic optimization prob-

lems within evolving Krylov spaces. These provide upper bounds on the number of

iterations required to achieve a given stated accuracy. We illustrate the quality of

our bounds on given test examples.

1 Introduction

In this paper, we derive upper bounds for the number of iterations required to reach a

certain level of optimality by subspace methods for solving the trust-region subproblem

minimize
x∈IRn

q(x) := gTx+ 1

2
xTHx subject to ‖x‖ ≤ δ (1.1)

and its regularization variant

minimize
x∈IRn

qR(x, σ, p) := q(x) + 1

p
σ‖x‖p. (1.2)

Here, we are given a gradient g, a symmetric, but possibly indefinite, Hessian H , a ra-

dius δ > 0, a weight σ > 0 and a power p > 2, and use the Euclidean norm ‖ · ‖.
Subproblems (1.1)–(1.2) lie at the heart of the step calculation in both trust-region and

cubic-regularization methods for unconstrained optimization [6, 7, 19, 20].

A typical requirement in the trust-region case is that the computed x should decrease

the objective function, i.e., q(x) < q(0) ≡ 0, and that the gradient of the Lagrangian for

the problem, g +Hx+ µx, should be smaller than a prescribed tolerance in norm, i.e.,

‖g +Hx+ µx‖ ≤ ǫ (1.3)
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for some given ǫ > 0, whose precise value determines the rate of convergence of the trust-

region algorithm, and a suitable Lagrange multiplier, µ ≥ 0, for the trust-region con-

straint ‖x‖ ≤ δ. For regularization problems, a similar requirement is that qR(x, σ, p) <

qR(0, σ, p) ≡ 0 and that the norm of the gradient of qR(x, σ, p) should be small. Since

∇xq
R(x, σ, p) = g + Hx + µx where µ = σ‖x‖p−2, the latter requirement is identical to

(1.3) but for a different µ. As the subspace methods we consider automatically ensure

that their relevant objectives decrease, our intention is to provide bounds on the number

of steps (actually products with H) required by such methods to achieve (1.3) for the

problems under consideration.

The subspaces of interest here are the nested Krylov spaces Kk := K(H, g, k) for k ≥ 0,

where, for general A and b, we define K(A, b, k) := span{Aib}k−1
i=0 . A sequence of estimates

xk are generated so that

xk = arg min
x∈Kk

q(x) subject to ‖x‖ ≤ δ (1.4)

for the trust-region subproblem, or

xk = arg min
x∈Kk

qR(x, σ, p) (1.5)

for the regularization case. This is useful as the well-known GLTR method [12] for (1.1) and

the GLRT approach [6] for (1.2), which exploit the evolving Lanczos basis for Kk, use pre-

cisely these formulations. However, we must be cautious as it is well known [12, Thm.5.8]

that such methods may fail to solve the problem if the sequence of Krylov subspaces lies in

an unpropitious non-trivial invariant subspace of IRn, and in this case it may be necessary

to enhance the search space with a specific eigenvector of H from outside the Krylov space.

Fortunately, as we shall see, this is not necessary if our goal is merely to satisfy (1.3).

In §2 we examine the benefits and limitations of Krylov approximations to the solutions

we wish to find. We follow this, in §3, by deriving bounds both on the decrease in the model

objective functions and on the norm of the violation of the first-order criticality residuals

from the Krylov space under consideration. We examine the latter on test examples that are

designed to illustrate a variety of spectral distributions in §4. Finally, we make concluding

remarks in §5.

2 Solutions from the Krylov space and beyond

Let λ1 ≤ . . . ≤ λn be the eigenvalues of H , with the leftmost λ1 having multiplicity n1,

and let ui, i ∈ N := {1, . . . , n} be the corresponding orthonormal eigenvectors. Crucially,

there are well known characterisations of the global solutions of (1.1) and (1.2).
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Theorem 2.1. [9, Thm.2.1; 18, Lem.2.1]. Any solution x∗ to the trust-region sub-

problem (1.1) satisfies

(H + µ∗I)x∗ = −g, (2.1)

where the Lagrange multiplier µ∗ ≥ max(0,−λ1) and µ∗(‖x∗‖2 − δ2) = 0. Moreover

the solution is unique and µ∗ > max(0,−λ1) whenever gTui 6= 0 for some 1 ≤ i ≤ n1.

Theorem 2.2. [6, Thm.3.1; 19, Thm.10]. Any solution x∗ to the regularization sub-

problem (1.2) satisfies (2.1), where the multiplier µ∗ = σ‖x∗‖p−2 ≥ −λ1. Moreover

the solution is unique and µ∗ > −λ1 whenever gTui 6= 0 for some 1 ≤ i ≤ n1.

We consider the evolving Krylov spaces Kk, k ≥ 0, in more detail. Clearly we may

decompose

g =
n
∑

j=1

(gTuj)uj

in terms of the basis of eigenvectors {uj}j∈N of H . Let I+ := {j | gTuj 6= 0}, I0 := N \I+

and m := |I+|.1 Thus

g =
∑

j∈I+

(gTuj)uj and hence H ig =
∑

j∈I+

λij(g
Tuj)uj.

Therefore Km = · · · = Kn, since Km = span{uj}j∈I+ and the vectors H ig for m < i ≤ n

are dependent on those in Km. Hence, our Krylov methods will make no further progress

beyond the m-th iteration, and at that point provide estimates of their relevant solutions

xm and multipliers µm.

We now contrast xm with the desired solution x∗. Let U+ by the n by m matrix whose

columns are the eigenvectors uj, j ∈ I+, U0 be the n by n−m matrix whose columns are

the remaining eigenvectors and U = (U+ : U0). Likewise let Λ be the diagonal matrix of

eigenvalues ordered as for U , and let Λ+ and Λ0 be its diagonal blocks. Thus

Λ = UTHU =

(

Λ+ 0

0 Λ0

)

. (2.2)

If we define ḡ := UT g, and therefore g = Uḡ, this leads to
(

ḡ+
ḡ0

)

:= ḡ =

(

UT
+g

UT
0 g

)

=

(

UT
+g

0

)

and g = U+ḡ+, (2.3)

since ḡ0 = 0 as uTj g = 0 for all j ∈ I0.

1This is equivalently the grade of H with respect to g
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Consider the trust-region subproblem (1.1), and the change of variables x = Ux̄. In

this case, x∗ = Ux̄∗, where

x̄∗ = arg min
x̄∈IRn

ḡT x̄+ 1

2
x̄TΛx̄ subject to ‖x̄‖ ≤ δ. (2.4)

The optimality conditions (2.1) for this are

(

Λ+ + µ∗I 0

0 Λ0 + µ∗I

)(

x̄+∗
x̄0∗

)

= −
(

ḡ+
0

)

, (2.5)

where x̄∗ and the Lagrange multiplier

µ∗ ≥ max(0,−λ1) (2.6)

satisfy

‖x̄∗‖ ≤ δ and µ∗(‖x̄∗‖2 − δ2) = 0, (2.7)

and we have partitioned

x̄∗ = UTx∗ ≡
(

x̄+∗
x̄0∗

)

.

By contrast, if x ∈ Km, then x = U+x̂+ for some vector x̂+ ∈ IRm, in which case (1.4)

gives xm = U+x̂
+
∗ , where

x̂+∗ = arg min
x̂+∈IRm

ḡT+x̂
+ + 1

2
x̂+TΛ+x̂

+ subject to ‖x̂+‖ ≤ δ. (2.8)

The optimality conditions (2.1) then imply that

(Λ+ + µ+

∗ I)x̂
+

∗ = −ḡ+, (2.9)

where x̂+∗ and the Lagrange multiplier

µm ≡ µ+

∗ > max
(

0,−min
j∈I+

λj

)

(2.10)

satisfy

‖x̂+‖ ≤ δ and µ+

∗ (‖x̂+∗ ‖2 − δ2) = 0. (2.11)

Given x̂+∗ , let x̂
0 = 0 and define

x̂∗ =

(

x̂+∗
x̂0∗

)

so that xm = Ux̂∗.

In this case, (2.9) and (2.11) become

(

Λ+ + µ+
∗ I 0

0 Λ0 + µ+
∗ I

)(

x̂+∗
x̂0∗

)

= −
(

ḡ+
0

)

, (2.12)
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and

‖x̂∗‖ ≤ δ and µ+

∗ (‖x̂∗‖2 − δ2) = 0. (2.13)

Now compare x̄∗ and µ∗ from (2.5)–(2.7) with x̂∗ and µ
+
∗ from (2.10), (2.12) and (2.13).

The only substantial difference is between (2.6) and (2.10). Indeed, if µ+
∗ ≥ max(0,−λ1),

the two sets of conditions are identical, and in this case xm = x∗ and µm = µ∗, i.e.,

the solution from the subspace Km solves the full-space trust-region problem (1.1). This

must occur if minj∈I+ λj = λ1 or, equivalently I+ ∩ {1, . . . , n1} 6= ∅, where we recall

n1 is the multiplicity of λ1, but may also happen if minj∈I+ λj > λ1. If µ+
∗ < −λ1,

I+ ∩ {1, . . . , n1} = ∅, and xm cannot solve (1.1), but it is nonetheless a critical point of

the problem.2 This possibility is often called the “hard case” [18] and µ∗ = −λ1; the first

block equation in (2.5) uniquely defines x̄+∗ , and x̄
0
∗ is a multiple of any eigenvector of the

second (singular) block, the precise combination ensuring that ‖x̄∗‖ = δ.

The main lesson here is that if we wish to solve (1.1) we shall have to look outside

the Krylov space and may need to compute an eigenvector corresponding to λ1. If we are

content simply in finding a critical point of (1.1), the Krylov space suffices. An essentially

identical argument may be used in the case of the regularization subproblem (1.2) with

the same conclusions.

3 Error bounds

3.1 Bounds on the decrease of the objective functions

In essence Carmon and Duchi [4] provide the following bounds.3

Theorem 3.1. [4, Thm.1 & Cor.3]. Let λ1 and λn be the leftmost and rightmost

eigenvalues of H . Then, for all k ≥ 0,

(i)

q(xk)− q(x∗) ≤ 36[q(0)− q(x∗)]



e
−4

√

λ1+µ∗
λn+µ∗





k

, (3.1)

where xk is given by (1.4), x∗ is a minimizer of (1.1), and µ∗ is its corresponding

Lagrange multiplier, and

(ii)

qR(xk, σ, p)− qR(x∗, σ, p) ≤ 36 [qR(0, σ, p)− qR(x∗, σ, p)]



e
−4

√

λ1+µ∗
λn+µ∗





k

, (3.2)

where xk is given by (1.5), x∗ is a minimizer of (1.2) and µ∗ = σ‖x∗‖.

2It will only be a local minimizer of µ+
∗ > −λ2 [17].

3Strictly [4, Cor.3] only considers the case p = 3, but their method of proof holds in general.



6 N. I. M. Gould & V. Simoncini - 19th of March, 2019

Thus the error in the relevant objective function decreases at worst linearly as a function

of the subspace dimension unless µ∗ = −λ1, in which case Theorem 3.1 provides no useful

bound. As we have already mentioned, the unlikely “hard case” µ∗ = −λ1 only occurs

if g is orthogonal to the space of eigenvectors corresponding to the eigenvalue λ1 of H ,

and should this happen these eigenvectors will not occur in the Krylov spaces Kk, except

through numerical rounding. A simple expedient advocated by others [4] is to perturb g

by a small random vector.

We note that Carmon and Duchi actually provide a second, sublinear decrease estimate

that may be less pessimistic for small k, but we shall not use this here.

We now restrict our attention to the best estimate xm available from the evolving

Krylov space. We exclude the special case g = 0 since then x = 0 is a critical point of

both of the subproblems under consideration.

Corollary 3.2. Suppose that g 6= 0. Let {λj, uj}j∈N be eigenpairs of H , I+ = {j |
gTuj 6= 0}, m = |I+|, and

λmin

+ = min
j∈I+

λi and λmax

+ = max
j∈I+

λi. (3.3)

Then, for all k ≥ 0,

(i)

q(xk)− q(xm) ≤ 36 [q(0)− q(xm)]
(

e
− 4√

κm

)k

, (3.4)

where xk and xm are given by (1.4),

κm :=
λmax
+ + µm
λmin
+ + µm

, (3.5)

and µm is the Lagrange multiplier corresponding to xm, and

(ii)

qR(xk, σ, p)− qR(xm, σ, p) ≤ 36 [qR(0, σ, p)− qR(xm, σ, p)]
(

e
− 4√

κm

)k

, (3.6)

where xk and xm are given by (1.5), κm is given by (3.5) but now µm = σ‖xm‖.

Proof. Since g 6= 0, I+ 6= ∅,m > 0 and both λmin
+ and λmax

+ are well defined. LetH+ be

the matrix with eigenpairs {λj , uj} for j ∈ I+ and {λmax
+ , uj} for j ∈ I0 = N \I+. Then

Kk = span{H ig}k−1

i=0 = span{H i
+g}k−1

i=0 for k ≥ 0, and the iterates xk generated from

the Krylov spaces Kk for (1.4) and (1.5) for the problem with Hessian H+ are identical

to those with Hessian H . However the hard case cannot occur with the Hessian H+ as

none of the eigenvalues for j ∈ I0 is smaller than the smallest for j ∈ I+. Hence, as we

saw in §2, for this Hessian x∗ = xm and µ∗ = µm. Thus we may apply Theorem 3.1 for
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the problem with Hessian H+ to deduce (3.4) and (3.6). ✷

As Carmon and Duchi mention, this then implies a worst-case estimate of

k ≤ min(m,O(
√
κm log(1/ǫ))) (3.7)

iterations in order to guarantee q(xk) − q(xm) ≤ ǫ or qR(xk, σ, p) − qR(xm, σ, p) ≤ ǫ as

appropriate.

3.2 Bounds on the decrease of the gradients of the objective

functions

Recall that the orthonormal Lanczos basis matrix Vk ∈ IRn×k for Kk satisfies

HVk = VkTk + γkvk+1e
T
k , (3.8)

where

Tk =



















δ1 γ1
γ1 δ2 ·

· · ·
· δk−1 γk−1

γk−1 δk



















(3.9)

is tridiagonal and the γi, i = 1, . . . , k−1 with k ≤ m, are strictly positive [1,14,15,23]. As

the off diagonals γi > 0, Tk is irreducible, and has distinct real eigenvalues (the so-called

Ritz values) θi,k, i = 1, . . . , k, arranged in increasing order. It is well known [10, Cor.8.1.7]

that the Ritz values satisfy the interlacing properties

θi,k ≤ θi,k+1 ≤ θi+1,k (3.10)

for i = 1, . . . , k, k < m, and

λmin

+ = θ1,m ≤ θ1,k+1 ≤ θ1,k ≤ θ1,1 ≡
gTHg

‖g‖2 ≤ θk,k ≤ θk+1,k+1 ≤ θm,m = λmax

+ (3.11)

for k = 1, . . . , m− 1, where λmin
+ and λmax

+ are defined in (3.3).

Since v1 = g/‖g‖, it follows that

V T
k g = ‖g‖e1 and g = ‖g‖Vke1 (3.12)

as Vk has orthonormal columns. Furthermore pre-multiplying (3.8) by V T
k yields

V T
k HVk = Tk,

and thus the definition (1.4) implies that

xk = Vkyk, where (Tk + µkI)yk = V T
k (H + µkI)Vkyk = −V T

k g = −‖g‖e1. (3.13)
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Moreover, applying Theorem 2.1 to (1.4) shows that Tk + µkI is positive definite.

Let

rk := g +Hxk + µkxk = g + (H + µkI)xk. (3.14)

It then follows from (3.8), (3.12) and (3.13) that

Hxk = HVkyk = VkTkyk + γke
T
k ykvk+1 = −Vk(µkyk + ‖g‖e1) + γke

T
k ykvk+1

= −µkxk − g + γke
T
k ykvk+1.

Hence rk = γke
T
k ykvk+1 and

‖rk‖ = γk
∣

∣

∣eTk yk
∣

∣

∣ = γk‖g‖
∣

∣

∣eTk (Tk + µkI)
−1e1

∣

∣

∣ . (3.15)

Note that the definition of γk > 0 as the (k, k+1)-st entry of Tk+1 and the Cauchy Schwarz

inequality implies that

γk = eTk+1Tk+1ek ≤ ‖Tk+1‖ = ‖V T
k+1HVk+1‖ ≤ ‖H‖. (3.16)

Thus, aside from the term γk‖g‖ > 0, the residual norm decays with
∣

∣

∣eTk (Tk + µkI)
−1e1

∣

∣

∣,

and we now focus on this.

We recall a vital result by Demko, Moss and Smith [8] on the component-wise decay

of the inverse of symmetric banded matrices. Here the bandwidth of a banded symmetric

matrix M is the number of nonzero upper (or equivalently lower) super diagonals, and,

if M is additionally positive definite, κ(M) := λmax(M)/λmin(M) is its spectral condition

number, where 0 < λmin(M) ≤ λmax(M) are the left- and right-most eigenvalues of M .

Lemma 3.3. [8, Thm.2.4]. Let M ∈ IRn×n be a symmetric, positive definite matrix

with bandwidth β > 0. Then

|(M−1)i,j| ≤ ct
|i−j|
β

for all i, j = 1, . . . , n, where

c =
1

λmin(M)
max





1,

(√

κ(M) + 1
)2

2κ(M)





 and t =

√

κ(M)− 1
√

κ(M) + 1
.

Note that we shall prefer the slightly weaker, but simpler, bound

c ≤ 2

λmin(M)
, (3.17)

and indeed c = 1/λmin(M) so long as κ(M) ≥
√

1 +
√
2.
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For any k ≤ m, we have that Tk from (3.9) is symmetric and tridiagonal with left- and

right-most eigenvalues (Ritz values) respectively θ1,k < θk,k. As we have seem Tk + µkI is

positive definite, and thus has distinct left- and right-most eigenvalues

λmin(Tk + µkI) ≡ θ1,k + µk < λmax(Tk + µkI) ≡ θk,k + µk (3.18)

as well as spectral condition number

κk := κ(Tk + µkI) =
θk,k + µk
θ1,k + µk

. (3.19)

We may apply Lemma 3.3 to Tk + µkI to deduce our main result.

Theorem 3.4. The residual (3.14) for the k-th iterate, x∗k, generated by either the

trust-region subproblem (1.4) or the regularization subproblem (1.5) satisfies the

bound

‖rk‖ ≤ ‖g‖
(

2γkκk
θk,k + µk

)(√
κk − 1√
κk + 1

)k−1

, (3.20)

where κk is given by (3.19) and γk is the (k, k + 1)-st entry of Tk+1.

Proof. Since
∣

∣

∣eTk (Tk + µkI)
−1e1

∣

∣

∣ =
∣

∣

∣((Tk + µkI)
−1)k,1

∣

∣

∣, we may apply Lemma 3.3 to

Tk + µkI, with β = 1, together with (3.17)–(3.19) to deduce the bound
∣

∣

∣eTk (Tk + µkI)
−1e1

∣

∣

∣ ≤ ckt
k−1

k (3.21)

for all k ≤ m, where

ck =
2

θ1,k + µk
≡ 2κk
θk,k + µk

and tk =

√
κk − 1√
κk + 1

. (3.22)

The desired bound (3.20) then follows directly from (3.15) and (3.22). ✷

In the trust-region case, this leads to the following residual bound4.

Corollary 3.5. The residual (3.14) for the k-th iterate, x∗k, generated by the trust-

region subproblem (1.4) satisfies the bound

‖rk‖ ≤ ‖g‖
(

2δ‖H‖κk
‖g‖

)(√
κk − 1√
κk + 1

)k−1

, (3.23)

where κk is given by (3.19).

4Another thing we know but we have not used.: 0 ≤ µ1 ≤ µk ≤ µm for k = 1, . . . ,m [16].
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Proof. It follows from (3.13), the Cauchy-Schwarz and Rayleigh-Ritz inequalities and

the bound ‖yk‖ ≤ δ that

‖g‖2 = ‖(Tk + µkI)yk‖2 ≤ (θk,k + µk)
2‖yk‖2 ≤ (θk,k + µk)

2δ2,

and hence
1

θk,k + µk
≤ δ

‖g‖ . (3.24)

Thus combining (3.16), (3.20) and (3.24), we find that (3.23) holds. ✷

Corollary 3.6. Let κ∗ = max
1≤k≤m

κk. Then the iteration defined by (1.4) satisfies

‖rk‖ ≤ ǫ (3.25)

as soon as

k ≤ min

[

m,

⌈

log

(

2δ‖H‖κ∗

ǫ

)

/ log

(√
κ∗ − 1√
κ∗ + 1

)⌉

+ 1

]

. (3.26)

Proof. Since the function

q(κ) =

√
κ− 1√
κ+ 1

is monotonically increasing for κ ≥ 1, we deduce from Corollary 3.5 that

‖rk‖ ≤ ‖g‖
(

2δ‖H‖κ∗

‖g‖

)(√
κ∗ − 1√
κ∗ + 1

)k−1

. (3.27)

Recalling that rm = 0, (3.25) and (3.27) lead directly to (3.26). ✷

A similar result is possible for the regularization case.

Corollary 3.7. The residual (3.14) for the k-th iterate, x∗k, generated by the regular-

ization subproblem (1.5) satisfies the bound

‖rk‖ ≤ ‖g‖
(

2‖H‖κk
‖g‖

)

(

µk
σ

) 1

p−2

(√
κk − 1√
κk + 1

)k−1

, (3.28)

where κk is given by (3.19).
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Proof. It follows from (3.13), the Cauchy-Schwarz and Rayleigh-Ritz inequalities and

the relationship µk = σ‖yk‖p−2 that

‖g‖2 = ‖(Tk + µkI)yk‖2 ≤ (θk,k + µk)
2‖yk‖2 = (θk,k + µk)

2

(

µk
σ

) 2

p−2

and hence
1

θk,k + µk
≤ 1

‖g‖
(

µk
σ

)
1

p−2

. (3.29)

Thus (3.28) follows by combining (3.16), (3.20) and (3.29). ✷

Corollary 3.8. Let κ∗ = max
1≤k≤m

κk. Then the iteration defined by (1.4) satisfies (3.25)

as soon as

k ≤ min

[

m,

⌈

log

(

2‖H‖κ∗

ǫ

(

µm
σ

) 1

p−2

)

/ log

(√
κ∗ − 1√
κ∗ + 1

)⌉

+ 1

]

. (3.30)

Proof. Given Corollary 3.7, the proof is essentially identical to that of Corollary 3.6,

except that we additionally make use of the bound 0 ≤ µk ≤ µm for k = 1, . . . , m [5,

Thm.2.5]. ✷

3.3 Comments

We now comment on the bounds obtained in §3.1 and 3.2. Those on the (linear) rates of

convergence given in Corollaries 3.2, 3.6 and 3.8 are very typical of the Chebyshev bounds

that have been derived for conjugate-gradient (CG)-llke methods for solving symmetric,

positive-definite systems of linear equations Ax = b (see, e.g., [15, §5.6.2]). Briefly, in

this case ‖rk‖A−1 = ‖xk − x∗‖A, where rk = Axk − b and x∗ = A−1b. Since ‖rk‖ ≤
√

λmax(A)‖rk‖A−1 , the argument in the CG case focuses on finding an upper bound on

‖xk − x∗‖A. In particular, xk is chosen to minimize ‖x− x∗‖A over all x ∈ K(A, b, k), and

this is easily shown to lead to the bound

‖xk − x∗‖A ≤ ‖x0 − x∗‖A min
ψ∈Pk

max
i∈N

|ψ(λi(A))|, (3.31)

where

Pk = {polynomials ψ of degree k for which ψ(0) = 1}

and λi(A), i ∈ N , are a subset of the eigenvalues of A. Weakening the requirement that the

maximum in (3.31) instead considers ψ(λ) over all λ ∈ [λmin(A), λmax(A)] and invoking a

well-known bound from approximation theory relating to Chebyshev polynomials, it then
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follows that

‖xk − x∗‖A ≤ 2





√

κ(A)− 1
√

κ(A) + 1





k

‖x0 − x∗‖A.

Since ‖x0 − x∗‖A ≤ ‖r0‖/
√

λmin(A), we thus obtain the bound

‖rk‖ ≤ 2
√

κ(A)





√

κ(A)− 1
√

κ(A) + 1





k

‖r0‖;

if x0 = 0, ‖r0‖ = ‖b‖ in the latter.

The presence of κm ≤ κ∗ in the bounds in §3.1 and 3.2 is strongly reminiscent of the CG

case, and indicates that rescaling (preconditioning) the problem so that κm or κ∗ = O(1)

would be beneficial. In the strictly convex case when H is positive definite, κm is no larger

than the traditional condition number λmax
+ /λmin

+ obtained from (3.11). Although we know

that θk,k increases monotonically from (3.11), as does µk [5, 16], we have not been able to

prove that κk increases monotonically,5 albeit in practice it appears to.

We need to be very cautious here as although such bounds accurately predict the worst

possible case [4,14], they are often very pessimistic in general, a point stressed in [15]. We

shall return to this in §4. Nevertheless, if one is interested in the worst-case, bounds such

as (3.7), (3.26) and (3.30) are relevant.

We tried two other approaches to derive useful bounds on the norm of the residual,

(3.14). The first aims to use the known decrease in the model objective given by Corol-

lary 3.2 to deduce a similar bound on ‖rk‖. Since xm from (1.4) is a critical point of (1.1),

we have that

g +Hxm + µmxm = 0, (3.32)

and hence
rk := g +Hxk + µkxk = −Hxm − µmxm +Hxk + µkxk

= (H + µmI)(xk − xm) + (µk − µm)xk
. (3.33)

Elementary manipulation of these (see Appendix A) then leads to the bound

(λmax
+ + µm)

−1‖rk‖2 ≤ 2 [q(xk)− q(xm)] + ρk, where

ρk := µk(‖xk‖2 − ‖xm‖2)− (µm − µk)‖xm − xk‖2 + (µm − µk)
2xTk (H + µmI)

−1xk,
(3.34)

which exposes the dependence on the model objective decrease q(xk) − q(xm). Unfortu-

nately, aside from the case where µm = 0 for which ρk = 0, we are not able to find a

useful bound on ρk; ideally we would like to show that ρk ≤ 0. Of course, even had we

had succeeded in bounding ρk, the overall bound we would have obtained via Corollary 3.2

for the q(xk)− q(xm) term would not have been substantially different from those given in

Corollaries 3.6 and 3.8.

Our second approach tried to mimic that taken for the CG method for positive-definite

linear systems. However, the argument relating the A-norm of the error to the A−1-norm

5The result would follow if we could show that θk,k + µk decreases monotonically with growing k.
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of the residual and the subsequent min-max characterisation depends crucially on the

definiteness of A, and thus this line of attack is not obvious for our case where H may be

indefinite. Nevertheless it is easy to derive the bound

‖rk‖ ≤ max
j∈I+

|ψk(λj + µk)|‖g‖, where ψk(λj + µk) =
k
∏

i=1

(θi,k − λj)

(θi,k + µk)
. (3.35)

on the residual (3.14) (see Appendix B). Although we do not know how to derive a useful

bound on ψk(λj + µk), as we see in §4, to do so might provide a much closer match to the

true residual than provided by Corollaries 3.6 and 3.8.

4 Experiments

We consider nine examples that aim to illustrate our analysis; all nine are available as part

of the CUTEst [11] set of test problems. Each is of the form

q(x) = 1

2

n
∑

i=1

dlx
2

i +
n
∑

i=1

xi,

but vary according to the diagonal Hessian elements, di. Specifically we have examples

DIAGPQT: di = −i2/n + n+ 1/n,

DIAGPQE: di = i,

DIAGPQB: di = i2/n,

DIAGIQT: di = −i2/n + n/2 + 1/n,

DIAGIQE: di = i− n/2,

DIAGIQB: di = i2/n− n/2 + 1/n,

DIAGNQT: di = −i2/n,
DIAGNQE: di = i− n− 1, and

DIAGNQB: di = i2/n− n− 1/n,

for i = 1, . . . , n; in our tests we let n = 1000, and ignore the additional simple-bound

constraints specified in the CUTEst examples. The first three are convex with Hessian

spectra that bunch towards the top of the range, that are equispaced, and that coalesce

towards the bottom of the range respectively. The second three shift the spectra of the

first three downwards by n/2, leading to indefinite Hessians, while the last three concave

examples shift downwards by n + 1.

In Figure 4.1 we compare the true residual against bounds derived in Section 3 when

running GALAHAD’s [13] GLTR package [12] to solve the trust-region subproblem (1.1) on

the first three test examples. Almost identical plots have been obtained for the remaining

examples for the trust-region case since the residual

rk = Hxk + µkxk + g = (H − ωI)xk + (µk + ω)xk + g

shows that shifting the Hessian downwards by ω is compensated by shifting the multiplier

upwards by the same amount once the trust-region constraint is active.
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We observe that although Theorem 3.4 and Corollary 3.5 provide bounds on the resid-

ual, they may be far from sharp, especially when the spectrum is equispaced or bunched

towards the top end. In particular, the bounds do not capture the superlinear behaviour

of the residuals in these cases; the slopes best mimic those from the earlier iterations. This

largely agrees with the observations made and conclusions drawn in the linear-equation

case [15]. The inferiority of the bound in Corollary 3.5 compared to that in Theorem 3.4

merely reflects the weakening that results when approximating unknown quantities (i.e.,

θk,k + µk) by known ones (i.e., H , g, δ). By contrast, the bound provided by (3.35) is

quantitatively far better, but, of course, this requires full knowledge of the spectrum.

Figures 4.2–4.4 compare the estimates (3.20), (3.28) and (3.35) against the true residual

when running GALAHAD’s GLRT package [6] to solve the regularization subproblem (1.2)

on all nine test examples; unlike for the trust-region case, a translation of the Hessian does

not produce essentially identical plots when moving from the convex via the indefinite to

the concave cases.

Once again, we observe that the bounds (3.20), (3.28) may be far from sharp, and can

fail to reflect the later superlinear convergence of the residuals. The behaviour is most

extreme for the concave examples, and for those whose spectra coalesce at the top of their

ranges. As before, (3.35) provides a much more faithful bound.

Finally Figures 4.5 illustrate the effect of changing the regularization weight, σ, when

solving (1.2) for the example DIAGNQT, on the residual estimates. The subproblems become

increasingly hard as σ shrinks, and the estimates correspondingly poorer. Indeed, the

decrease predicted by (3.20) when σ = 100 barely indicates convergence, while although

the rates for the actual residual and the prediction (3.35) are initially slow, they later

accelerate.

5 Conclusions

We have derived bounds for the objective errors and gradient residuals when finding

approximations to the solution of common regularized quadratic optimization problems

within evolving Krylov spaces. Those for the objective errors are trivial extensions of

existing ones [4], while those for the gradient residuals generalize well-known ones for

conjugate-gradient methods applied to definite linear systems. Quantitatively the bounds

behave just as in the conjugate-gradient case, but reflect additional complication of the

subproblems, particularly the potential indefiniteness of the matrices involved.

We express some caution since in exceptional cases Krylov methods may not find the

global solutions to our problems. If this is the goal, then additional precautions [4, 12]

that are not covered by our bounds may be necessary. If our goal is simply to find an

approximation that yields a small gradient residual—and this is often the case when the

subproblem occurs as component of a more general optimization calculation—then our

bounds are appropriate, and provide upper bounds on the number of iterations required

to achieve a given stated accuracy.
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Figure 4.1: log10 of the residual (y-axis) as the iteration proceeds (x-axis) for GLTR

as applied to the convex problems DIAGPQT (top plot), DIAGPQE (middle) and DIAGPQB

(bottom) with a trust-region radius δ = 1. Each figure shows the residual (3.15) (solid

line), and the estimates (3.20) (dotted line), (3.23) (dashed line) and (3.35) (dash-dot line).
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Figure 4.2: log10 of the residual (y-axis) as the iteration proceeds (x-axis) for GLRT

as applied to the convex problems DIAGPQT (top plot), DIAGPQE (middle) and DIAGPQB

(bottom) with a regularization weight σ = 1000 and p = 3. Each figure shows the residual

(3.15) (solid line), and the estimates (3.20) (dotted line), (3.28) (dashed line) and (3.35)

(dash-dot line).
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Figure 4.3: log10 of the residual (y-axis) as the iteration proceeds (x-axis) for GLRT as

applied to the indefinite problems DIAGIQT (top plot), DIAGIQE (middle) and DIAGIQB

(bottom) with a regularization weight σ = 1000 and p = 3. Each figure shows the residual

(3.15) (solid line), and the estimates (3.20) (dotted line), (3.28) (dashed line) and (3.35)

(dash-dot line).
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Figure 4.4: log10 of the residual (y-axis) as the iteration proceeds (x-axis) for GLRT

as applied to the concave problems DIAGNQT (top plot), DIAGNQE (middle) and DIAGNQB

(bottom) with a regularization weight σ = 1000 and p = 3. Each figure shows the residual

(3.15) (solid line), and the estimates (3.20) (dotted line), (3.28) (dashed line) and (3.35)

(dash-dot line).
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Figure 4.5: log10 of the residual (y-axis) as the iteration proceeds (x-axis) for GLRT as

applied to the concave problem DIAGNQT with different values of σ when p = 3. Specifically

σ = 100 (top plot), σ = 1000 (middle) and σ = 10000 (bottom). Each figure shows the

residual (3.15) (solid line), and the estimates (3.20) (dotted line), (3.28) (dashed line) and

(3.35) (dash-dot line).
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Our bounds do not reflect the “superlinear” behaviour that is sometimes observed in

practice that results from annihilation of extreme eigenvalues by the Krylov process. A

more sophisticated analysis, akin to that by Axelsson, Kaporin and others [2, 3], might

provide this, but we have not attempted it.
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Appendix A

Using (3.32) to compare the model decrease from xk to xm, we deduce that

q(xk)− q(xm) = 1

2
xTkHxk + gTxk − 1

2
xTmHxm − gTxm

= 1

2
xTkHxk − 1

2
xTmHxm + gT (xk − xm)

= 1

2
xTkHxk − 1

2
xTmHxm + (xm − xk)

THxm + µm(xm − xk)
Txm

= 1

2
(xm − xk)

T (H + µmI)(xm − xk) + 1

2
µm(‖xm‖2 − ‖xk‖2).

(A.1)

Since (2.10) shows that H+µmI is positive definite on Km, and as rk ∈ Km, it follows that

(H + µmI)
−1rk = (xk − xm) + (µk − µm)(H + µmI)

−1xk,

and hence, taking the inner product with rk from (3.33),

rTk (H + µmI)
−1rk = (xm − xk)

T (H + µmI)(xm − xk)

+2(µm − µk)(xm − xk)
Txk + (µm − µk)

2xTk (H + µmI)
−1xk

= 2[q(xk)− q(xm)]− µm[‖xm‖2 − ‖xk‖2]
+2(µm − µk)(xm − xk)

Txk + (µm − µk)
2xTk (H + µmI)

−1xk
= 2[q(xk)− q(xm)] + µk(‖xk‖2 − ‖xm‖2)

−(µm − µk)‖xm − xk‖2 + (µm − µk)
2xTk (H + µmI)

−1xk

(A.2)

using (A.1). As rk ∈ Km, referring back to (2.2), we have that

rk = U+r̂k = U

(

r̂k
0

)

,

for some r̂k, and thus

rTk (H + µmI)
−1rk = r̂Tk (Λ+ + µmI)

−1r̂k ≥
‖r̂k‖2

(λmax
+ + µm)

=
‖rk‖2

(λmax
+ + µm)

where we recall the definition of λmax
+ from (3.3). Hence (A.2) leads directly to (3.34).

We recall that [5, 22]

‖xk‖ ≤ ‖xm‖ (A.3)

and [5, 16]

0 ≤ µk ≤ µm, (A.4)

and hence µk(‖xk‖2 − ‖xm‖2) ≤ 0.

Suppose that µm = 0. Then (A.4) implies that µk = 0, while (3.32) gives Hxm = −g
and thus (1.1), (2.2), (2.3) and (3.3) combine to give

q(0)− q(xm) = 1

2
ḡT+Λ

−1

+ ḡ+ ≤ ‖ḡ+‖2
(λmin

+ + µm)
=

‖g‖2
(λmin

+ + µm)
. (A.5)

Combining (3.4) (3.34) and (A.5) gives

‖rk‖2 ≤ 2(λmax

+ + µm)[q(xk)− q(xm)] ≤ 72κm

(

e
− 4√

κm

)k

‖g‖2,
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i.e.,

‖rk‖ ≤ 6
√
2
√
κm

(

e
− 2√

κm

)k

‖g‖. (A.6)

We note that obtaining an error bound via (3.32)–(A.2) is similar to the approach taken

by [21, §3.2] in the absence of a trust region.

Unfortunately, it is unclear how to proceed when µm > 0—there are two sub-cases

µk = 0 and µk > 0, but we cannot see a way for either. The issue, of course, is the extra

term

−(µm − µk)‖xm − xk‖2 + (µm − µk)
2xTk (H + µmI)

−1xk (A.7)

in (3.34). Ideally, we would like to show that this is negative in which case a bound of the

form (A.6) would follow. We also have a bound

xTk (H + µmI)
−1xk = (xk − xm)

T (H + µmI)
−1(xk − xm)

+2xTk (H + µmI)
−1xm − xTm(H + µmI)

−1xm
≤ (xk − xm)

T (H + µmI)
−1(xk − xm)− 2gTxk

on the second term in (A.7), but that doesn’t seem to help. Another possibility is to

show that the two terms in (A.7) decay exponentially, although we see no reason why in

particular (µm − µk) would—one might for example have µk = 0 for all k = 1, . . . , m − 1

(i.e., the trust-region constraint is inactive), but µm > 0 (the constraint becomes active).

Appendix B

Our second attempt to find a useful bound on the residual is based on the relationships

(3.8)–(3.9), and uses the following identity.

Lemma 5.1. For any scalar λ, we have

V T
k (H + λI)jVke1 = (Tk + λI)je1 (B.1)

for j = 1, . . . , k.

Proof. We first show that

(H + λI)jVk = Vk(Tk + λI)j + γk

j−1
∑

i=0

(H + λI)j−i−1vk+1e
T
k (Tk + λI)i (B.2)

for all k ≥ 1. This follows follow immediately when j = 1 as

(H + λI)Vk = Vk(Tk + λI) + γkvk+1e
T
k (B.3)
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from (3.8). Suppose that (B.2) holds for some j > 1. Then multiplying by H + λI and

using (B.3), we have

(H+λI)j+1Vk = (H + λI)Vk(Tk + λI)j + γk

j−1
∑

i=0

(H + λI)j−ivk+1e
T
k (Tk + λI)i

= (Vk(Tk + λI) + γkvk+1e
T
k )(Tk + λI)j + γk

j−1
∑

i=0

(H + λI)j−ivk+1e
T
k (Tk + λI)i

= Vk(Tk + λI)j+1 + γkvk+1e
T
k (Tk + λI)j + γk

j−1
∑

i=0

(H + λI)j−ivk+1e
T
k (Tk + λI)i

= Vk(Tk + λI)j+1 + γk

j
∑

i=0

(H + λI)j−ivk+1e
T
k (Tk + λI)i,

and thus (B.2) holds for j + 1. Hence (B.2) holds for all j ≥ 1 by induction.

Now observe that (Tk + λI)e1 only has nonzeros in positions 1 and 2, (Tk + λI)2e1 =

(Tk + λI)((Tk + λI)e1) only has nonzeros in positions 1 to 3, and in general (Tk +

λI)j−1e1 = (Tk + λI)((Tk + λI)j−2e1) only has nonzeros in positions 1 to j. Thus from

(B.2) and the orthogonality of the columns of Vk, we have

V T
k (H + λI)jVke1 = V T

k Vk(Tk + λI)je1 + γk

j−1
∑

i=0

V T
k (H + λI)j−i−1vk+1e

T
k (Tk + λI)ie1

= (Tk + λI)je1 + γk

j−2
∑

i=0

V T
k (H+λI)j−i−1vk+1e

T
k (Tk+λI)

ie1 + γkV
T
k vk+1e

T
k (Tk+λI)

j−1e1

= (Tk + λI)je1

as required, since eTk (Tk + λI)ie1 = 0 for i = 0, . . . , j − 2 and j = 1, . . . , k, and

V T
k vk+1 = 0. ✷

Since xk ∈ Kk = span{H ig}k−1
i=0 ≡ span{(H + µkI)

ig}k−1
i=0 , we have

xk =
k−1
∑

j=0

ηj(H + µkI)
jg

for coefficients ηj , j = 0, . . . , k − 1, and thus

rk = g + (H + µkI)
k−1
∑

j=0

ηj(H + µkI)
jg = g +

k−1
∑

j=0

ηj(H + µkI)
j+1g

= g +
k
∑

j=1

ηj−1(H + µkI)
jg

= ψk(H + µkI)g

(B.4)

for some

ψk(λ) =
k
∑

j=0

ωjλ
j ∈ Pk = {polynomials ψ of degree k for which ψ(0) = 1}.
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But then

V T
k rk = V T

k ψk(H + µkI)g =
k
∑

j=0

ωjV
T
k (H + µkI)

jg

= ‖g‖
k
∑

j=0

ωjV
T
k (H + µkI)

jVke1 = ‖g‖
k
∑

j=0

ωj(Tk + µkI)
je1

= ‖g‖ψk (Tk + µkI) e1

(B.5)

using (3.12) and (B.1). Since Tk is irreducible, it has distinct eigenvalues θi,k, i = 1, . . . , k,

and as (3.13) indicates that V T
k rk = 0, (B.5) implies that ψk is a scalar multiple of the

minimum polynomial

φk(λ) =
k
∏

i=1

(λ− θi,k − µk)

of the irreducible matrix Tk + µkI. Indeed, ψk(λ) = φk(λ)/φk(0) since we require that

ψk(0) = 1.

Referring back to (2.2) and (2.3), we have that H = UΛUT and g = Uḡ for matrices

U of eigenvectors and Λ of eigenvalues. Then (B.4) gives

rk = ψk
(

U(Λ + µkI)U
T
)

Uḡ = Uψk(Λ + µkI)ḡ = U+ψk(Λ+ + µkI)ḡ+,

and hence
‖rk‖2 = ‖ψk(Λ+ + µkI)ḡ+‖2 =

∑

j∈I+

ψ2

k(λj + µk)ḡ
2

j

≤ max
j∈I+

ψ2

k(λj + µk)
∑

j∈I+

ḡ2j = max
j∈I+

ψ2

k(λj + µk)‖ḡ∗‖2

= max
j∈I+

ψ2

k(λj + µk)‖g‖2
.

This then provides the estimate (3.35).


