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1. INTRODUCTION

Although the constitutive equations of elastic-plastic materials
have been studied for many years, the possibility today of obtaining the
numerical solution of difficult boundary-value problems has increased
even further the need for accurate knowledge of the mechanical
response of the materials.

One of the best ways of establishing the adequacy of an elastic-
plastic constitutive model is to apply it to the study of complex
tension-torsion tests, and compare the results with the experimental
data obtained by submitting thin-walled tubular specimens to combined
tension-torsion processes (see [1], [2], [3] and [4]). Indeed, if a tension
process is followed by a torsion process, the direction of the stress
follows the orthogonal change in direction of the strain trajectory
after a certain angular delay; the ability to account for this
phenomenon is a good test for a constitutive law.

In [5] a general kinematic hardening model is presented; it is shown
that a suitable choice of parameters allows for results in excellent
agreement with the available experimental data. The method is,
however, somewhat complicated and the constitutive response to
tension-torsion processes must be calculated numerically.

In the present paper we confine ourselves to an examination of the
classical kinematic hardening rule proposed by MELAN [8], according to
which the rate of the elastic range centre is parallel to the rate of
plastic deformation. In this way a constitutive equation is obtained
which, in the case of tension-torsion processes, can be integrated
analytically. This makes it possible to carry out a qualitative analysis
of the effect of the kinematic hardening modulus on the delay with
which the stress follows the strain trajectory. It is shown that, in
spite of the simplicity of the hardening rule used, the model gives a
fairly good account of essential phenomenological aspects.

2. CONSTITUTIVE HYPOTHESES

In this chapter, for the reader’s convenience, we shall briefly present,
in axiomatic form, certain elements of the theory of infinitesimal
plasticity which, as shown in [8], can be deduced from the general
theory of materials with elastic range formulated in [7] and [8] on the
assumption, accepted in the present paper, that the displacement
gradient from a fixed reference configuration is small. We shall begin
with a number of indispensable definitions.

A deformation process or, more briefly, a history is a continuous and



continuously piecewise differentiable mapping, defined on the closed
real interval [0,1] with values in Sym, the space of all the second-order
symmetric tensors,

E:[011->5Sym, T E(T). ‘ (2.1)

The value E(r) at instant © of a history £ is interpreted as the
infinitesimal deformation, i.e., the symmetrical part of the
displacement gradient starting from a fixed reference configuration, in
a fixed material point. At each instant T in which £ is differentiable, E
represents the value of the derivate of £ at instant z: for each © for
which E is discontinuous we shall indicate the right-hand derivative as
E.

Let us define the section and continuation operation on the set ¥ of
all the histories. For £ € ¥ and © € [0,1], thez-section of £ is the
history E, such that

T B (7)) = E(ze) , T el0,1] (2.2)

a continuation G of € is any history G such that G, = E. For A € Sym,
a continuation of E up to A is a continuation of £ of which the final
value E(1) coincides with A. :

The materials being considered here are elastic-plastic isotropic
solid whose mechanical response to deformation processes is described
by a frame-indifferent and rate-independent constitutive functional.
All deformation processes are thought to originate from such a state.
Physically, this means carrying out experiments only on identically
prepared specimens. To be more precise, taking

D:={Ee¥F/E0O)=0]), (2.3)

to be the set of all histories whose initial value is the origin of Sym,
the material response is described by a constitutive functional

T:D-Sum, T=TE, (2.4)

whose value T(E) gives the Cauchy stress at the end of history E.

Since the constitutive response is not affected by the strain rate,
we can interpret T(£,.), the Cauchy stress associated with the -
section of £, as the stress attained at instant = during history E. To
make this clearer, below we shall write T¢(z) instead of T(E,).

The kind of constitutive response is further specified by the notion



of elastic range and plastic history (see [7], Section 3 and 3,
respectively). Elastic range £(E,) at time = corresponding to history E
€ X is the closure of an arcwise connected open subset of Sym, whose
boundary is attainable from interior points only; it contains E(z) and
its points are interpreted as the infinitesimal deformations from the
reference configuration to configurations which are elastically
accessible from the current configuration.

A history G with £, = G, is called an elastic continuation of £ if &

remains in E(E,) i.e, if G(z) € E(E,) for each " € [vy,1]. Functional
T, restricted to the set of elastic continuations of .. is path-
independent; in other words, if G and B are two elastic continuations of
E, such that 6(1) = A(1) we have T(G) = T(A). Moreover, the elastic
range is invafiantAfor elastic continuations, in that, for each elastic
continuation G of k., we have

EE,) = EG) . (2.5)

Given a history £ € D, a history EP € ¥ is called a plastic history
corresponding to E if, for each v € [0,1], EP(%) € £(E,) and T(G) = 0, for
each elastic continuation G of £, up to EP(z). Thus, at each instant <,

EP(z) defines an unstressed configuration which is elastically
accessible from the current configuration.
Here we assume that, for each history E € D there exist, precisely,

a plastic history EP corresponding to E. We also assume there is no
plastic change of volume i.e.,

trér(z) = 0, for each T ¢ [0,1] , (2.8)
where tr is the trace functional.

Since the material is isotropic, it can be proved that EP(0) = 0 (see
[71, subsection 7.1) and therefore

EPen, foreachEed . (2.7).

Besides, if £ € © and G is an elastic continuation of £ such that G, = E,
it is easy to verify that :

Gr(z') = EP(1) for each t' € [z, 1] (2.8)

(see [7], prop. 5.2) and therefore



G(z) =0, for each ¢’ € [T,1]. (2.9)

Let £ and EP € ©, be a history and its plastic history, respectively.
In this paper, we accept the classic hypothesis that the material
response to elastic deformations with respect to the current
unstressed configuration is not affected by the past deformation
process. We also deal esclusively with isotropic materials subject to
infinitesimal deformations. Consequently, we assume that there exist
two constants A and j, the so-called Lame’ moduli, such that, in view
also of (2.6), we have

Te(r) = T(E(7) - () = 2u(E(v) - EP(2)) + A(trE(R)) T, (2.10)

(here 1 is the identity tensor). Application T", which depends on the
material but not on the history, is called the structural mapping [10].

The image of the elastic range under) T", i.e., the set of all the

stresses which are elastically accessible starting from that current,
and its boundary, are called stress range and yield surface,
respectively.

For each tensor A € Sym the deviator of A will be indicated by

Ag = A - H%UrA) I, ' (2.11)

The following relations can be immediately deduced from (2.6),
(2.10) and (2.11):

Te(t)g = 2u(E(T)y - EP(T)) | (2.12);

tri(z) = 3xtrE(z) , (2.12),
where

X = %20+ 30) (2.13)

is the bulk modulus.

Here we accept Drucker’'s postulate in one of its equivalent versions
(see [11]). As is well known, important properties of the elastic range
and of the plastic strain rate follow from this postulate (see [8], prop.
7.6). We shall now proceed to list such properties. For this purpose let
Symg be the subset of Sym made up of all the traceless tensors and let




5 be the closure of an 'open set of Symg. It should be remembered that,
for each point V belonging to the boundary 35 of S, the normal cone of
Sin V is the (possibly empty) subset C4(V) of Symy defined by

Css):={Aesym\Mo} / (V-T)-A20foreachTes), (2.14)

where for A and B belonging to Sym, A + B := tr(AB).
For each history E € » and for each © € [0,1],

i) (¢onvexity rule) there exists a convex subset Fy(E.) of Symg such
that the elastic range £(E,) corresponding to £, is the cylinder

EE)=(Eesym/EqgebpE) }: - (2.15)

ii) (flow rule) the plastic strain rate EP(z) is either null or belongs to
the normal cone of 3£y(E,) at (E ).

[n view of the applications we have in mind, the hypothesis may be
advanced that the material satisfies the v. Mises criterion. To be more
precise, let us suppose that, for each history E € D there exists a
history Cg with values in Symg such that Cg(0) = 0 and, for each

T e [0,1], the set Ey(E,) is the ball
EolE) = {(EesSymg /IE - Ce(ml < p ), (2.16)

where, for A e sym, Al :== A - A = trAZ,

In the present paper we do not intend to take isotropic hardening
into account; therefore, let us suppose p is an independent positive
constant of the history (see [5], Sez. 3).

The set

E={(EesSym/lEg I < p) (2.17)

is called the initial elastic range of the material. Let E € D be a
history; since E is a continuous function and £(0) = 0, for © small
enough E() € E. Let us suppose that the image of [0,1] under E is not
entirely contained in £, and let ©* € 10,1[ be the greatest value of ¢
for which the image [0,7*] under £ is contained in £: ©* is the instant
of first yielding of the material.

For V, the three-dimensional real inner product space, let ey, &5,
ez be an othonormal basis of V, fixed once and for all. Let us consider



a pure tension process, i.e., a history E € © such that

Te(z) = 04,(v) ey0e,, Tel0,1], ' (2.18),
so that
Te(T)g = % 0y,(v)(2e,0e, - (e,0e, + e30e3)) , v el0, 1],  (2.18),

and let ©* be the corresponding instant of first yielding. The quantity
o* = 044(TF) (2.19)

is the first yielding tension of the material. In order to ascertain the
relation between o* and p let us note that, in view of (2.9) and
(2.12),, it turns out that, for = € [0,77],

E(v)g = % (0,,(x)/pn)(2e 08, - (e,0e, + e50e5)) . (2.20)
Therefore
E(z*)y = %(c*/p)(2e,0e, - (e,08, + e50€3)) (2:21)

~and it can be deduced from (2.16) and (2.19) that

p=% o*/(2p) . ‘ ’ (2.22)

From the flow rule and from (2.16) we have

EP(z) = IEP()Il Nl (2.23)
where
Re(z) == (1/p)((E)g =~ CelT)) (2.24)

is the outward unit normal vector to a£y(E,) at (E,) -

In order to take the Bauschinger effect into account, let us accept
the classic kinematic hardening rule proposed by MELAN [B]. Let us -
suppose, that is, that there exists a non-negative constant 7, called
the kinematic hardening modulus, such that for each history £ € » and
for each 7 €[0,1] we have



Ce(r) = (1 + MEP(T) . (2.25)

In particular, a material for which we have m = 0 is called ideally

plastic. 7 ;
within the framework of this theory, the use of the hardening rule
(2.25) requires some caution. Indeed, if for some history E € D and for

some T € [0,1] we do not have
n < pUEP(TINT, , (2.28)

Er(z) does not belong to Eg(E,), in contrast with the definition of
plastic history given above. More general hardening ruies like that to be
found in [S] may ensure, thanks to a suitable choice of parameters, that
the inequality (2.26) is satisfied during every history £ € D. Rule (2.25)
may therefore be considered as an approximation of these more general
rules, which is applicable when the value of IEP(z)Il during the history
is sufficiently small.

As proved in [5] and [9], the evolution of the corresponding plastic
deformation is governed, for each history E ¢ D, not only by the flow

rule (2.23) but also by the following relation
0 if IE(T)y - Celw)l < p
IEP(E)l = 0 if IE(T)g - Co()l = p and Ne() - E(T)y < O (2.27)

(1701 + 1) Ne() - E(T)g
if 1E(z)g - Celo)l = p and Ng(z) - E(x)y > O .

when one of the first two cases contemplated in the right-hand side of
(2.27) occurs, the material behaves elastically: the third case is known
as the plastic loading condition .

Relation (2.27); is typical of the present constitutive theory:
indeed, it prescribes IEP(T)I as a function of the deviatoric strain rate
E(v),, rather than of the deviatoric stress rate T(z), as happens inthe
classic theory (see [12], p. 33). Although the present model gives the
same result as the classic one, it simplifies the search for the solution
of the constitutive equation, as will become clear in the following
chapter.

Relations (2.23), (2.24) and (2.27) can be conveniently made into a
single equation. Indeed, given a history £ € © and after obtaining from




it the corresponding deviatoric history Eq ¢ [0,11 - Symg,

Eo(T) = E(T)y = E(z) ~(trE(x)) 1, Telo1], (2.28)
let us put
2e(2) = (Eg(z) - Ce(T)) 5 , (2.29)

from (2.23), (2.27) and (2.29) we then obtain
Eolz) if IX(T) < p

X(T) = Eglm) if 1ol = p and Kg(%) + Eo(T) € O (2.30)

Eg(T) - (17p)(Re(T) + Eg(z))R (%)
it IR =p and Kc(T) - Eg(z) > 0,

with the initial condition
Xe(0) =0, (2.31)

a direct consequence of (2.3), (2.7), (2.25) and (2.29).

In [13] it is proved that, for every E € D, the derivative of which is
a function of bounded variation on [0,1], the equation (2.30) with the
initial condition (2.31) provides one and only one solution X, which is
lipschitzian on [0,1] and derivable to the right in every point.

For each history E assigned, the integration of equation (2.30) with
initial condition (2.31) makes it possible to determine EP, with the help
of (2.23), (2.25) and (2.28). The stress can then be calculated from
relation (2.12).

3. A COMPLEX LOADING PROCESS

This section deals with a deviatoric deformation process which can
be obtained, using the experimental methodologies described in detail
in [2] and [3], in a thin-walled tubular specimen submitted to combined
tension-torsion loads: the analytical solution of the relevant equation
(2.30) is found. Since our purpose here is purely demonstrative, we
have confined ourselves to considering a deformation process made up
of two normal segments (see Figures 1 and 2) but the extension of this
method of solution to processes made up of two segments at different



angles raises no particular problems. After this, the results, calculated
for different values of the kinematic hardening modulus, are compared
with the experimental data contained in [1].

Let « and B be two real positive numbers. Let us consider the
deviatoric deformation process Eq: [0,11 > Symg, defined as follows

Eo(T) = €,4(T) (ey@ey - £,08,) + €15(e;0e, + €,08), (3.1)

where, for ¥, the instant of first yielding, we have

T for 0<T <7y

€11(T) = (3.2)
XTy for Tys T <1,
0 for 0< T <7y

612(77) = : (33)

Blr-zy) . for T, < v <1,

for some fixed Tielz™, 1[ . 7
In view of (2.29), (2.30) and (3.1), for each © € [0,1], we can write

Re(T) = E4(T)e 08 - e,0e,) + £1,(T)(e 08, + €,08,). (3.4)

For © € [0, ©*] the material behaves elastically and we find X(z) =
Eq(T), while for © € [t*, 4] we have plastic loading and from (2.30),
(3.1) and (3.2) we can immediately deduce that Xc(z) = 0. Therefore

) Eo(z) . for zel0, T7]
Re(t) = (3.5)

Eolz™), for Telr™, ],
For v € [t,,1] the plastic loading situation continues and we therefore
have IX(z)l = p which, in view of (3.4), implies that
208412 + £452) = p?.. (3.8)

This last relation suggests we should put (v. Fig. 1)

By = (/2 p)sing Lo = (/2 plcosy . (3.7)
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Fig. 1

From (3.1) - (3.4) and (3.7) we obtain the following equations, for
T e lwy, 1],

Re(T) = (22 pllsin¥(T)(e 0e, - ey0e,) +

+ cos¥(T)(e,0e, + e,0e,)]; (3.8)

Eo(%) = (e 08, + €,08,) . (3.9)
We therefore have

X - By = V2 pBcos¥ (3.10)
and, in view of (2.30)s, (3.8) - (3.10) we can write

Xe = - Bsin¥[ - cos¥ (e 0e; - e,0e))

10



+ sind(e,@e, + e,@e)] . (3.11)
On the other hand, deriving (3.8) with respect to 7, we obtain
Ke = (/2 p¥)lcosy (e,0e, - ,00,) - sin¥ (e,0e, + e0e)] . (3.12)

A comparison between (3.11) and (3.12) immediately provides the
identity

¥ =-(/2B/p)sin¥ : , (3.13)

since ¥(t,) = /2, as can be directly deduced from (3.1), (3.4), (3.5)
and (3.7), we have

T —
dz - _BY2 (v - ©) (3.14)
tsm?f p -
which gives
tan(¥/2) = exp(- (/2 B/p)(T - ©)) . (3.15)

Equations (3.7) and (3.15) make it possible to calculate &y and &;, for
each © ¢ [z,;.1] and the value of the plastic deformation EP(%) can be
obtained from the relation

Er(z) = (1701 + mlleyi(v) = £14(2) (e10e; - ey0e,) =
* (512('5) - 212(7))(91992 + 92®€1)] , (3.16)

which is a consequence of (2.25), (2.239) and (3.4). Finally, (2.12),
provides the following expression for the deviatoric part of the siress:

~

To(T)g = 044(7) (8198 - e,08,) + Ty(e,0e;, + €,0€y), (3.17)
where, as a result of (3.18),
oy = (2p/0 + Mneyy + &) (3.18),

(512: (2}1/(] + 'ﬂ))('ﬂ‘f]z + 2.12) . (3-]8)2
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It is usual to represent the deviatoric deformation processes
relevant to complex tension-torsion loads, such as that defined by
(3.1), with the deviatoric strain vector [4]

e =€ e+ 4%/3 €50, (3.19)

the curve © + e(t) , ©v € [0,1], is called the deviatoric strain
trajectory and

Az) = [ 16(x)ldr (3.20)
0

is its length up to instant 7.

In particular, the deviatoric strain trajectory corresponding to the
deviatoric process (3.1) is made up of two segments that are
perpendicular to one another, as shown in Fig. 2. The first segment,
whose length is

Ay = A(Ty) = xTy ‘ (3.21),

1&(2/\/_5,—)812
0,02 -
)M —m— =
0,01-
5 t
0 : | -
0 001 M 002 en
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corresponds to the interval [0, Ty} the second segment, whose length is
A - ay = %Y3 B0 - Ty, (3.21),

corresponds to the interval [z, 11. At each instant © ¢ [Ty, 1] we have
AT) =2+ BY/3B(T - Ty . (3.22)

Similarly, it is usual to represent the mechanical response with the
deviatoric stress vector [4]

t=3/,0,8 /30, 8,. (3.23)
2~ 1 12 ¥2

Tension-torsion experiments carried out on thin-walled tubes show
that the direction of the deviatoric stress vector t and the tangent e of
the deviatoric strain trajectory only coincide when the curvature of the
trajectory is very small, as is the case in the first segment of the
deviatoric process (3.1). The angle 6(z) between vectors t(z) and e(z),

0,06

- 0,0? 0,04
——0,02
A=A

P
.

0000 0002 0004 0006 0008 0010 0012

Fig. 3
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6(z) = cos! [&(z) - t(x)/ ()t , (3.24)

is called the delay angle (see Fig 2).

" For © = T,, where the strain trajectory is right-angled, the delay
angle coincides with m/2 and subsequently decreases until it
disappears (see Fig. 3).

The change in direction of the strain vector also affects the length
It] of the deviatoric stress vector, which rapidly decreases after the
beginning of the second segment of the strain trajectory and then
begins to increase again, as can be seen in Figure 4.

From (3.2), (3.3), (3.7), (3.18), (3.21),, (3.22) and (3.23) we can
deduce that

t = (2u/01 + aIGromA, + %2 psind) e, +

+ (3r,m(n- X,) + /372 pcosd) eyl , T e lTy, 11, (3.25)
W g
N=0
1,15 -
1,10 -
1,05 -
1,00 -
A i 0’03
0,95 o 00%
NN 09227 0,08
0,90 - A=A

0000 0002 0004 0006 0008 0010 0012

Fig. 4
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from which, with the help of (3.24), we immediately obtain the delay
angle

o(z) = cos~'[(2p/(1 + M)CGrmn- Ay) + /372 pcosy ) /Itl] . (3.26)

In particular, for ideally plastic materials 7 is zero and therefore
(3.26) becomes

o(r) = cos! (cos¥ / (%sin2¥ + cos2¥)?) , (3.27)

so that the delay angle is independent of elastic modulus y.

In order to study the affect of the kinematic hardening modulus,
defined by equation (2.25), on the delay angle, let us determine the
behaviour of cosé as a function of m, for fixed v € [vy, 1]. From (3.25)
and (3.26) we obtain, after a number of computations,

d

—=— C0S8 =
dn
37g/2 p (N + %V 2 p sin®)(37(h = Ay)sind +
-/3 ncos¥)tl3, (3.28)
so that
—dQT-]- cose < 0 for tand < %3 A/(h = Ay) (3.29)
But
tan¥ = 2tan(¥/2)/(1 - tan(¥/2)) (3.30)

and from (3.15), (3.22) and (3.29) we can deduce

g cos8 < 0 for
dnm

201 - Aexp(- (/B /p)n = A/ 11 = exp(= (VB /p)(h = AT <
%/ 3N . (3.31)

15



Let (A - A,) be the left-hand side of the inequality (3.31). It is
easy to ascertain that @(A - %) is a decreasing function, for (X -
A1) >0, and that we get

lim = PO\ -a)=V%p. (3.32)
AN

Therefore, if

p<V2 N0, (3.33)
the delay angle & is an increasing function of m for each v € [t,,1] or,
equivalently, for each A 2 A,.

[n order to assess the effect of parameter 1 on the length |t] of the
deviatoric stress vector, when the deviatoric strain vector changes
direction, let us put

o= A =1t - APt/ e, for A - Ay 20. (3.34)

From (3.15) and (3.22) we can deduce the following equations:

L siny = - \/3— L sin¥ cosy | (3.35),
dn 2 p

d _ 301 /o 2
~ COSY = = — (sin?Y , 3.35
dn \/; p (oin®) (339,

using which we find that

dw —

dn
[3/,M2(0 =Nq) + 3/,m(0 -Ay)sin?Y + »

+ /372 pmcosd + %/3/2 psin?¥cosy +

- % /3 nsindcosy] /(A + %/Z p) It (3.36)

[f we observe equation (3.36) it is immediately clear that, if the
material is ideally plastic (i.e. if we have m = 0 ), w is an increasing

16



function for each A > Ay if, on the other hand, m is positive, for w to
be an increasing function, (A - A;) must be sufficiently large. In the
latter case, the effect of the sudden change in direction of the
deviatoric strain trajectory on the behaviour of w has realistically to
be found in a small right-hand neighborhood of A = X;. Given, then, that

y=7/2-7, (3.37)

we shall confine ourselves to examining the behaviour of w(A) when
(A -7y), and, therefore, ¥, too, are small enough quantities to allow the
following approximations:

cos¥ = siny =y, (3.38),
sind = cosy =1, (3.38),
A -2y = =/% p In(tan(¥/2)) = -v% p In(1 - 2¢?) =

=2/ % py?; (3.38)5

the first identity in (3.38)s is a consequence of (3.15) and (3.22). With
the help of approximations (3.38), we obtain from (3.36)

d

dx

= 9(/377 pm + %372 p - %/3 na)/ ((n, + %Y/ 2 p) ItD) . (3.39)

In applications such as those being considered in the present paper,
in which we have '

p/ANy <1, ' (3.40)

it can reasonably be thought that, in order for a right-hand
neighborhood of A, where w(A\) is decreasing, to exist, we have to have

n > p/(3/2 Ny - 4p) . : (3.41)
We shall now give an estimation of the upper limit imposed on the

value of 1 by condition (2.26), during the deviatoric process (3.1) (see
the discussion preceding equation (2.26)).

17



For © € [0,2%] we have EP(z) = 0. For © ¢ [t¥,7,], we can deduce
from (2.25), (2.29), (3.1) - (3.3) and (3.5), that we have

EP(OI = (1/7(1 + IEy(T) - Eglz™)l =
=/2x(x-T/0 +m7) (3.42)

and therefore, in view of (2.17) and (3.21),, that the greatest value of
IEP(N, for © e [t*, 7] is

V2 (- /(e m) = (20 - p)/(0 ). (3.43)

For © € [T, 1], (3.1) - (3.3), (3.7), (3.16) and (3.22) give
NEP(o = (V2 /(1 + M(ny - % /2 psin¥)? +
+ (53 (0 - N - %2 pcosy)?]t (3.44)
Therefore, for v € [Ty, 1], we have
IE(N < (V2 /1 + ML A% + % = 202 + % p2]2 (3.45)

and so the greatest value attained by IEP(T)Il in the interval [Ty, 1] is
less than

(VZ /(0 + N2 + % (A1) = 2,)2 + %p2]% (3.48)
The experimental data to be found in Figures 3 and 4, taken from

[1], are relevant to complex tension-torsion tests carried out on a
brass specimen with the following characteristic parameters:

o* = 140 MPa,  2u = 70504 MPa , (3.47)
and, therefore, in view of (2.22), ~

p = .00162 . (3.48)
The lengths of the deviatoric strain trajectory are

Ay =015, A1) - A, =012 (3.49)
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thus p/A, = .108 and both the inequalities (3.33) and (3.40) are
verified. Figure 3 shows the behaviour of the delay angle © calculated
for various values of 1, with equation (3.26): this figure confirms that
6 is an increasing function of m, for each X > Aj.

Figure 4, which shows the value of w calculated for different values
of m with equation (3.34), substantially confirms the estimation
summarized in (3.39) and (3.41). Indeed, for p and A; as in (3.48) and
(3.49),, respectively, the right-hand side of the inequality (3.41) is
about .0283.

Finally, it can be deduced from equations (3.43) and (3.46) that for
p, Ay and A1) as in (3.48) and (3.49), a sufficient condition for
inequality (2.26) to be verified for each v € [0,1] proves to be 1 £ .067.

4. CONCLUSIONS

Comparison between the experimental data and the calculated curves
shows that, in the case in point, the kinematic hardening rule (2.25)
can be used to give a fairly accurate approximate description of
significant aspects of stress behaviour in a complex tension-torsion
test. Moreover, examination of Figures 3 and 4 shows that the value of
n for which the closest agreement with the experimental data is
attained, still falls within a rather limited interval, even though such a
value of m is a decreasing function of (A - ;). More complicated
hardening rules should make it possible to obtain more accurate
results; such an aim is achieved, for example, in [S], by allowing the
centre of the elastic range to move in a direction which depends on the
entire previous strain history. However, when the aim is to find
explicit solutions to boundary-value problems, it is expedient to choose
constitutive laws which, like the one proposed by MELAN, are very
simple. Therefore, it seems worthwhile drawing attention to the fact
that, unlike the ideally plastic rule, the MELAN hardening rule, in spite
of its simplicity, accounts for phenomenological aspects generally
considered important in testing elastic-plastic constitutive laws.

REFERENCES

[11  Kratochvil J., Ohashi Y., Satra M., Tokuda M., Behaviour of
Polycrystalline Metals under Complex Loading Conditions:
Testing, Modelling an Computation
Continuum Models of Discrete Systems 4, eds. O. Brulin and R. K.
T.Hsieh, North-Holland Publishing Company, 1981, 383-391

19



Ohashi Y., Kurita Y., Suzuki T., Effect of Curvature of the Strain
Trajectory on the Plastic Behaviour of Brass
J. Mech. Phys. Solids 29, 1981, 69-86

Ohashi Y., Tokuda M., Precise Measurement of Plastic Behaviour
of Mild Steel Tubular Specimens Subjected to Combined Torsion
and Axial Force

J. Mech. Phys. Solids 21, 1873, 241-261

Ohashi Y., Tokuda M., Yamashita H., Effect of Third. Invariant of
Stress Deviator on Plastic Deformation of Mild Steel
J. Mech, Phys. Solids 23, 1875, 295-323

Guidotti P., Lucchesi M., Pagni A., Pasquinelli G., Elatic-Plastic
Behaviour with Work-Hardening: an Appropriate Model for
Structural Software,

Meccanica 19, 1984, 43-51

Melan E., Zur Plastizitat des raumlichen Kontinuums
Ing. Arch. 8, 1938, 116-126

Lucchesi M., Podio Guidugli P., Materials with Elastic Range: A
Theory with a View toward Applications. Part |
Arch. Rat. Mech. Anal. 102, 1988, 23-43

Lucchesi M., Podio Guidugli P., Materials with Elastic Range: A
Theory with a View toward Applications. Part Il
CNUCE, Internal Report C88 - 20, 1988; Submitted

Lucchesi M., Podio Guidugli P., Materials with Elastic Range: A
Theory with a View toward Applications. Part Il
In preparation

Silhavy M. On transformation laws for plastic deformations of
materials with elastic range S
Arch. Rat. Mech. Anal. 63, 1977, 169-182

Lucchesi M., Podio Guidugli P., Sull'equivalenza di alcuni
postulati di dissipazione in teoria classica della plasticita’

Atti del IX Congresso AIMETA, Bari 4-7 Ott. 1988, Vol. [, p. 121~
124

20



[12]1 Hill R., The Mathematical Theory of Plasticity
Oxford University Press, 1950

[13] Lucchesi M., Esistenza e unicita’ dello sforzo per materiali

idealmente plastici soggetti a deformazioni finite
CNUCE, Internal Report C88 - 44, 1988; Submitted

21



