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1 Statistical framework: bounce modeling

Our statistical framework is the following: we call ¢rial an event in which the price enters in a stripe. The
price may only exit upward or downward from the stripe!. We model this random event as an elementary
Bernoullian event as the price may either bounce on the stripe (success), or break it (failure).

Now consider a generic stripe, suppose that we have previously observed by, = ¢ bounces on that stripe
and that another trial has just happened. We call this event

E; : {bprev = @ bounces on a stripe previously happened} and {one more Bernoulli ¢rial happened right now}

and define the elementary probability of trial success in this event (i.e. a bounce b) as
i = p(b|bpres = i) (1)

Now we assume no prior knowledge on the parameter 7; and treat it as a random variable uniformly
distributed in the interval [0, 1]:
Prior(m;) = U([0,1]) (2)

Suppose now that, out of N; events F; observed, we have measured n; trial successes, or in other words,
out of N; times in which the price entered again a stripe - having previously already made ¢ bounces on
it - overall it bounced back n; times and consequently broke the stripe N; — n; times.

We modeled the likelihood of having observed n; successes out of N; events E; (each governed by the
same elementary probability ;) as

N;

i

L(n;|Ny;m;) = Binom(n;|Ny;m;) = ( )(m)vw(l — ) Nemm (3)

The goal of this framework is to infer the posterior distribution of 7;
Posterior(m;|N;, n;) (4)

i.e. which is the value of 7; that most likely governs the bernoullian trials belonging to events F;, having
observed a certain amount N; of them and having counted out n; successes.

Therefore, with the choice of an uniform prior for the parameter 7; we are avoiding to give priority to
any particular choice of the probability that the bernoullian trial of any event E; will eventually lead to a
success. Moreover, it is possible to see the uniform distribution as a particular case of Beta distribution:

Beta(m;|1;1) =1 VY, €]0,1]

Lwe are then ignoring the remote possibility of an infinite permanence within the stripe.



and this allows us easily to know the form of the Posterior distribution of m;, as a Beta prior is conjugated
with a Beta posterior with respect to a binomial likelihood (refer to appendix A for details):

. Prior(m;) = Uu([0,1]) ) ) N N
if {L(ni|Ni;7ri) —  Binom(ni|Ni: ) then : Posterior(m;|N;,n;) = Beta(m;|n;+1; N;—n; +1)

whose expected value E[p(b|by,c, )] and variance Var[p(b|bpre, )| are those in Eq. (1) and (2) of main text.

2 Statistical validation of the measured memory effect

In this section we provide statistical evidences of the difference between the memory effect measured in
the stock series and the lack of memory shown by the reshuffled returns series.

Let us first introduce the same quantities as before, N/ and n}**, but calculated for the reshuffled series.
We consider that if the randomly reshuffled series were to be significantly different from the stock series,
their empirical bounce frequency

f7‘es . fres(blb _ Z) _ n;es
Ji . prev — - res
@

which is the empirical proxy for the probability
7% = p(blbpres = 1)

should be very unlikely obtained as an extraction from the posterior distribution of the m; of the stock
series.
We formalize this intuition setting a Kolmogorov-Smirnov (K-S) test, following these steps:

e we generate an ensemble M = 100 reshuffled return series?, from which we obtained a sample of
res fres res ) .

empirical bounce frequencies for any kind of bounce ¢ = 1,2,3,4: ( N N M v

e for any kind of bounce i = 1,2,3,4, from the empirical values of N; and n; computed for the
stock series, we evaluate the theoretical posterior distribution Posterior(m;|N;,n;) of the bounce
probability m; from equations (6) and (7) in Appendix A.

e we perform a K-S test to compare the sample distribution of ( i1 SIS ﬁf}) with the reference

distribution Posterior(m;|N;,n;).

The K-S test returns the p-value as well a D-value which consists in the absolute value of the maximum
(supremum) between the sample CDF and the theoretical one. The closer this number is to 1 the less
likely it is that the sample was extracted from the theoretical distribution.

Results are shown in Table 1 for Resistances and in Table 2 for Supports. As most of the p-values are
even under the numerical precision, it is widely confirmed that for what concerns the measured memory
effect the randomly reshuffled series are significantly different from the stock series.

2we set M = 100.



Resistances 15 bounce 2™ bounce 3" bounce 4" bounce

T-1 p-value 0.0 0.0 0.0 0.0
B D-value 1.0 1.0 1.0 1.0
T—15 p-value 0.0 0.0 0.0 0.0
D-value 1.0 1.0 1.0 1.0

T —30 p-value 0.0 0.0 0.0 0.0
n D-value 1.0 1.0 > 0.999 > 0.999
T — 45 p-value 0.0 0.0 0.0 0.0
N D-value > 0.999 > 0.999 > 0.999 > 0.999
T — 60 p-value 0.0 0.0 0.0 0.0
N D-value 0.996 > 0.999 0.994 0.996
T —90 p-value 0.0 0.0 0.0 0.0
n D-value 0.923 > 0.999 0.990 0.793
T — 120 p-value 0.0 0.0 0.0 0.0
N D-value 0.970 0.976 0.808 0.871
T — 150 p-value 0.0 0.0 0.0 0.0
D-value 0.851 0.837 0.681 0.876

T — 180 p-value 0.0 0.0 0.0 0.0
n D-value 0.993 0.909 0.914 0.866

Table 1: Resistances: Kolmogorov-Smirnov results (p-value and D-value) for comparison between CDF
of sample frequency of reshuffled returns series and theoretical posterior of bounce probability 7; of stock
series.



Supports 15% bounce 2™ bounce 3" bounce 47 bounce

T_1 p-value 0.0 0.0 0.0 0.0
N D-value 1.0 1.0 1.0 1.0
T—15 p-value 0.0 0.0 0.0 0.0
D-value 1.0 1.0 1.0 1.0

T — 30 p-value 0.0 0.0 0.0 0.0
n D-value 1.0 1.0 > 0.999 > 0.999
T — 45 p-value 0.0 0.0 0.0 0.0
N D-value 1.0 1.0 > 0.999 > 0.999
T — 60 p-value 0.0 0.0 0.0 0.0
N D-value > 0.999 > 0.999 > 0.999 > 0.999
T — 90 p-value 0.0 0.0 0.0 0.0
n D-value > 0.999 0.973 0.983 0.912
T — 190 | PValue 0.0 0.0 0.0 4.32x 10713
N D-value 0.999 0.997 0.725 0.374
T — 150 p-value 0.0 0.0 0.0 1.45x107°
N D-value 0.996 0.729 0.503 0.262
T — 180 p-value 0.0 0.0 224x1071% 4.35x10~"
N D-value 0.996 0.909 0.378 0.388

Table 2: Supports: Kolmogorov-Smirnov results (p-value and D-value) for comparison between CDF of
sample frequency of reshuffled returns series and theoretical posterior of bounce probability m; of stock
series.



Appendix A

In this appendix we will show the intercurrent conjugation between a Beta prior and a Beta posterior
with respect to a binomial likelihood, in the case considered here of a uniform prior.

We begin recalling the definition of a distribution of the random variable 7 € [0, 1] belonging to a Beta
family described by parameters a, b € [0, 1]:

,n_a—l (1 _ 7T)b_1

Beta(m|a;b) = B(a.b)

where the Beta function B(a,b) is defined as the integral

T(a)T'(D)

B(a,b) = /0 2711 — 2) e = Tla+b)

We first notice that if @ = 1 and b = 1, then the Beta distribution is uniform on the [0, 1] interval:

1

Beta(rla =1;b=1) = BA1)

=1.

In this particular case we now show the conjugation between the uniform prior of 7 and its posterior
distribution having observed NN trials and, out of them, n successes, binomially distributed. This consists

to show that if:
Prior(m) = U(]0,1])
L(n|N;m) = Binom(n|N;m)

then:
Posterior(n|N,n) = Beta(m|n 4+ 1; N —n + 1)

Indeed, by the Bayes theorem:

L(n|N;m
J L(n|N;m

~—

Prior(m)
Prior(n)dr

u((0.1)
U([0,1])dr
()5 =
b (

N)7T" 1 —m)N=—ndr

Posterior(m|N,n) =

~—

L(n|N;m
fL(n|N;7T

~—

~—

7T"(1 _ 7.‘_)N—n
Bn+1,N—-n+1)

= Beta(rln+1;N —n+1) (6)
and we conclude noticing that the shape of the posterior is:

Beta(ﬂ|n +1;N—n+1)= (N +1) (f) (1 — 7T)N—n (7)

which is easily derived from equation (5) and the properties of the I function and that has been adopted
in the computation of the theoretical distribution in the Kolmogorov-Smirnov test in section 2.






