

Project no.: IST-FP6-STREP - 027513
Project full title: Critical Utility InfrastructurAL Resilience
Project Acronym: CRUTIAL
Start date of the project: 01/01/2006 Duration: 36 months

Deliverable no.: D25
Title of the deliverable: Model-based evaluation of the
middleware services and protocols & architectural patterns

Project co-funded by the European Commission within the Sixth Framework
Programme (2002-2006)

Contractual Date of Delivery to the CEC: 31/12/2007
Actual Date of Delivery to the CEC: 18/01/2008
Organisation name of lead contractor for this deliverable: CNIT
Author(s): Susanna Donatelli6(Editor), Eric Alata4, Andrea Bondavalli3, Davide Cerotti6,
Alessandro Daidone3, Silvano Chiaradonna3, Felicita DiGiandomenico3, Mohamed
Kaâniche4, Vincent Nicomette4, Francesco Romani3, Luca Simoncini3

Participant(s):6CNIT, 3CNR-ISTI, 4LAAS-CNRS.
Work package contributing to the deliverable: WP5
Nature: R
Dissemination level: PU
Version: 3.0
Total number of pages:

Abstract
This task has the objective of providing an evaluation of the service and protocols defined in WP4, as
well as defining reusable models, for dependability evaluation approach (incl. Probabilistic
verification). This task will also take care of defining the metrics that are adequate to evaluate
interdependencies and to compute the values of such metrics on a number of reference systems. This
task goes hands in hands with task T3.3 in WP3. We shall model system architecture blocks, threats
and interdependencies with the goal of assessing the ability of the deployed architectural solutions to
limit the negative effects of interdependencies. The output of this task is a quantitative analysis to
support designers in the activity of defining a robust Information Infrastructure (II) for Electric Power
Systems

Keyword list: performance and dependability evaluation, architectural building blocks,
system verification, Electrical Power System evaluation

Model-based evaluation of the middleware services and protocols Page ii

DOCUMENT HISTORY

Date Version Status Comments

29/10/2007 000 Draft First version of table of contents

14/12/2007 001 draft Includes contribution from ISTI, UNIFI, CNIT,
LAAS

18/12/2007 001 draft Correctness of material included has been
checked by partners and editor has added some
material to link sections and some questions to
partners

4/1/2008 001 draft Contribution back to editor

16/1/2008 002 draft Almost final integrated version distributed

18/1/2008 003 submit Submitted version

Model-based evaluation of the middleware services and protocols Page iii

Table of Contents

1 INTRODUCTION AND OUTLINE ... 1

2 PRELIMINARIES .. 1
2.1 Metrics definition.. 1

2.1.1 Metrics for quantitative evaluation... 1
2.1.2 Metrics for correctness analysis .. 3

2.2 Extending the UML representation of the CRUTIAL domain .. 3
3 STATISTICAL MODELS OF ATTACKS .. 6

3.1 Overview of the Leurré.com environment and the collected data ... 7
3.2 Methodology .. 9

3.2.1 Identification of silence periods ... 9
3.2.2 Data selection for the modelling of inter-arrival times between attacks 10

3.3 Time between attacks distribution ... 12
3.4 Conclusion ... 13

4 PRELIMINARY EVALUATION OF ARCHITECTURAL SOLUTIONS ... 14
4.1 PRISM models of CIS.. 14

4.1.1 Description of the system .. 14
4.1.2 Model description... 16
4.1.3 Verification using Prism ... 21

4.2 DEEM Models of the Proactive-Reactive Recovery Strategy ... 22
4.2.1 System Overview... 22
4.2.2 The Proactive-Reactive Recovery Strategy .. 23
4.2.3 Fault Model and Assumptions ... 24
4.2.4 PRRW Modeling .. 25

4.2.4.1 Phase Net ... 26
4.2.4.2 System Net ... 26
4.2.4.3 Reward Structures .. 29

4.2.5 Model Evaluation and System Analysis .. 29
5 PRELIMINARY ASSESSMENT OF DEPENDENCIES BETWEEN THE EI AND II
INFRASTRUCTURES... 36

5.1.1 Scenario, settings, fault conditions and analyzed measure. ... 36
5.1.2 Quantitative analyses .. 39

6 CONCLUSIONS .. 42

REFERENCES .. 43

1 INTRODUCTION AND OUTLINE
This deliverable reports on a number of evaluation and validation activities that have been
carried on in the project through the use of models using the formalisms, methodologies and
tools introduced in deliverables D8 [Kaâniche et al. 2008] and D11[Donatelli et al. 2008b].
They are quite diverse activities, but highly representative of the various roles that model-
based approaches can play in the analysis of critical infrastructure. At first (Section 2), we set
up the field with the definition of the metrics considered in the analysis reported in this
deliverable, we then (Section 3) introduce a model of attacks which is a probability
distribution of the time between two successive attacks, fitted upon the data collected
through honeypots. This model can be used as an input to all building blocks and models
that include attack situations. Section 4 describes the analysis of a portion of the CRUTIAL
middleware: the CIS intrusion tolerant block described and built in within WP4 (See
Deliverable D10 [Neves et al. 2008]. We have attacked the analysis from two points of view:
correctness of the proposed solution (Section 4.1), and evaluation of the system failure
probability under various configurations of CIS, in particular for the case in which
rejuvenation techniques are applied within the CIS (Section 4.2). The third target of the
analysis is the evaluation of the interdependencies between the electrical infrastructure EI
and the information infrastructure II, which is reported in Section 5. The deliverable
concludes with Section 6, that discusses the progress of model based analysis in CRUTIAL,
while identifying the planned work for the next period.

2 PRELIMINARIES
Before introducing the model-based analysis of the three targets above, we set the
objectives of the analysis and we update some of the UML description of CRUTIAL upon
which the scenarios are based.

2.1 Metrics definition
This subsection provides an overview of the properties evaluated and on the metrics
computed: it provides therefore an overview of the contribution of the research reported in
this deliverable.

2.1.1 Metrics for quantitative evaluation
To quantify the effects of interdependencies, appropriate metrics need to be defined.
Measures of performability, a unified measure proposed to deal simultaneously with
performance and dependability, are particularly helpful in risk analysis of the Electrical Power
System (EPS) based on a stochastic approach. The EPS corresponds to the composition of
the electrical infrastructure (EI) and the Information and control infrastructures (denoted as
II). A set of measures specific for the EPS can be based on the following reward structure
where costs and rewards are considered with respect to the point of the view of the power
producers and distributors:

• To each generator a cost is associated, depending on the generated power, the type
of generator, the breakdown of the generator;

• To each load a positive reward is associated, depending on the consumed power and
on the criticality of the load;

• To each interruption of service supply a cost is associated, depending on the
difference between the required power and the available power for each load, on the
number of loads which will be powered off, on the criticality of loads which will be
powered off, and on the duration of the interruption.

Among the performability measures that have been defined to assess the impact of
interdependencies between the Electric and the Information infrastructures of EPS, the

Model-based evaluation of the middleware services and protocols Page 2

following ones are currently adopted in the EPSyS simulator (see Deliverable D11 [Donatelli
et al. 2008b]).

• The expected reward E[Vt] at time t, defined as:

Vt = R(P)It
P ∈RS
∑

where It is a random variable that is equal to 1 if the real injected power in the
transmission grid at time t is P, otherwise It = 0, and R(P) is the reward associated to the
real injected power P, where:

R(P) = Pi
i∈G
∑ Wi

G + PjWi
L

j ∈L
∑

with WG

i and WL
j the cost and the reward associated to generator i or load j, respectively.

• The expected reward E[Y[0,t]] accumulated in the interval [0, t], with Y[0,t] defined as:

Y 0,t[] = R(P)J 0,t[]
P ∈RS
∑

where J[0,t] is a random variable that represents the total time that real injected power
has value P during the time interval [0, t].

• The expected percentages of blackout Bt and B[0,t] at time t and in the interval [0, t],
respectively. This is a particular case of the previous ones.

• The expected numbers of components Nt and N[0,t] affected by a disruption at time t
and in the interval [0, t], respectively.

Traditionally, performability measures have been used to assess the impact of accidental
threats. A similar approach could be adopted to assess the impact of malicious threats
provided that representative assumptions about the occurrence of attacks and their impact
can be defined. The results presented in Section 3 aim to fulfil this objective. In particular,
we focus on the characterization of the random variable of the times between successive
attacks observed at a target system connected to the Internet (e.g., a honeypot). The
definitions of an “Attack” , and the “Time between attacks” are given as follows:

• An attack is defined by the set of packets exchanged between a source identified by
an Internet IP address and a particular target system (e.g. a honeypot).

• Let us denote by T the random variable corresponding to the time between the
occurrence of two consecutive attacks at a given target, and t a realization of T. The
random variable T can be characterized by different metrics such as, its probability
distribution function F(t), its probability density function denoted as f(t) or its expected
value, denoted as E(T):

F(t) = Prob.{T ≤ t}

f (t) =
dF(t)

dt

E(T) = tf (t)dt
0

∞

∫

Model-based evaluation of the middleware services and protocols Page 3

With reference to the evaluation and validation of CRUTIAL architectural solutions, relevant
measures of interest are those representative of the system resilience, since the devised
mechanisms/protocols are intended to reinforce the ability of the considered infrastructures
to survive despite accidental faults as well as malicious attacks. Therefore, indicators such
as the system failure probability and the system availability are among the relevant measures
for this purpose. Actually, these two measures have been selected and evaluated in the
study focusing on the Proactive-Reactive Recovery strategy proposed to reinforce the
intrusion tolerance of the CIS in the scope of the protection service (see Section 4.2)

2.1.2 Metrics for correctness analysis
The objective of the analysis is to “prove”, through model-checking, that CIS is correct
according to the specification given in [Sousa et al. 2007], where correctness is defined
through the following properties:

1. If f+1 correct replicas call approve function for the same message then it will be
signed.

2. If a legal message is received by some correct replica and the message was not
previously forwarded by other replicas, it will eventually be signed.

From validity of these lemmas follows correctness and integrity:

3. A legal message received by at least one replica is forwarded to its destination.

4. An illegal message is never processed by its destination.

2.2 Extending the UML representation of the CRUTIAL domain
The UML diagrams proposed in [Garrone et al. 2007] mainly concern the general
architecture of the both the Electrical Infrastructure (EI) and the Information Infrastructure (II)
(also referred to as ICT in this section). Such diagrams were obtained by structuring the
information extracted from WP1 activities, in the form of UML class diagrams. Actually
interdependencies between infrastructures do not emerge explicitly from those UML
diagrams. The further step in the UML representation of the CRUTIAL project domain, is
justified by the necessity of making interdependencies explicit; to this aim, UML collaboration
diagrams and state diagrams have been exploited. In this activity, we focused on the
services that the II provides to the EPS; services are represented as collaboration constructs
and collaboration occurences (instances).

In UML, a collaboration describes a structure of collaborating elements (roles), each
performing a specialized function which collectively accomplishes the desired functionality.
Given the high level of abstraction no identity or precise classes of participants need to be
defined [UML]. A collaboration occurrence (instance) represents the application of the
pattern described by a collaboration to a specific situation involving precise classes or
objects playing the roles of the collaboration.

As an example, we consider the teleoperation service where three roles can be identified: a
remote controller sending commands to a local controller in charge of managing a controlled
entity. Such roles are represented by the collaboration called Teleoperation in the
collaboration diagram in Figure 2-1.a. Another example of collaboration is depicted in the
collaboration diagram in Figure 2-1.b where we consider the Communication between two
nodes of a communication channel whose roles are Peer A and Peer B respectively.

Model-based evaluation of the middleware services and protocols Page 4

Figure 2-1: a) collaboration Telecontrol b) collaboration Communication
The teleoperation service may be exploited in order to change the configuration of the GRID;
in this case, a teleoperation command is sent from an Area Control Centre to a Substation
Automation Site controlling a Substation. This can be represented by instancing the
collaboration called Teleoperation (Figure 2-1.a) to a more specific situation where the role of
remote controller is played by the Area Control Centre, the role of local controller is played by
the Substation Automation Site, and the role of controlled entity is played by the Substation.
Such instantiation is represented by the collaboration diagram in Figure 2-2 where the
collaboration Teleoperation is connected by means of dashed arcs to the objects playing the
corresponding roles. Still in Figure 2-2, the collaboration called Communication (Figure 2-1.b)
is istanced twice in order to express the presence of two communication channels: between
Area Control Centre (Peer A) and Substation Automation Site (Peer B); between Substation
Automation Site (Peer A) and Substation (Peer B).

Moreover, in the diagram in Figure 2-2, ICT elements can be distinguished from EPS
elements by means of the stereotypes <<ICT>> and <<EPS>> labelling the objects. The
presence of an association arc between an ICT element and an EPS element, puts in
evidence the presence of an interdependency between the ICT and the EPS infrastructure.

Figure 2-2: instances of the collaboration Telecontrol (Figure 2-1.a) and of the
collaboration Communication (Figure 2-1.b)

The area control centre and the substation automation site are elements present in the
control system scenario n. 1 described in [Garrone et al. 2007]; in that case, the sites are still
connected by communication channels. Therefore the collaborations in Figure 2-1.a and in
Figure 2-1.b can be instanced to the objects describing the scope of such control system

Model-based evaluation of the middleware services and protocols Page 5

scenario; this is shown in Figure 2-3 corresponding to Figure 5-9 of [Garrone et al. 2007],
with the addition of the collaboration instances.

Figure 2-3: the object diagram of the control system scenario n.1 [Garrone et al. 2007]
with the addition of the instances of the collaboration Teleoperation (Figure 2-1.a) and

of the collaboration Communication (Figure 2-1.b)
Each service implemented by a collaboration is also described by a state diagram, and state
transitions depend on the actual states of the collaboration components (for structured
collaborations) or on the state of the objects that play the specific roles.

For example, the states of Communication are represented by the diagram in Figure 2-4.a,
where the possible states are Idle, Normal, Delayed and FailedDelivery. In such diagram, the
state transitions are due to the success of a DoS attack or to the success of the
countermeasures [Garrone et al. 2007]. The states of Teleoperation are instead represented
in the state diagram in Figure 2-4.b, where the possible states are Normal, PartialLoss and
CompleteLoss. The state transitions in Figure 2-4.b are due to the current state of
Communication according to the state diagram shown in Figure 2-4.a. In this way, we
represent the interdependency between Teleoperation (EPS) and Communication (ICT).

Model-based evaluation of the middleware services and protocols Page 6

Figure 2-4: a) state diagram of Communication (Figure 2-1.a) b) state diagram of
Teleoperation (Figure 2-1.b)

3 STATISTICAL MODELS OF ATTACKS
This section deals with the elaboration of statistical models that are representative of
malicious traffic observed on the Internet using data collected from honeypots. Such models
are very relevant to establish realistic assumptions about the distribution and the intensity of
internet attacks targeting systems and infrastructures connected through the Internet, as in
CRUTIAL. Also, they constitute a first step towards the elaboration of stochastic models
aimed at evaluating quantitative measures characterizing the impact of malicious threats on
the target systems, as discussed in the context of CRUTIAL modelling methodology
addressed in Workpackage 2.

As detailed in deliverable D26, honeypots have been increasingly used in the recent years to
collect real data about malicious traffic on the Internet. A honeypot is a machine connected to
the Internet that no one is supposed to use and whose value lies in being probed, attacked or
compromised [Spitzner 2002]. The statistical models of attacks discussed in this section are
based on the data collected from the Leurré.com environment, which is a cooperative attack
data collection initiative set up by Eurecom to which LAAS contributes, based on distributed
honeypot platforms [Pouget et al. 2005]. This environment integrates up to eighty identically
configured low-interaction honeypots that have been deployed progressively since 2003.

Deploying honeypots at a distributed and large scale is interesting to collect a large volume
of data characterizing malicious activities observed at various locations of the Internet. One
of the questions that can be raised is whether data collected by honeypots deployed at
different locations exhibit similar or different phenomena and whether the attack processes
observed show different or similar statistical distributions.

The results presented in this section are aimed at addressing these questions. The objective
is to elaborate analytical statistical models that faithfully reflect the distribution of the

Model-based evaluation of the middleware services and protocols Page 7

interarrival time between attacks observed at various honeypot platforms. Such models
provide useful insights about the statistical characteristics of malicious traffic observed on the
Internet. They can be used to generate synthetic workloads that are representative of
malicious traffic. The statistical distributions presented in this section are also useful to
support the definition of quantitative evaluation models based on realistic assumptions.

This section is organized as follows. Section 3.1 gives an overview of the collected data and
of some of the problems that need to be addressed to exploit the data for building models.
Section 3.2 presents the proposed methodology. Section 3.3 deals with the statistical
modelling of the times between attacks based on the data collected from the deployed
honeypots and presents some examples of results. Finally, Section 3.4 discusses future
work.

3.1 Overview of the Leurré.com environment and the collected data
The Leurré.com data collection environment is aimed at deploying at various geographical
locations on the Internet a large set of identically configured low interaction honeypot
platforms using the freely available software called honeyd [Provos et al. 2007]. The
objective is to collect a large volume of data that can be used to carry out representative and
non biased analyses of attack processes. Each platform emulates three computers running
Linux RedHat, Windows 98 and Windows NT, respectively, and various services such as ftp,
web, etc. A firewall ensures that connections cannot be initiated from the computers, only
replies to external solicitations are allowed. All the honeypot platforms are centrally managed
to ensure that they have exactly the same configuration. The data gathered by each platform
are securely uploaded to a centralized database with the complete content, including payload
of all packets sent to or from these honeypots, and additional information to facilitate its
analysis, such as the IP geographical localization of packets’ source addresses, the OS of
the attacking machine, the local time of the source, etc.

The data recorded in the database can be analyzed at various levels of granularities. Indeed,
the packets received at each platform can be grouped e.g. according to the source address,
the target virtual machine, the time between the arrival of consecutive packets received from
the same source, etc.

The concepts of « source » and « attack » used in this section are defined as follows :

• A source corresponds to an IP address observed on one or many platforms, for which the
inter-arrival time between two consecutive packets does not exceed a given threshold (25
hours). The time difference is computed by converting all times to GMT (Greenwich Mean
Time).

• An attack is composed by the set of packets exchanged between a source and a particular
honeypot platform.

The deployment of the honeypots has been carried out progressively starting in 2003. To
date, up to 80 honeypot platforms have been deployed at various locations in academia and
industry, in 30 countries, covering the five continents. The total number of attacks recorded in
the Leurré.com database between February 2003 and August 2007 is 4 873 564 attacks
issued from 3 026 972 different IP addresses. This constitutes a significantly large sample
on which statistical analyses can be performed.

Table 1 gives some statistics summarizing the number of attacks observed on each platform.
It can be seen that the level of malicious activity recorded on the different platforms was not
uniform. This can be explained to some extent by the fact that the platforms have been
deployed progressively as illustrated in Figure 3-1.

Model-based evaluation of the middleware services and protocols Page 8

Table 1 - Statistics on the number of attacks recorded on the honeypot platforms
Min Max Average Median Std. deviation

3 504651 62480.59 39594.5 81140.93

Figure 3-1 gives an overview of the deployment where each bar associated with a given
platform indicates the time interval between the first packet and the last packet recorded on
the platform. As can be seen from the figure, the observation period of the different platforms
was not uniform. Some of them have been operational only for a short period of time,
compared to others for which we have data covering 4 years. It is important when performing
comparative analysis of attack processes observed on several platforms that all the platforms
have been observed during the same sufficiently long period of time.

0

10

20

30

40

50

60

70

80

10/12/2002 16/10/2003 21/08/2004 27/06/2005 03/05/2006 09/03/2007

Date

H
on

ey
po

t p
la

tfo
rm

Figure 3-1 - Number of deployed honeypots evolution

Considering Figure 1 again, the observation period indicated by the bar associated with each
platform does not mean that the platform was active all the time during this period. Indeed,
for several reasons, some of the honeypots exhibited many times, silence periods during
which no activity was recorded. These silence periods are more likely due to the
unavailability or the unreachability of the honeypot from the Internet as a consequence of
power failures, network failures or simply due to the disconnection of the honeypot itself for
administration and maintenance activities. Two examples are presented in Figure 3-2 and
Figure 3-3 which plot the evolution of the number of attacks per day recorded on Platforms 9
and 37 respectively.

0

100

200

300

400

01/07/2004 01/08/2004 01/09/2004 01/10/2004Date

N
um

be
r o

f a
tta

ck
s

pe
r d

ay

Figure 3-2- Evolution of the number of attacks per day observed on platform 9

Model-based evaluation of the middleware services and protocols Page 9

0

10

20

30

40

05/05/2005 05/10/2005 05/03/2006 05/08/2006Date

N
um

be
r o

f a
tta

ck
s

pe
r d

ay

Figure 3-3 - Evolution of the number of attacks per day observed on platform 37

Considering the intensity of attacks observed on average per day on each platform, it is more
likely that the silence periods are more related to unreachability problems than to the
absence of activities from the attackers. Thus, it is important to identify and process such
periods before building models characterizing the occurrence of attacks, otherwise the
results will be biased. In the following section, we present the methodology that we have
developed to address this problem.

3.2 Methodology
The methodology that we have set up to deal with silence periods consists of two main steps:

1) identification of the silence periods,

2) selection of the data observation period and the platforms to be included in the modeling
of the distribution of times between attacks based on the results obtained in step 1.

3.2.1 Identification of silence periods
In our data, the silence periods generally correspond to atypical and infrequent intervals of
time between attacks that are significantly separated in value from the rest of the other
observations recorded on the honeypot platform. Accordingly, they can be considered as
“outliers”.

Various statistical tests exist for the identification of outliers, e.g., Nixon, Grubbs or boxplot
tests [Hodge et al. 2004]. In our methodology, we used the modified boxplot test defined in
[Vanderviere et al. 2004], which is well suited when the distribution of the data is skewed,
which is the case of our honeypot data. This test proceeds in two steps.

At a first step, this test computes for the considered data set D a metric denoted as MC(D),
taking values in the interval [-1, 1], that measures the skewness of the distribution. Positive
(respectively, negative) values correspond to positively (respectively, negatively) skewed
distributions, and when MC(D) is null the distribution is not skewed.

At a second step, the test computes a critical interval that depends on the sign of the
skewness metric MC(D), such that any value outside this interval is considered as an outlier.

Let us denote by Q1, Q2, and Q3 the first, second and third quartiles of the considered data
sample D, and let IQR = Q3-Q1. The test identifies outliers as follows:

Model-based evaluation of the middleware services and protocols Page 10

If MC(D) ≥ 0, x is an outlier ⇔
 x ∉ [Q1-1.5 e-4MC(D) IQR; Q3 +1.5 e3MC(D)IQR]

If MC(D)< 0, x is an outlier ⇔
 x ∉ [Q1-1.5 e-3MC(D) IQR; Q3 +1.5 e4MC(D)IQR]

We have applied this test to the data collected from each honeypot platform. The percentage
of identified outliers for each platform is generally less than 1%. However, we have observed
a large variation of the magnitude of the intervals of time considered as outliers. The average
value is around 6 hours and the standard deviation is about 78 hours, considering the values
of the outliers identified for the 80 platforms.

3.2.2 Data selection for the modelling of inter-arrival times between attacks
The outliers identified in the first step of our methodology correspond to suspicious periods of
silence. In our context, we make the assumption that they most likely correspond to
unavailability periods of the corresponding platform, than to periods of deliberate inactivity of
the attackers.

Then, the question is: what should we do with these outliers? Usually, two solutions are
investigated:

1) Remove the outliers from the data set or substitute them by synthetic values generated
based on the general characteristics of the sample distribution.

2) Select a subset of the initial data such that the impact of the outliers is reduced.

The first solution is not acceptable in our context as it might lead to biased results. Also it
makes the comparison of the attack processes observed on different platforms considering
the same period of time, more difficult in particular, when the outliers correspond to long
periods of time. Thus, the second solution is more suitable to our context.

In our methodology, we have considered three main criteria to select the period of time and
the subset of data to be used for the statistical modelling of the times between attacks on the
different honeypot platforms.

1) The length of the observation period.

2) The number of platforms included in the analysis.

3) The minimum level of average availability estimated for each platform.

The average availability of each platform is estimated based on the assumption that the
silence periods correspond to unavailability periods as explained in the beginning of this
section.

We have developed an iterative algorithm based on a sliding window that starts first by
considering the whole data collection period and estimates the availability of each platform.
If the number of platforms satisfying the minimum availability per platform criterion is higher
than a predefined threshold, the algorithm stops. Otherwise, we consider a shorter period of
1 hour less and run the algorithm again until it converges.

Figure 3-4 presents graphically the results obtained from the algorithm. Some numerical
examples extracted from the figure are reported in Table 2. As expected, if one sets a
predefined number of platforms to be selected, increasing the minimum availability
requirement to be satisfied by each platform, will lead to a shorter observation period, and
vice-versa.

Model-based evaluation of the middleware services and protocols Page 11

80%

85%

90%

95%

5 7 9

11

13

15

17

19

0

250

500

750

1000

750-1000
500-750
250-500
0-250

Number of environments to be selected

Mini
mum

 av
era

ge
av

ail
ab

ilit
y

pe
r p

lat
for

m

O
bs

er
va

tio
n

pe
rio

d
du

ra
tio

n
(in

 d
ay

s)

80%

85%

90%

95%

5 7 9

11

13

15

17

19

0

250

500

750

1000

750-1000
500-750
250-500
0-250

Number of environments to be selected

Mini
mum

 av
era

ge
av

ail
ab

ilit
y

pe
r p

lat
for

m

O
bs

er
va

tio
n

pe
rio

d
du

ra
tio

n
(in

 d
ay

s)

80%

85%

90%

95%

5 7 9

11

13

15

17

19

0

250

500

750

1000

750-1000
500-750
250-500
0-250

Number of environments to be selected

Mini
mum

 av
era

ge
av

ail
ab

ilit
y

pe
r p

lat
for

m

O
bs

er
va

tio
n

pe
rio

d
du

ra
tio

n
(in

 d
ay

s)

Figure 3-4- Relationship between the duration of the selected period, the minimum average
availability per platform and the number of platforms satisfying the availability requirement

Table 2- Examples of results extracted from Figure 3-4

 Number of selected platforms

 8 15 20

80% 637 448 420

85% 490 413 343

90% 455 350 259

Minimum

availability
per platform

95% 287 189 89

In our study, we have set as an objective to have the longest possible observation period
with a reasonable number of platforms to enable comparative analyses of attack processes
observed on various platforms. Accordingly, we have selected 8 platforms with a minimum
availability requirement of 80% corresponding to an observation period of 637 days. The
number of platforms selected is sufficient to make significant comparative analyses.

Table 3 reports some statistics characterizing the activities observed on the selected
platforms. The first column identifies the platform, the second column gives the number of
intervals between attacks (#ti) observed for this platform. The following columns indicate the
values of Q1, Q2 and Q3 quartiles, the maximum, the mean, and the standard deviation of
the interarrival times between attacks. Finally, the last column gives the average availability
of the corresponding platform. These platforms are geographically located in six different
European countries: France, Italy, Belgium, Poland, Germany and UK.

Model-based evaluation of the middleware services and protocols Page 12

Table 3- Statistics on the activities observed on the selected platforms during the
observation period of 637 days

Honeypot #ti Q1(ti)
(sec)

Q2(ti)
(min)

Q3(ti)
(min)

Max
(ti)

(min)

Mean
(ti)

(min)

Std.
Deviation

(min)

Average
Availability

(%)

9 134161 56 3 8 53 6 7 93
13 15742 538 32 73 382 52 59 89
14 42670 107 7 24 158 18 25 85
28 10200 578 35 96 650 73 100 82
31 90580 76 4 11 52 8 9 81
32 65962 161 7 16 76 11 12 84
42 38826 102 7 25 278 19 29 84
62 25042 435 19 40 199 29 30 80

3.3 Time between attacks distribution
Considering the selected platforms and the data collected during the selected period of time
identified by the algorithm presented in the previous section, we have investigated candidate
statistical models that are representative of the distribution of times between attacks
observed on the different platforms.

Finding tractable analytical models that faithfully reflect the observed times between attacks
is useful to characterize the observed attack processes and to find appropriate indicators that
can be used for prediction purposes. We have investigated several candidate distributions,
including Weibull, Lognormal, Pareto, and the Exponential distribution, which are traditionally
used in reliability studies. The best fit for each platform has been obtained using a mixture
model combining a generalized Pareto and a Weibull distribution.

Let us denote by T the random variable corresponding to the time between the occurrence of
two consecutive attacks at a given platform, and t a realization of T. Assuming that the
probability density function f(t) associated to T is characterized by a mixture distribution
combining a generalized Pareto distribution and a Weibull distribution, then f(t) is defined as
follows.

kt
k etkttpdf

)(111

)()1()1(1)(λε

λλσ
ε

σ
−−−

⋅⋅⋅Π−+−⋅⋅Π=

σ and ε the parameters of the generalized Pareto distribution, k and λ are the parameters
associated to the Weibull distribution and Π is a mixture probability.

We have used the R statistical package [11] to estimate the parameters that provide the best
fit to the collected data. The quality of fit is assessed by applying the Kolmogorov-Smirnov
and the Chi-Squared statistical tests. The results obtained for four of the eight platforms are
presented in Figure 3-5. Similar conclusions have been observed for the other platforms as
well. It can be noticed that for all the platforms, the mixed distribution provides a good fit to
the observed data whereas the exponential and lognormal distributions are not suitable to
describe the observed attack processes. Thus, the traditional assumption considered in
reliability evaluation studies assuming that failures occur according to a Poisson process
does not seem to be satisfactory when considering the data observed from our honeypots.

Model-based evaluation of the middleware services and protocols Page 13

0

5000

10000

15000

20000

25000

30000

0 200 400 600 800 1000

Data
Mixture
Lognormal
Exponential

0

500
1000
1500
2000
2500
3000
3500
4000
4500
5000

0 1000 2000 3000 4000 5000

Data
Mixture
Lognormal
Exponential

 a) Platform 9 b) Platform 13

0

1000

2000

3000

4000

5000

6000

0 1000 2000 3000

Data
Mixture
Lognormal
Exponential

0

300

600

900

1200

1500

1800

2100

0 3000 6000 9000 12000 15000

Data
Mixture
Lognormal
Exponential

 c) Platform 14 d) Platform 28

Figure 3-5- Observed and estimated times between attacks
probability density functions.

As regards the interpretation of the mixture distribution, the Pareto part models the bursty
arrival of attacks (correlated and intensive attacks targeting one IP address) whereas the
Weibull part describes background uncorrelated attacks that occur less frequently in time.

3.4 Conclusion
In this section, we presented experimental results based on data collected during a four year
observation period from a large set of identically configured honeypots that have been
deployed on the Internet. In particular, we proposed a methodology to process the collected
data in order to identify statistical distributions that best characterize the times between
attacks observed on the different platforms, taking into account the possible presence of
silence periods that are due e.g., to the unavailability of the honeypots. The experimental
results show that a mixture Pareto and Weibull distribution is well suited to describe the
attack processes observed on several honeypot platforms. This result confirms the
preliminary investigations derived in [Kaâniche et al. 2006] based on a small subset of the
data presented in this section. The obtained results should be useful to generate synthetic
workloads that are representative of malicious traffic observed on the honeypots and to
support the elaboration of quantitative security assessment models.

Model-based evaluation of the middleware services and protocols Page 14

4 PRELIMINARY EVALUATION OF ARCHITECTURAL SOLUTIONS
In this section we analyze the CIS solution proposed and implemented in WP4. Initially we
consider a CIS implementation without rejuvenation, and we prove it correct, next we analyze
the performability of CIS when using a rejuvenation schema.

4.1 PRISM models of CIS
In this section we present a first attempt to model the reference architecture proposed to
protect critical infrastructures. In this architecture a critical information infrastructure is formed
by facilities interconnected by a wide area network; each facility is viewed as a set of
connected LANs, interconnected to each other through a WAN, forming the so called WAN-
of-LANs model. The protection of LANs from the WAN or other LANs is realized by the
Crutial Information Switch(CIS) device, it acts like a firewall: it captures packets that pass
through it, checks if they satisfy the security policy and either forwards the packets or
discards those that do not satisfy the policy; moreover CIS provides access control
capability, intrusion tolerant techniques and other services. A more detailed description of the
CIS and its characteristics can be found in deliverable D4 [Abou El Kalam et al. 2007].

The aim of the model is to verify two basic properties of validity and integrity; the satisfaction
of these properties entails that only messages in accordance with the security policy will be
forwarded to their destination. We describe how this can be achieved using the tool PRISM
and its model description language.

4.1.1 Description of the system

Figure 4-1: Intrusion tolerant CIS architecture.

The CIS system implements a distributed replicated firewall between a non trusted WAN and
the trusted LAN that we want to protect. A replication device located at the end of the WAN
multicasts to the incoming messages n CIS replicas. Each CIS replica verifies whether the
message is in accordance with the security policy and does a vote. All CIS replicas exchange
with each others their vote through point-to-point reliable channels. Only messages positively
voted by at least f+1 replicas are signed with a shared key and then forwarded to the LAN; to
avoid traffic multiplication a replica is selected randomly to forward the approved message.
The station computer located in the LAN will only accept messages with a valid signature.

The CIS replica is composed of two parts the payload and the wormhole; by assumption
each part can be affected by different types of failure:

• Payload: Asynchronous system with n ≥ 2 f +1 replicas in which at most f can be
subject to Byzantine failures. Fault independence is assumed for the replicas, i.e., the
probability of a replica to be compromised is independent of another replica failure.

Model-based evaluation of the middleware services and protocols Page 15

• Wormhole: secure tamperproof subsystem W = {W1, ...,Wn} in which at most fc ≤ f
local wormholes can fail by crash. It is assumed that when a local wormhole Wi
crashes, the corresponding payload replica CISi crashes together.

Messages arriving at CIS replicas both from the WAN and the LAN have unreliable fair
multicast semantics: if a message is multicasted infinitely many times it will be received by all
its receivers infinitely many times.

The algorithm for processing incoming messages is shown in Figure 4-2. Tvote is the single
configuration parameter of the payload protocol and it defines the expected time required to
receive, vote and sign a legal message. Additionally, the algorithm uses three variables:
Voting, the set of messages being voted; Pending, the set of messages received and
approved by the replicas that were already signed by the wormhole but not yet forwarded to
the station computer and TooEarly, the set of correctly signed messages forwarded by some
other replica but not yet received (from the WAN) by the replica. There are some primitives
that need to be specified:

• U-multicast(G,m) and U-receive(G,m): the former is invoked to multicast a message
m to the group G, the latter is used to receive message m previously multicasted to
G, where G can be either WAN or LAN;

• W_create_vote(m) authenticates vote message m with a key shared between the
wormholes;

• W_Sign(m,Cm) signs message m if and only if the replica payload presents a
certificate set Cm containing at least f+1 valid votes produced by different wormholes;

• W_verify(m) tests if the signed message m is valid.

Figure 4-2: CIS algorithm.

Model-based evaluation of the middleware services and protocols Page 16

4.1.2 Model description
From the description in the previous section, it should be clear that the correctness of the
algorithm, i.e. that only messages in accordance with the security policy will be forwarded to
their destination, is the result of the interaction between different non-trivial sequences of
events. This motivates the need for the construction and analysis of a formal model. The
model represents only synchronization aspects (message approving) and concurrency, it
does not represent cryptographic aspects.

The algorithm is composed by three code blocks: U-receive(WAN,m), U-receive(LAN,m) and
message retransmission. Name blocks preceded by keyword upon are executed by a new
thread created when a particular event happens. For example, whenever a message m
originating from the WAN is received by a CIS replica, a new thread will be generated that
processes message m. The algorithm needs synchronization mechanisms that manage the
concurrent access to variables shared between threads, for example the Voting set. Such
mechanisms are not necessary for algorithm correctness therefore they are not specified.
We highlight that variables are shared only between threads generated by the same CIS
replica, not between threads of different CIS replicas.

In the PRISM language, a model description comprises a number of modules, each
corresponding to a component of the system being modelled. Conceptually the model is
composed of four templates of module: SendWANNormalMsg, SendWANMaliciousMsg,
WanToCIS and Replica. The first and second templates represent a legal or malicious
sender that invokes multicast of a message to the WAN. Templates WanToCIS models an
unreliable multicast of message to CIS replica: a message can be lost by some or all CIS
replicas. Finally, template Replica describes the states, and transitions between them, of
Payload: normal, affected by Byzantine failure or crashed; and the states and transitions of
Wormhole: normal or crashed. Moreover it describes the processing of a message when it is
received from the WAN (function U-receive(LAN,m)) and from the LAN (U-receive(WAN,m)).
We choose to model together these functions because they share the same variables.

From these templates we instantiate, through module renaming provided by PRISM, a
different module for each pair (r,t) of replica and thread; the module describes the behaviour
of thread t in replica r. We assume that every thread manages only a specific message,
therefore threads are identified by the number of messages that they manage. In more detail:
to describe in replica 1 the behaviour of the thread that receives from the WAN message
number 2, we write a module called Replica_1_2, where the first number indicates replica
and the second number indicates the message or equivalently the thread that processes it.

In the following we present a detailed description of Replica module template. The initial part
of a module definition lists a set of finite-ranging variables which determine the possible
states that the module can be in. The first variable of the Replica module is PayS, which
keeps track of the current state of Payload: when PayS=0, it is in normal state; when
PayS=1, it is affected by a Byzantine failure; when PayS=2, Payload is down. Variable
WormS keeps track of state of Wormhole: when WormS=0, it is in normal state; when
WormS=1, it is affected by a crash failure. Variable ProcS represents the state of processing
of the message, variable Voting, Pending and TooEarly have the same meaning of the
algorithm.

Set variables such as Voting or Pending can be represented as an array, unfortunately
PRISM language doesn’t support this structured type, therefore to model a set, say Voting, of
n elements we need to define n variables Voting_1,…,Voting_n that indicate whether
message i has been voted. Note that variables are shared between threads, but not between
replicas, therefore we need to add another index to indicate to which replica the variable
Voting_i belongs. The concurrent access to variables shared between threads is modelled in
a simple way. For example, the behaviour specified in lines 15-16 of the algorithm can be
modelled with a single PRISM command:

(WaitLANMsg21=1) & (Pending21=1) -> 1.0: (Pending21'=0) & (WaitingInLANMsg21'=0);

Model-based evaluation of the middleware services and protocols Page 17

The first condition of the guard tests if there is in the LAN buffer of replica 2 the message
number 1, the second condition tests if message 1 belongs to Pending set of replica 2 (line
15). When both conditions are satisfied, we delete message 1 from Pending set of replica 2
(line 16) and from the LAN buffer. In PRISM the test on the guard and the update of variables
is an atomic action, therefore we don’t need any trick to manage concurrent accesses.

Vote

Idle

Approve

Random
Wait

Message
too early

Message
not legal

Another replica
forwards message

Forward
message

Message
legal

Reach consensus
to forward message

Figure 4-3: state diagram of message processing.
State diagram in Figure 4-3 summarises the steps necessary to process a message received
from the WAN. The state of processing of a message is represented by variable ProcS,
indexed with the number of the message and the number of the replica. Initially the process
is idle, whenever a new message arrives we test if it belongs to TooEarly set, in this case the
thread ignores the message and stays in idle state, otherwise it starts the voting phase. In
this phase it is possible to have a normal or byzantine behaviour of the replica depending on
the correspondent state of the Payload. In case of compromised Payload we assume that
function PolEng_verify(m) deterministically returns a malicious result. In the model, whenever
variable PayS assume value 0 a legal message will be positively voted and an illegal one will
be negatively voted, otherwise if variable PayS assumes value 1 we will obtain the opposite
result. This result is maintained in variable Vote. Only when for the same message at least
two replicas has value 1 for variable Vote, this message will be forwarded. In the description
of the system the point-to-point channel used for exchanging votes is assumed to be reliable,
therefore we decide to not model it, instead the results of voting is an information accessible
to all modules through global variables Vote. This behaviour is represented by the following
command:

[] (majority)&(Voting11>0) & (ProcS11=2)->1.0: (ProcS11'=3)&(Voting11'=Voting11-1)&
(Sign11'=1) & (Pending11'=1);

where formula majority is true when at least two replicas has value 1 for variable Vote. The
execution of this command deletes message from Voting and adds it to Pending set, keeps
track that message is signed through updating of Sign, and goes to the next state
WaitRandom. In this state the process waits a random amount of time, then passes to
ForwardMessage state; if another replica forwarded the message we return to Idle state,
otherwise we forward the message to its destination.

Model-based evaluation of the middleware services and protocols Page 18

The language construct if-then-else in lines 15-19 is represented with the following
instructions:

(WaitLANMsg21=1)&(Pending21=1)->1.0 : (Pending21'=0) & (WaitLANMsg21'=0);
(WaitLANMsg21=1)&(Pending21=0)&(MsgT1=1)->1.0:(TooEarly21'=1)&WaitLANMsg21'=0);
(WaitLANMsg21=1)&(Pending21=0) & (MsgT1=0) -> 1.0 : (WaitLANMsg21'=0);

We previously described the first command. The second command tests if there is in the
LAN the message and if it doesn’t belong to Voting set (otherwise we do updates in first
command) and if it is positively verified (condition MsgT1=1); when all conditions are satisfied
we add message to TooEarly set (updateTooEarly21'=1) and delete it from buffer. Otherwise
we simply delete it with the third command. Collectively the three commands model the
behaviour of line 15-19; all constructs if-then-else are modelled in a similar way, however a
little care is needed for nesting if-then-else.

Model-based evaluation of the middleware services and protocols Page 19

Ctmc
 // Status of Msg 1
 global MsgT1 : [0..1] init 0;
 // 0 Msg 1 not legal
 // 1 Msg 1 legal

 global WaitingInWANMsg11 : [0..1] init 0;
 // 0 Msg 1 not sent
 // 1 Msg 1 sent to WAN

 global WaitingInLANMsg11 : [0..1] init 0;
 // 0 Msg 1 not sent
 // 1 Msg 1 sent to LAN

 global Buf11 : [0..1] init 0;
 // 0 Msg 1 is not in WAN buffer of replica 1
 // 1 Msg 1 is in WAN buffer of replica 1

 global Buf21 : [0..1] init 0;
 // 0 Msg 1 is not in WAN buffer of replica 2
 // 1 Msg 1 is in WAN buffer of replica 2

 global Buf31 : [0..1] init 0;
 // 0 Msg 3 not sent
 // 1 Msg 3 sent to WAN

 const int MaxVoteSet = 5;
 const int MaxVoted = 2;

formula majority =((((Vote11>0)?1:0) + ((Vote21>0)?1:0) + ((Vote31>0)?1:0))>1);
formula upProcess= (PayS1=0|PayS1=1);

module SendWANNormalMsg1
[] (WaitingInWANMsg11=0)&(WaitingInWANMsg21=0)&(WaitingInWANMsg31=0) -> 1.0:
(WaitingInWANMsg11'=1)&(WaitingInWANMsg21'=1)&(WaitingInWANMsg31'=1)&(MsgT1'=1);
endmodule

module SendWANMaliciousMsg1
[] (WaitingInWANMsg11=0)&(WaitingInWANMsg21=0)&(WaitingInWANMsg31=0) -> 1.0:
(WaitingInWANMsg11'=1)&(WaitingInWANMsg21'=1)&(WaitingInWANMsg31'=1)&(MsgT1'=0);
endmodule

module WanToCIS
[] (WaitingInWANMsg11=1) -> 1.0 : (Buf11'=1)&(WaitingInWANMsg11'=0)+1.0:(WaitingInWANMsg11'=0);
[] (WaitingInWANMsg21=1) -> 1.0 : (Buf21'=1)&(WaitingInWANMsg21'=0)+1.0:(WaitingInWANMsg21'=0);
[] (WaitingInWANMsg31=1) -> 1.0 : (Buf31'=1)&(WaitingInWANMsg31'=0)+1.0:(WaitingInWANMsg31'=0);
endmodule

module Replica1
 // States of Payload
 PayS1 : [0..2] init 0;
 // 0 normal
 // 1 malicious
 // 2 down

 // States of Worm
 WormS1 : [0..1] init 0;
 // 0 normal
 // 1 down

 // States of Processing of Message 1 in replica 1
 ProcS11 : [0..4] init 0;
 // 0 idle
 // 1 vote
 // 2 wait vote

Model-based evaluation of the middleware services and protocols Page 20

 // 3 wait forward
 // 4 forward

 // Management of Msg 1 in Replica 1
 Manage11 : [0..1] init 0;
 // 0 Replica 1 doesn't manage Msg 1
 // 1 Replica 1 is managing Msg 1

 // Voting Set
 Voting11 : [0..MaxVoteSet] init 0;
 // 0 Msg 1 not in Voting
 // 1 Msg 1 in Voting

 // Pending Set
 Pending11 : [0..1] init 0;
 // 0 Msg 1 not in Pending
 // 1 Msg 1 in Pending

 // TooEarly Set
 TooEarly11 : [0..1] init 0;
 // 0 Msg 1 not in TooEarly
 // 1 Msg 1 in TooEarly

 // Vote of Replica1 on Msg 1
 Vote11 : [0..1] init 0;
 // 0 Msg 1 not legal
 // 1 Msg 1 legal

 // Replica1 signs Msg 1
 Sign11 : [0..1] init 0;
 // 0 Msg 1 not yet signed
 // 1 Msg 1 signed

[] (PayS1=0) -> 1.0 : (PayS1'=1);
[] (PayS1=1) -> 2.0 : (PayS1'=0);
[] (PayS1=0) -> 3.0 : (PayS1'=1);
[] (PayS1=1) -> 4.0 : (PayS1'=2);
[] (PayS1=2) & (WormS1=0) -> 5.0 : (PayS1'=0);
[] (WormS1=0)-> 6.0 : (WormS1'=1) & (PayS1'=2);
[] (WormS1=1)-> 7.0 : (WormS1'=0) & (PayS1'=0);

 // Replica 1 receive from WAN message 1 too early
[] upProcess & (Buf11=1) & (Voting11<MaxVoted) & (Manage11=0) & (ProcS11=0) & (TooEarly11=1) -> 8.0 : (ProcS11'=0) & (TooEarly11'=0) &
(Buf11'=0);

 // Replica 1 receive from WAN message 1 in time
[] upProcess & (Buf11=1) & (Voting11<MaxVoted) & (Manage11=0) & (ProcS11=0) & (TooEarly11=0) -> 9.0 : (Vote11'=0) & (Manage11'=1) &
(ProcS11'=1) & (Buf11'=0);

 // Normal Behaviour
 // Replica 1 votes positive legal message 1 and sets message in Voting
[] (PayS1=0) & (ProcS11=1) & (Manage11=1) & (MsgT1=1) & (Voting11<MaxVoted) -> 10.0 : (ProcS11'=2) & (Vote11'=1) &
(Voting11'=Voting11+1);
 // Replica 1 votes negative not legal message 1
[] (PayS1=0) & (ProcS11=1) & (Manage11=1) & (MsgT1=0) -> 11.0 : (ProcS11'=0) & (Vote11'=0) & (Manage11'=0);

 // Malicious Behaviour
 // Replica 1 votes negatives legal message 1
[] (PayS1=1) & (ProcS11=1) & (Manage11=1) & (MsgT1=1) -> 12.0 : (ProcS11'=0) & (Vote11'=0) & (Manage11'=0);
 // Replica 1 votes positive not legal message 1 and sets message in Voting
[] (PayS1=1) & (ProcS11=1) & (Manage11=1) & (MsgT1=0) & (Voting11<MaxVoted) -> 13.0 : (ProcS11'=2) & (Vote11'=1) &
(Voting11'=Voting11+1);

 // When at least f+1 replicas votes a message positive, sign it, delete from Voting and add to Pending
[] (majority) & (Voting11>0) & (ProcS11=2) -> 14.0 : (ProcS11'=3) & (Voting11'=Voting11-1) & (Sign11'=1) & (Pending11'=1);
 // else timeout
[] !(majority) & (Voting11>0) & (ProcS11=2) -> 15.0 : (ProcS11'=0) & (Vote11'=0) & (Voting11'=Voting11-1) & (Manage11'=0);

Model-based evaluation of the middleware services and protocols Page 21

 // Wait random
[] upProcess & (ProcS11=3) -> 16.0 : (ProcS11'=4);

 // If message is still in Pending, send it to LAN
[] upProcess & (ProcS11=4) & (Pending11=1) -> 17.0 : (WaitingInLANMsg11'=1) & (WaitingInLANMsg21'=1) & (WaitingInLANMsg31'=1) &
(ProcS11'=0) & (Manage11'=0);
 // Else nothing to do
[] upProcess & (ProcS11=4) & (Pending11=0) -> 18.0 : (ProcS11'=0) & (Manage11'=0);

 // Replica 1 receive from LAN Msg 1
[] upProcess & (WaitingInLANMsg11=1) & (Pending11=1) -> 19.0 : (Pending11'=0) & (WaitingInLANMsg11'=0);
[] upProcess & (WaitingInLANMsg11=1) & (Pending11=0) & (MsgT1=1) -> 20.0 : (TooEarly11'=1) & (WaitingInLANMsg11'=0);
[] upProcess & (WaitingInLANMsg11=1) & (Pending11=0) & (MsgT1=0) -> 21.0 : (WaitingInLANMsg11'=0);

 // Replica 1 retransmits to WAN Msg 1
[] upProcess & (Voting11>0) -> 22.0 : (WaitingInWANMsg11'=1) & (WaitingInWANMsg21'=1) & (WaitingInWANMsg31'=1) & (Voting11'=0);

endmodule

module
Replica21=Replica1[ProcS11=ProcS21,Voting11=Voting21,Vote11=Vote21,Manage11=Manage21,Pending11=Pending21,TooEarly11=TooEarly21,
 MsgS11=MsgS21]
 endmodule

module
Replica31=Replica1[ProcS11=ProcS31,Voting11=Voting31,Vote11=Vote31,Manage11=Manage31,Pending11=Pending31,TooEarly11=TooEarly31,
 MsgS11=MsgS31]
Endmodule

4.1.3 Verification using Prism
In this section, we use the probabilistic model checking tool PRISM to automatically verify the
satisfaction of integrity and correctness properties. Different models have been investigated:
in all of them we consider processing of a single message that passes through a three
replicas CIS system; even if the model allows to represent processing of multiple messages,
there are no dependencies between them, therefore it’s sufficient to check correctness and
integrity properties for a single message. Processing of multiple messages can be useful, for
example, if we want to investigate the order of reception of consecutive messages sent to
the same destination.

Due to the size of the models, all experiments were performed with Prism’s most space
efficient model checking engine, which uses Multi-Terminal Binary Decision Diagrams
(MTBDDs). We ran all experiments on a 1 GHz Pc with 1 GB memory under the Linux
operating system with kernel 2.6. All properties were checked with an accuracy of ε = 10 -6.
Two factors are variable:

• Type of messages received from the WAN by the CIS system: only legal messages,
or legal and illegal ones.

• Replicas behaviour: during the processing all the replicas are and remain non
malicious, or they transit from a normal to a malicious state.

 Only legal messages Legal and malicious messages

All replicas are non malicious 21,273; 76,922 88,427; 396,364

Some replicas can became
malicious

2,990,592;
27,465,136

5,962,048; 60,704,448

Table 4: Model Space State.

Model-based evaluation of the middleware services and protocols Page 22

In Table 4 it is shown for each different combination of factors the number of states and the
number of transitions of the resulting model. The model with 5,962,048 states took 53
iterations in 164.88 seconds to be constructed, however in case of multiple messages, for
example two, a space state of about 10 13 will be obtained.

For each model we check satisfaction of all the properties described in [Abou El Kalam et al.
2007], namely Lemmas 1 and 2:

1. If f+1 correct replicas call approve function for the same message then it will be
signed.

2. If a legal message is received by some correct replica and the message was not
previously forwarded by other replicas, it will eventually be signed.

From validity of these lemmas follows correctness and integrity:

1. A legal message received by at least one replica is forwarded to its destination.

2. An illegal message is never processed by its destination.

We verified that the CIS system satisfies these properties in all the models described in
Table 4. More precisely we checked that the following CSL specifications hold in all states
with probability 1:

"callapprove" => P>=1 [true U "signed"]
"correctsending" & !"forwarded "=> P>=1 [true U "signed"]
"correctsending" => P>=1 [true U "forwarded"]
"malicioussending" => P>=1 [true U "forwarded"]

where label callapprove is satisfied if at least one replica has variable ProcS equals to 2, i.e.
thread has invoked function approve; label signed is satisfied if variable Sign equals to 1 and
so on.

4.2 DEEM Models of the Proactive-Reactive Recovery Strategy
A quantitative analysis was performed on the Proactive-Reactive Recovery strategy
proposed to reinforce the intrusion tolerance of the CIS in the scope of the protection service.
The relevant characteristics of the system were modeled as Deterministic Stochastic Petri
Nets (DSPN) [Mura et al. 2001] and solved using the DEEM tool [Bondavalli et al. 2000].

This deliverable contains the description of the models and some preliminary evaluation of
the obtained results; considerations and implications of the analysis can be found in [Neves
et al. 2008], together with some proposals about the refinement of the recovery strategy.

4.2.1 System Overview
CIS is a substation gateway interfacing a protected LAN with the WAN (as already shown in
Figure 4-1) [Neves et al. 2008]. In order to be intrusion-tolerant, the CIS is replicated (with
diversity) in machines and follows its specification as long as at most of these
machines are attacked and behave maliciously, both toward other replicas and toward the
station computers in the protected LAN.

n f

CIS intrusion tolerance is enhanced rejuvenating CIS replicas through recovery actions. In
order to guarantee system availability despite the unavailability of recovering replicas, the
maximum number of replicas allowed to recover in parallel is defined () and the number of
replicas in the system is set to

k
12 ++≥ kfn . This way, the system is able to tolerate (at

most) Byzantine replicas and recover k replicas simultaneously. f

Model-based evaluation of the middleware services and protocols Page 23

The CIS protection service, executed in each payload replica, verifies whether each incoming
message m complies with the security policy (OrBAC1), notifying the (positive) approval to
the local wormhole. As soon as a quorum of 1+f approvals for m is reached, the wormhole
signs m and the current leader replica forwards it to the destination node in the LAN.

The wormhole is in charge of both triggering the recovery actions when necessary and
managing the election of the new leader when necessary.

4.2.2 The Proactive-Reactive Recovery Strategy
The PRRW strategy [Neves et al. 2008] manages the CIS replica recoveries using a mix of
proactive and reactive recovery actions. Proactive recoveries are performed based on
periodic base, whilst reactive recoveries are performed on replicas “suspected” or “detected”
to be compromised. The leader replica is “suspected” to be compromised when it does not
forward all the signed messages; a generic replica is “detected” to be compromised when it
sends not signed (invalid) messages to the LAN. Accusations about a replica being
“suspected” or “detected” can be raised by each payload replica and sent to the
corresponding local wormhole through a specific interface.

The PRRW strategy is organized as follows: time is divided in ⎡ ⎤kn / different time slots that
are cyclically repeated. Each slot is divided in two tasks: task A and task Ri with

. ⎡ ⎤kni /,,1K=

Proactive (periodic) recoveries are executed in task Ri only; (up to) k replicas recover
simultaneously in each task Ri, according to the replica index: replica i with are
recovered in task R

ki ,,1K=
1, replica i with kki 2,,1K+= are recovered in task R2 and so on. Task

Ri lasts for (at most) seconds and it is executed again after a period T DT P

Reactive (a-periodic) recoveries are executed in task A only. Task A is divided into ⎡ ⎤kf /
recovery sub-slots (identified as Sij); up to replicas can be recovered in each sub-slot.
Task A lasts for (at most) . Reactive recoveries are triggered on replica i in the
following scenarios:

k
⎡ ⎤ DTkf /

1. replica i is “detected” to be compromised when the wormhole collected a quorum of
 accusations about i sending illegal messages, 1+f

2. replica i, being the current leader, is “suspected” of being compromised when the
wormhole collected a quorum of (at least) 1+f accusations, some about i sending
illegal messages, other about i not forwarding signed messages.

Reactive recoveries are immediately performed in the scenario 1 (at least one correct replica
detected that replica i is failed), whilst are coordinated2 with the periodic recoveries in the
scenario 2. The quorum of collected accusations is needed to avoid recoveries
triggered by faulty replicas: at least one correct replica must detect/suspect replica i for some
recovery action to be taken.

1+f

A new leader is elected by the wormhole if the current leader is recovering (e.g. because it
was suspected of being omissive) or if the local wormhole of the current leader is detected to

1 OrBAC (Organization Based Access Control) [Abou El Kalam et al. 2003]
2 If no reactive recovery is already scheduled for replica i, the PRRW strategy finds the closest
recovery sub-slot where recovering replica i such that the availability of the CIS is not endangered. If
the found sub-slot is located in the slot where replica i will be proactively recovered, the reactive
recovery is not performed

Model-based evaluation of the middleware services and protocols Page 24

be crashed. The new leader is chosen as the (currently not crashed) replica more recently
recovered by a proactive recovery.

4.2.3 Fault Model and Assumptions
This section describes the fault model [Sousa et al. 2007] and the assumptions on which the
fault model is based on. Station computers are assumed to only accept messages signed by
the wormhole (a symmetric key K is shared between the station computer(s) and the CIS
wormhole). The following faults are considered:

f1) The faults related to communication involve both the traffic replication devices, the
communication channels among them and the replicas (except the control channel
connecting local wormholes). Traffic replication devices can loose messages coming from a
port or sometimes delay the traffic forwarding on some ports (for an unbounded time); traffic
replication devices cannot generate spurious messages. Communication channels can loose
messages or unpredictably delay the traffic forwarding.

f2) A payload replica can be intruded, and hence can be affected by Byzantine faults; if more
than payload replicas fail, the CIS fails. f

f3) A local wormhole can only fail by crash; at most ffc ≤ local wormholes are assumed to
fail by crash. The crash of a local wormhole is detected by a perfect failure detector. When a
local wormhole crashes, the corresponding payload is forced to crash together.

f4) Fault-independence is assumed for payload replicas, i.e., the probability of a replica being
faulty is independent of the occurrence of faults in other replicas (this assumption can be
substantiated in practice through the extensive use of several kinds of diversity).

f5) The same attack on the same replica has always the same probability of success.

f6) Station computers cannot be compromised.

f7) Replicas are correct after their recovery.

f8) The security policy verified by the CIS is assumed to be perfect; this means that a correct
replica applies perfectly the policy verification and there are no policy inconsistencies
between replicas (i.e. all correct replicas verify the same policy).

Given the set of faults just described, the corresponding failure modes for a payload replica
are:

o Crash. The payload replica crashes because of the crash of the corresponding local
wormhole (f3) or as the effect of an intrusion (f2).

o Omission. The replica payload is subjected to a temporary omission because of
communication problems (f1) or as the effect of an intrusion (f2) (e.g. the leader
payload is omitting to forward a signed message to its destination or the net is
flooded with messages by someone else).

o Invalid. The payload replica is failing by value as the effect of an intrusion (f2), e.g. it
is sending illegal messages toward the LAN or it is flooding the WAN and LAN
networks with illegal messages aiming to delay the forwarding of legal messages.

The system fails when the number of invalid replicas is greater than (the correctness of
the system cannot be guaranteed) or when the necessary resources are not available for too
long (the CIS seeks perpetual operation); the system is unavailable when the number of
correct working replicas is less then

f

1+f (so quorums cannot be reached) or there are
more than correct replicas, but the leader is omitting (so legal messages are not
forwarded).

1+f

Model-based evaluation of the middleware services and protocols Page 25

4.2.4 PRRW Modeling
The relevant measures of interest for the recovery strategy under study are the system
failure probability and the system unavailability.

The system fails at time t if one of the following conditions holds:

1. the number of invalid replicas gets over ; f

2. the system is unavailable since t-TO, that is the system is unavailable for a period of
time grater then TO.

Let be the probability of the system being failed at time t because of condition 1, given
that it was correctly functioning at time

()tPFI

0=t . Let ()tPFO be the probability of the system
being failed at time t because of condition 2, given that it was correctly functioning at time

. System failure probability, denoted by 0=t ()tPF , is defined as the probability of the system
being failed at time t , given that it was not failed at time 0=t ; system failure probability is
obtained as

() () ()tPtPtP FOFIF +=

The system is unavailable at time if one of the following conditions holds: t

1. the number of correct replicas is less then 1+f (quorums cannot be reached)

2. there are more than correct replicas, but the leader is omitting (legal messages
are not forwarded).

1+f

Let be the total time the system is not failed but is unavailable within because
of one of the above conditions. Let

(tTU ,0)][t,0
()tTA ,0 be the total time the system is not failed within

. System unavailability, denoted by [t,0] ()tPU , is defined as the probability of the system
being unavailable at time , given that it was correctly working at time ; system
unavailability is obtained as

t 0=t

() ()
()tT

tTtP
A

U
U ,0

,0
=

For ease of modelling, we assume that a replica, as soon as it is successfully intruded,
explicitly manifest failures (of any kind) and that a failure caused by an intrusion is
permanent.

From the modeling point of view, a reconfiguration strategy determines a discontinuity in the
CIS configuration caused by the temporary unavailability of the replicas subjected to a
recovery. Therefore it is possible to represent the entire operational life split into different
periods of deterministic duration called phases. This feature makes a reconfiguration strategy
belonging to the Multiple Phased System (MPS) class for which a modeling and evaluation
methodology exist [Mura et al. 2001], supported by the DEEM tool [Bondavalli et al. 2000].

Using DEEM, the net is split into two logically distinct sub-nets: the Phase Net (PhN)
representing the schedule of the various phases, each one of deterministic duration, and the
System Net (SN) representing the behavior of the system. Each net is made dependent on
the other by marking-dependent predicates that modify transition rates, enabling conditions,
reward rates etc. Reward measures are defined as Boolean expressions, functions of the net
marking. Both the analytic and simulation solutions can be used in order to exercise the
models; the measures of interest defined in our quantitative analysis were evaluated by
simulation.

Model-based evaluation of the middleware services and protocols Page 26

4.2.4.1 Phase Net
The phase net of the PRRW model (Figure 4-4) triggers the recoveries. The deterministic
transitions TsubSlot and TRi model the times to perform the task A and Ri, respectively. The
place Sij contains a token during task A (a-periodic recovery phase) and Ri contains a token
during the Ri task (periodic recovery phase). The marking of CountSubSlot counts the
number of the current recovery sub-slot (Sij) within the current recovery slot. The marking of
place CountSlot counts the number of the current recovery slot within the current cycle. The
marking of place CountWin counts the number of the current cycle. The immediate transition
tNextWin fires when a new cycle is started, resetting the marking of CountSlot to 1.

Figure 4-4: The phase net of the PRRW model

4.2.4.2 System Net
The system net of the PRRW model is composed by similar subnets (), one subnet
for each replica, a subnet to take track of system failures and a subnet to model the
initialization (the description of this last subnet is omitted without affecting the comprehension
of the model).

n 6≤n

Figure 4-5 shows the subnet modelling replica 1. The left part of the subnet models the
replica failures, whilst the right part of the subnet models the management of both replica
recovery and leader election. Places which name ends with digit “1” model replica 1, whilst
the other places (Leader and kRec) are shared by all the replicas.

Model-based evaluation of the middleware services and protocols Page 27

Figure 4-5: The subnet modeling replica 1 in the PRRW model
Replica failures are modeled as follows. As long as both OK_O1 and OK_I1 contain one
token each, replica 1 is correctly working. One token in places Crash1 or Omission1
represent the crash of the replica or an omissive behaviour as a consequence of transient
omission respectively. The exponential transition Tcrash1 represents the time to occurrence
of a crash, exponentially distributed with rate 1Cλ . Each replica has its own crash rate,
varying from a crash each 60 days (replica 1) to a crash each 30 days (replica 6). The crash
of a replica is independent of the crash of other replicas. When the replica crashes, place
OK_I1 is emptied (the replica cannot be no more intruded). TtempOmission1 represents the
time to a transient omission, exponentially distributed with rate 1Oλ . Each replica has its own
transient omission rate, varying from an omission each 6 days (replica 1) to an omission
each 3 days (replica 6). A transient omission becomes permanent or disappears after a time
modeled by the exponential transition Tcrashb1 with rate 1Cλ or TomissionD1 EOλ with rate
respectively.

The exponential transition Tintrusion1 represents the time to a successful intrusion with rate
1Aλ . Each replica has its own rate, varying form an intrusion each 5 hours (replica 1) to an

intrusion each 24 hours (replica 6). The immediate transitions tOmissionIU1, tOmissionI1,
tInvalidIU1, tInvalidI1 and the associated output places model the effect of the intrusion in
terms of undetectable omission failure (with probability () ()IM pc −⋅− 11), detectable
omission failure (with probability ()IM pc −⋅ 1), undetectable invalid failure (with probability

) or detectable invalid failure (with probability () IM pc ⋅−1 IM pc ⋅) respectively.

The management of the replica recovery is modeled as follows. Place PRec1 contains a
token as long as replica 1 is not recovering. whilst place Recovering1 contains one token as
long as the replica is recovering. Place DRecovering1 contains a token during a reactive
recovery triggered by detections. Place kRec is used to count the number of replica currently
recovering. Place RRecoverySuspect1 contains a token if a crash, an omission or a
malicious omission are occurred.

Recoveries are triggered by one of the following immediate transitions (ordered by increasing
priorities): tRRecoverySuspect1 (reactive recovery triggered by suspects),

Model-based evaluation of the middleware services and protocols Page 28

tRRecoveryDetect1 (reactive recovery triggered by detections) or tPRecovery1 (proactive
recovery). The immediate transition tRRecoverySuspect1 fires if a new a-periodic recovery
sub-slot is starting (NextSij contains a token) and less then replicas are recovering (kRec
contains less then tokens) and the replica is not going to be proactively recovered in the
next periodic slot (the identity of the replica is not in the interval

k
k

[]kCountSlotMarkkCountSlotMark ⋅+⋅−)((,1)1)(((. The immediate transition
tRRecoveryDetect1 fires if a new recovery sub-slot is starting (NextSij contains a token or
NextRi contains a token). The immediate transition tPRecovery1 fires if a periodic recovery
slot is starting (NextRi contains a token) and less then k replicas are recovering (kRec
contains less then k tokens) and the index of the replica is in the interval
[]kCountSlotMarkkCountSlotMark ⋅+−)((,11)(((⋅) .

After the starting of a recovery of the replica, all the immediate transitions whose name starts
with tEmpty fire, emptying the following places: OK_O1, OK_I1, Crash1, Omission1,
OmissionIU1, OmissionI1, InvalidIU1, InvalidI1. Immediate transitions tRecovered1 or
tDRecovered1 fires when the current recovery ends, resetting the replica subnet.

The election of the leader replica is managed as follows. The marking of the place Leader
corresponds to the identity of the current leader; when the replica 1 either is going to be
recovered or is crashed, one token is added in the place NewL1. tNewLeader1 fires if replica
1 is the current leader, triggering the mechanism of election of a new leader, otherwise
tNoNewLeader fires. The arc from place Leader to place tNewLeader1 has multiplicity equal
to Mark(Leader), whilst the arc from place tNewLeader1 to place Leader has multiplicity
equal to the identity of the replica that will be elected as the new leader. The new leader
should be the last (not crashed) replica proactively recovered, that is replica with identity

() knkCountSlotMarknj +⋅−+=)mod)2(((. If replica is currently crashed, the next
attempt is made on replica , until a non crashed replica is found.

j
1−j

The subnet shown in Figure 4-6 models the system failure. Place OKSysN contains a token
as long as the system is not failed and it is not omitting (there are more than correct
replicas and the leader is not crashed or omitting). The place OKSysO contains a token
when the system is not failed but it is omitting. The place SysFailureI contains a token when
the system is failed because of invalid behaviour (there are at least invalid replicas).
The place SysFailureO contains a token when the system is failed because the resource
unavailability

f

1+f

3 lasted for an unacceptable period of time represented by the exponential
transition TSysO with rate

OT
1 .

3 Either the current leader was omitting or there were less than 1+f correct replicas

Model-based evaluation of the middleware services and protocols Page 29

Figure 4-6: The model of system failure in the SN of the PRRW model
To improve the efficiency of the analytical solution different priorities are associated to the
immediate transitions of SN, when no probabilistic choices are required. For example, all the
immediate transitions of the replica have priorities lower than those of replica i j , if ji < .

4.2.4.3 Reward Structures
The evaluation of the measures of interest ()tPF and ()tPU involves specifying a
performance (reward) variable and determining a reward structure for the performance
variable, i.e., a reward structure which associates reward rates with state occupancies and
reward impulses with state transitions. System failure probability ()tPF was evaluated in
terms of an “instant of time” performance variable which is based on the following reward
structure:
if (Mark(OKSysO)=0 or Mark(OKSysN)=0) then (1) else (0)

System unavailability was evaluated as ()tPU () ()
()tT

tTtP
A

U
U ,0

,0
= .

(tTU ,0)

)

 was evaluated defining an ‘interval of time” performance variable whose reward
structure is the following:
if (Mark(OKSysO)=1) then (1) else (0)

(tTA ,0 was evaluated defining an “interval of time” performance variable which reward
structure is the following:
if (Mark(OKSysO)=1 or Mark(OKSysN)=1) then (1) else (0)

4.2.5 Model Evaluation and System Analysis
In this section the results of the evaluation of the measures of interest is shown. The
measures of interest were evaluated by simulation with a confidence level of 95% and a half-
length confidence interval of 1%.

All the model parameters and the basic values used for the evaluations are shown in Table
5. The relevant parameters used are the following:

o Mission time . This is the time during which the system is exercised since it starts to
work. t varies in [].

t
42048,2628

Model-based evaluation of the middleware services and protocols Page 30

o Detection coverage of malicious behaviour. is the probability of detecting an
intruded replica, and hence the probability of reactively recovery an intruded replica.

 varies in : if , no intrusions are detected, whilst if , all intrusions
are detected. in the ideal case.

Mc Mc

Mc [1,0]

]

0=Mc 1=Mc
1=Mc

o Probability of intrusion manifesting as a permanent invalid behaviour. varies in
: if , all intrusions manifest as a permanent omissive behaviour; if

Ip Ip
[1,0 0=Ip 1=Ip ,
all intrusions manifest as a permanent invalid behaviour.

o Number of system replicas in the system, maximum number of corrupted
replicas tolerated by the system itself and maximum number of system replicas
recovering simultaneously.

n f
k

Table 5: Model Parameters and Default Values

Parameter Value Meaning
t 2628 Mission time (sec)

n 4 Number of replicas in the system

k 1 Max number of replicas recovering simultaneously

f 1 Max number of corrupted replicas tolerated by the system

DT 146 Time duration of a recovery operation (sec)

OT 60 Duration of system omission before considering the system
failed (sec)

Ciλ []77 8.3,9.1 −− ee Crash rate, exponentially distributed. Each replica has a diverse
crash rate (from 1 per 60 days to 1 per 30 days).

Oiλ []66 8.3,9.1 −− ee Transient omission rate, exponentially distributed. Each replica
has a diverse rate (from 1 per 6 days to 1 per 3 days)

EOλ 23.3 −e Omission duration rate, exponentially distributed. A transient
omission lasts about for 30 seconds.

Aiλ []55 2.1,8.5 −− ee Successful attack (intrusion) rate, exponentially distributed.
Each replica has a diverse rate (from 5 per day to 1 per day)

Ip 0.5 Probability of intrusion manifesting as a permanent invalid
behaviour (if 0=Ip all intrusions manifest as permanent
omissions)

Mc 0.7 Probability of detecting a malicious behaviour

The relevant results of the preliminary evaluations performed on the model are briefly shown
hereafter. More details are given in the appropriate sections of [Neves et al. 2008].

A first study was performed observing both system failure probability and system
unavailability over mission time t . Three system configurations were evaluated for
three different values of (probability of intrusions manifesting as permanent invalid
behavior).

()tPF

()tPU

Ip

Figure 4-7 shows how and ()tPFI ()tPFO change over mission time t (recall that
). If , () () ()tPtPtP FOFIF += 0=Ip ()tPF is constant as time increases (in this case

, given that). If () ()tPtP FOF = () 0=tPFI 5.0=Ip , ()tPF increases as time increases; the
figure shows that ()tPFO is negligible with regard to ()tPFI (()tPFO decreases to 0 as time

Model-based evaluation of the middleware services and protocols Page 31

increases). If , increases as time increases; the figure shows that 1=Ip ()tPF ()tPFO is
constant over time and that increases over time. The system with has the
smallest values for

()tPFI 0=Ip
()tPF among the three system considered, whilst the system with 1=Ip

has the largest values for (at least two orders of magnitude with regard to the system
with).

()tPF

0=Ip

.

Figure 4-7: System failure probability ()tPF and unavailability ()tPU over mission time
 for different values of t p I

If , there isn’t any invalid behaviour triggering reactive recoveries, so almost all
recoveries are periodic (reactive recoveries are triggered only on an omissive leader): in this
case shows to be almost constant over time. If

0=Ip

()tPF { }1,5.0∈Ip , there are invalid
behaviours triggering reactive recoveries: in both the cases ()tPF shows to be increasing
overtime mainly because of ; the larger is , the larger is ()tPFI Ip ()tPF . In general it turns out
that increases over time mainly because of the reactive recoveries triggered by invalid
behaviour.

()tPF

Figure 4-7 shows also how changes over mission time t . If , ()tPU { }5.0,0∈Ip ()tPU
decreases as time increases (both the settings show the same values for the same). If

, shows to be constant with regard to time; in this case is larger than for
the other values of .

t
1=Ip ()tPU ()tPU

Ip

()tPU is decreasing over time (at most is constant), so it is satisfactory in all the system
configurations considered; the positive effect of proactive recoveries refreshing all the
replicas is evident mostly for , whereas the effect is smaller (but still effective) as
increases, since is not increasing over time.

0=Ip Ip
()tPU

Another study was devoted to evaluate both system failure probability and system
unavailability varying both the detection coverage and the probability of
intrusion manifesting as invalid behaviour. Varying the value of we act on the mechanism
of reactive recoveries in the following way: increasing the detection coverage, it increases
also the number of invalid replicas detected to be invalid and hence reactively recovered. If

, reactive recoveries are triggered only on an omissive leader.

()tPF

()tPU Mc Ip

Mc

0=Mc

Model-based evaluation of the middleware services and protocols Page 32

Figure 4-8 shows how and ()tPFI ()tPFO change over detection coverage for some
values of . The two figures are plotted using the same scale for the y-axis in order to make
easier their comparison. In general,

Mc

Ip
()tPFI decreases as increases from 0 to 1. The

extreme curves correspond to the two extreme system configurations: , assuming the
largest values, and , assuming the lowest values: in this last case (the
curve is out of the bounds of the figure). The curve showed in Figure 4-9 which assumes the
smallest values corresponds to the system configuration where . The curve
corresponding to decreases quicker than the other curves (it decreases for about one
order of magnitude), whilst the curve for

Mc
1=Ip

0=Ip () 0=tPFI

2.0=Ip
1=Ip

2.0=Ip is almost constant. shows an
opposite behaviour with respect to

()tPFO

()tPFI : it increases as increases from 0 to 1. The
extreme curves correspond to the two extreme system configurations: , assuming the
largest values, and , assuming the lowest values (the opposite behaviour with respect
to). The curve corresponding to

Mc
0=Ip

1=Ip
()tPFI 1=Ip increases quicker than the other curves, whilst

the curve for is almost constant. 0=Ip

Figure 4-8: Impact of detection coverage on failure probability due to invalid
behaviour and failure probability

Mc ()tPFI

()tPFO due to omissive behaviour for different values
of Ip

Model-based evaluation of the middleware services and protocols Page 33

Figure 4-9 shows that increasing there are two opposite effects with respect to Mc ()tPFI
and : the former decreases, because invalid replicas reactively recovered are no
longer weakening the system; the latter increases, because replicas, while recovering, do not
contribute to system operation. The overall effect, shown in Figure 4-9, is that system failure
probability decreases as detection coverage increases. The system was evaluated in this
study for ; the first study described above showed that system failure probability

 increases over time (except for system configuration where). We hence
suppose that this study, if evaluated for a larger value of , should show a larger difference
between the extreme system configurations

()tPFO

Mc
2628=t

()tPF 0=Ip
t

0=Ip and 1=Ip . This stresses that the value
for should be as higher as possible. Mc

Figure 4-9: Impact of detection coverage both on system failure probability Mc ()tPF
and omissive failure probability ()tPFO for different values of pI

Model-based evaluation of the middleware services and protocols Page 34

Figure 4-10 shows how system unavailability ()tPU changes over detection coverage for
some values of . In general, increases as increases from 0 to 1. The extreme
curves correspond to the two extreme system configurations:

Mc

Ip ()tPU Mc
0=Ip , assuming the largest

values, and , assuming the lowest values. If 1=Ip 0=Ip , ()tPU is almost not influenced by
changing the detection coverage, whilst increasing the influence of becomes more
evident (almost an order of magnitude for

Ip Mc
1=Ip).

Figure 4-10: Impact of detection coverage on system unavailability for
different values of

Mc ()tPU

Ip

Model-based evaluation of the middleware services and protocols Page 35

It turns out that there are two conflicting effects on system unavailability related to the
increasing number of reactive recoveries. ()tPU is negatively affected by a larger value for
the detection coverage , because the larger is the detection coverage, the more reactive
recoveries are triggered; the above trend is more evident as the probability of intrusion
manifesting as invalid behaviour increases, because reactive recoveries are mainly triggered
because of invalid behaviour. On the other side, it has to be noticed that the smaller is ,
the worse is system unavailability, because less reactive recoveries are triggered on faulty
replicas.

Mc

Ip

Ip

The results of this study shows that increasing the detection coverage of invalid behaviour
has conflicting effects on system failure probability and system availability: the former
improves as increases, whilst the latter worsen as increases. Mc Mc

The last study performed aimed to evaluate the impact of the number of replicas on both
system failure probability and unavailability. When dealing with the number of replicas in the
system, three parameters are relevant: n , the overall number of replicas in the system, ,
the maximum number of corrupted replicas tolerated by the system and , the maximum
number of replicas simultaneously recovering without endangering the availability of the
system. The values of the above parameters are disciplined by the following formula:

. The following system configurations were evaluated:

f
k

kfn ++= 12

1. , , 4=n 1=f 1=k

2. , , 5=n 1=f 2=k

3. , , 6=n 1=f 3=k

4. , , 6=n 2=f 1=k

Figure 4-11 shows system failure probability ()tPF (decomposed in and) and
system unavailability for the system configurations described above. In general

()tPFI ()tPFO

()tPU ()tPF
decreases as the number of system replicas increases (this trend is due primarily to

); for the same value of , the higher is and the lower is . In general
n

()tPFO n k ()tPF ()tPU
decreases as the number of system replicas increases; for the same value of , the
higher is and the lower is . It turns out that for the setting used (as shown in Table 5)
the lower system failure probability and the lower system unavailability is measured in the
system configuration 3; this configurations has the highest number of replicas with regard
to the other configurations evaluated. Configuration 4 has also the same as configuration
3, but it has a lower value for (

n n
k ()tPU

n
n

k ()tPFO is the main contributor to ()tPF).

Model-based evaluation of the middleware services and protocols Page 36

Figure 4-11: System failure probability ()tPF and unavailability for different
system configurations at mission time

()tPU

2628=t

5 PRELIMINARY ASSESSMENT OF DEPENDENCIES BETWEEN
THE EI AND II INFRASTRUCTURES

Initial analyses to quantitatively assess the impact of interdependencies between the two
infrastructures EI (electrical infrastructure) and II (information infrastructure) composing the
Electric Power System (EPS) have been performed through the EPSyS simulator described
in Deliverables D11 [Donatelli et al. 2008b] and D8 [Kaâniche et al. 2008].

5.1.1 Scenario, settings, fault conditions and analyzed measure.
The first analyses conducted through the EPSyS simulator developed at CNR-ISTI have
been based on an artificial, simple EPS testbed, properly built to address specific features of
the simulator. Our initial testbed is composed of 24 nodes, subdivided in 8 power plants
(rounds) and 16 loads (squares). The loads can also act as substations if needed. The nodes
are interconnected using 27 identical transmission lines, as shown in Figure 5-1.

This testbed can be logically partitioned in three main areas:

z The “B” area has a power demand much higher with respect to its production.

z The “A” and “C” areas, on the other hand, have a power production much higher than
their demand.

z At the equilibrium, a constant power flow is expected to be transferred using the
transmission lines that are drawn thicker.

Model-based evaluation of the middleware services and protocols Page 37

Figure 5-1: Overview of the testbed system

The settings for the nodes and the lines used in this testbed are here summarized.

For the whole grid:

z Every transmission line can tolerate a maximum of 620 MW.

z All transmission lines are treated equally: there is no preferred path for power flow or
redispatch of power flow.

z Environmental temperature is assumed to be constant and uniform.

z Each load provides identical, constant gain if its power demand is satisfied, or a
constant cost otherwise.

z Plants and lines are neutral from the point of view of gains/costs (no cost if
overloaded or stressed, but also no gain in the opposite situation).

For the “A” area:

z Each plant in the area can provide a maximum power of 450 MW.

z Each load in the area demands 100 MW.

z The overall balance of the area shows that there is a theoretical excess of production
of 1400 MW.

For the “B” area:

z The plant #1 can produce a maximum of 200 MW; the plant #2 can produce a
maximum of 300 MW.

z Loads in the area absorb 200 MW each one, with the exception of loads #3, #6 and
#10 that require 100 MW only.

z The overall balance of the area shows that there is an unsatisfied demand of 1200
MW

For the “C” area:

z Both plants can produce a maximum of 600 MW.

z Both loads require 100 MW.

z The overall balance of the area shows a theoretical excess of production of 1000
MW.

Model-based evaluation of the middleware services and protocols Page 38

Figure 5-2: Initial power flow distribution for the selected scenario
From the parameters of the grid nodes in the testbed, there is more theoretical production
than demand, thus allowing a variety of dispatch decisions. We have chosen an initial stable
state summarized in Figure 5-2.

The measure we evaluate is the expected reward E[Y[0,t]] accumulated in the interval [0, t],
with Y[0,t] defined as (see section 2.1 above for details):

Y 0,t[] = R(P)J 0.t[]
P ∈RS
∑

We considered a 24 hours timeframe (so t = 24 hours), and we normalize the obtained value
with respect to t. Therefore, a value near to 1.0 means good performance and high load
satisfaction (so, high gain), while a value near to 0.0 means heavy blackout and high costs.

We consider a starting stable state and we introduce two simultaneous faults, which
instantaneously cause outages of the lines L1 and L2, after 1 hour from the starting of the
simulation. Faults are assumed permanent, so the affected lines are permanently out of
service, and a repair action is required to bring them back in service.

We evaluate the behaviour of the system considering that the global II reaction function
RS2() requires a time varying from 30 seconds to 15 minutes, with a 30 seconds step.
Varying this time, we can model different degrees of promptness to the II infrastructure,
ranging from almost instantaneous reaction to longer time representing timing failures
experienced by RS2() .

We also consider different stress factors for the system, assuming a maximum of 50%
overload with an increasing step of 10%. The system stress is represented by the alpha
factor: alpha=1 indicates the nominal power flow on the lines to satisfy a given set of loads
under an equivalent power production by a set of generators. Increasing values of alpha
indicate that a higher load is requested in correspondence of a higher production, but with
the same power lines topology. This means that power lines become more stressed, and the
chance to experience lines overloads increases. In this study, we vary alpha in the interval
[1.0, 1.5], with step = 0.1.

Model-based evaluation of the middleware services and protocols Page 39

5.1.2 Quantitative analyses
In the assumed fault scenario we observe that, just after the fault, RS1() tries to fullfill the
demand of the “B” area by increasing the production of generators in the “C” area. The power
flow is routed through L3, being the last surviving interconnection line. L3, being overloaded,
starts to heat. It is going to be disconnected in a few minutes (the precise amount of time
depends on the overload system stress factor alpha).

There are two possible evolution directions. If RS2() is too slow to react, L3 will be lost as
well, leading to the most severe blackout possible. The cost of this blackout depends in turn
on the value of the stress factor imposed to the system: the higher is the stress factor, the
heavier will be the blackout cost. On the other hand, even if RS2() is quick enough, a
blackout is experienced, since the power flow that can be delivered to the “B” area is
bounded by the capacity limits of L3 (since RS2() always avoids overload on transmission
lines). Anyway, this is the less severe blackout possible, so the best possible performance
without the repair of the broken lines.

Figure 5-3 shows the plot of the considered performability measure under varying values of
the time RS2() requires to determine and apply the new stable electric configuration (named
RS2() delay in the following), and for different values of the stress factor alpha. The
interesting points are the sudden drops for the RS2() delay between 12 and 13 minutes for
alpha=1.1, and for a delay between 4 and 5 minutes for alpha=1.2. These drops are caused
by the loss of L3 due to an overload. After that, the system is compromised, in the sense that
the most severe blackout cannot be avoided.

Figure 5-3: Mean normalised delivered power in the analysed scenario
It must be noted as well that the loss of L1 and L2 leads to a partition of the grid in two
islands: the “A” area and the “B+C” area. The island corresponding to the “A” area isn’t
affected by any blackout since there is enough available production. Therefore, the loads in
this subgrid are fully satisfied.

Model-based evaluation of the middleware services and protocols Page 40

The further loss of L3 subdivides the grid in three areas. In addition to the “A” area, the
considerations above hold for the “C” area as well: it is the “B” area the only one that
experiences the blackout.

We inspect now in detail the behaviour of the grid elements with respect to the sustained
power flow during the simulation timeframe. We consider first Figure 5-4 which shows the
evolution of power flows through transmission lines for the RS2() delay = 4:00 m and alpha =
1.2.

On the X-axis, we have the transmission line sequential number, while on the Y-axis we have
the simulation time in minutes:seconds. Transmission lines are numbered sequentially
considering the A-B-C area’s order, and last the areas interconnection lines L1-L2-L3 (lines
numbered 25,26 and 27 respectively in Figure 5-4). The intensity of the colour for each bar
representing a line is proportional to the line load: the brighter is the colour, the heavier is the
load. A load greater than 1.0 indicates an overload.

This Figure depicts the maximum allowed delay for RS2() to be still able to alleviate the L3
overload, thus preventing its disconnection from the grid. Starting from time t=60:00m, we
can see a significant overload on L3 caused by the increased power generation and power
redispatch ordered by RS1() in response to the loss of L1 and L2. After 4:00 minutes (and a
few more seconds due to propagation delays), RS2() acts by reducing the flow on L3, and
the production of generators in the C area, thus avoiding the tripping of L3. Unfortunately,
this will also lead to a significant blackout in the B area, due to the lack of available
power

Figure 5-4: Evolution of the load through power lines for a RS2() delay=4:00 m

Figure 5-5 shows the evolution of power flows through transmission lines for the RS2() delay
equal to 4:30 m and alpha equal to 1.2. This Figure represents the minimum RS2() delay that
causes the tripping of L3 from the grid. We can see that L3 trips at time 64:19m (4:19 m after
the overload started). The tripping is evident because line L3 passes from a high overload to
a zero load. This pattern is caused by the intervention of the protections embedded in the

Model-based evaluation of the middleware services and protocols Page 41

line. This event causes RS2() to be interrupted and restarted, and this is evident because the
next changes in the power through the lines, caused by an RS2() action, happens 68:49 m
after the fault. Therefore, in this case the duration of RS2() is 8:49 m, since after 4:19 m it is
restarted by the tripping of L3, and then completes after the expected 4:30 m after its restart.

In this scenario, a severe blackout is experienced: given the out of service of the power lines
L1, L2 and L3, the new electric equilibrium in the three islands A, B and C as determined by
RS2() is set to a very low electric power flowing through the lines.

The described scenario, although very simple, is a good example of how EPSyS allows to
analyse the interactions between EI and II. In particular, our case study focused on the
expected cumulated reward Y[0,t] and highlighted some critical timing interactions; those
interactions are correlated to discontinuities (in this case, drops) in the plot of the evaluated
measure. The obtained results are useful to understand the interplay between control
operations and failures of the electric grid power lines from the timing point of view, and
therefore take appropriate decisions to mitigate blackout events.

The analysis of the evolution of the electric power through the power lines is useful to better
understand the interactions and their consequences, and to better reconstruct the chain of
events. Of course, this kind of analysis can be applied to requested loads and generators as
well, to observe the evolution of their values under the assumed failure events and II control
operations.

Figure 5-5: Evolution of the load through the lines for the RS2() delay=4:30 m

Model-based evaluation of the middleware services and protocols Page 42

6 CONCLUSIONS
In this deliverable we have reported on four different preliminary validation and evaluation
activities: definition of simple, but appropriate, models for the attacks, evaluation and
correctness validation of the CIS (with and without recovery policy), and on the study of
interdependences between II and EI.

We have presented experimental results based on data collected during a four year
observation period from a large set of identically configured honeypots that have been
deployed on the Internet. In particular, we proposed a methodology to process the collected
data in order to identify statistical distributions that best characterize the times between
attacks observed on the different platforms, taking into account the possible presence of
silence periods that are due e.g., to the unavailability of the honeypots. The experimental
results show that a mixture Pareto and Weibull distribution is well suited to describe the
attack processes observed on several honeypot platforms. This result confirms the
preliminary investigations derived in [Kaâniche et al. 2006] based on a small subset of the
data presented in this section.

The obtained results should be useful to generate synthetic workloads that are
representative of malicious traffic observed on the honeypots and to support the elaboration
of quantitative security assessment models.

Concerning the evaluation of the CIS architecture, the following activities are planned during
the last year of the project: i) refinement of the PRRW model presented in this deliverable,
aiming to relax some assumptions (e.g. urgent reactive recoveries are actually delayed until
the beginning of the next recovery slot) and to perform other sensitivity analyses (e.g. how
the omission and intrusion rates impact on the system failure probability and availability); ii)
definition of the model of some alternative recovery schema, in order to perform quantitative
comparisons among the available schemas. Also the verification of correctness of the CIS
architecture will continue to include more realistic hypothesis on the environment and the
more recent evolution of CIS towards proactive-reactive recovery strategy (the CIS already
considered in DEEM, but from a correctness point of view)

Concerning the quantitative evaluation of the impact of intedependencies, several activities
are planned for the last year of the project. First, more extensive analyses are necessary,
both on increasingly complex testbeds, like the IEEE Testbed 118, and on more realistic
control scenarios taken from the project itself (the control system scenarios developed in the
context of WP1). Moreover, new features are planned to be implemented in the simulator,
mainly the repair process of permanently faulty components, which brings back the repaired
component in full operation. Also, more sophisticated fault patterns are planned to be
considered, affecting both EI components as well as II ones. Finally, the quantitative
evaluation will be performed also by exploiting the modelling framework under development
in WP2. Especially, the two evaluation approaches will be (at least in part) exercised on the
same case studies, to perform cross-validation between the two methods, and for cross-
fertilization.

Model-based evaluation of the middleware services and protocols Page 43

REFERENCES

[Abou El Kalam et al. 2003] A. Abou El Kalam, E. E. Baida, P. Balbiani, S. Benferhat, F.
Cuppens, Y. Deswarte, A. Miege, C. Saurerel and G. Trouessin, “Organization based access
control”, in 4th IEEE Int. Workshop on Policies for Distributed Systems and Networks
(Policy03), 2003.

[Abou El Kalam et al. 2007] A. Abou El Kalam, A. Baina, H. Beitollahi, A. Bessani, A.
Bondavalli, M. Correia, A. Daidone, G. Deconinck, Y. Deswarte, F. Grandoni, N. Neves, T.
Rigole, P. Sousa, P. Veríssimo, Preliminary Architecture Specification. Critical Utility
InfrastructurAL Resilience. Project co-funded by the European Commission within the Sixth
Framework Programme. Deliverable D4, 2007.
[Bondavalli et al. 2000] A. Bondavalli, I. Mura, S. Chiaradonna, R. Filippini, S. Poli and F.
Sandrini, “DEEM: a tool for the dependability modeling and evaluation of multiple phased
systems”, in Int. Conference on Dependable Systems and Networks (DSN2000), (New York,
USA), pp.231-236, IEEE Computer Society, 2000.
[Donatelli et al. 2008a] S. Donatelli, E. Alata, J. Antunes, M. Kaaniche, V. Nicomette, N. F.
Neves and P. Verissimo, Experimental validation of architectural solutions. Critical Utility
InfrastructurAL Resilience. Project co-funded by the European Commission within the Sixth
Framework Programme. Deliverable D26, 2008a.
[Donatelli et al. 2008b] S. Donatelli, S. Chiaradonna, D. Codetta Raiteri, F. Di
Giandomenico, G. Franceschinis, M. Gribaudo, M. Kaâniche, P. Lollini, F. Romani and J.
Sproston, List of requirements on formalisms and selection of appropriate tools. Critical Utility
InfrastructurAL Resilience Project co-funded by the European Commission within the Sixth
Framework Programme. Deliverable D11, 2008b.
[Garrone et al. 2007] F. Garrone, C. Brasca, D. Cerotti, D. Codetta Raiteri, A. Daidone, G.
Deconinck, S. Donatelli, G. Dondossola, F. Grandoni, M. Kaâniche and T. Rigole, Analysis of
New Control Applications. Critical Utility InfrastructurAL Resilience. Project co-funded by the
European Commission within the Sixth Framework Programme. Deliverable D2, 2007.
[Hodge et al. 2004] V. Hodge and J. Austin, “A Survey of Outlier Detection Methodologies”,
Artifical Intelligence Review, 22 (2), pp.85-126, 2004.
[Kaâniche et al. 2006] M. Kaâniche, E. Alata, V. Nicomette, Y. Deswarte and M. Dacier,
“Empirical Analysis and Statistical Modeling of Attack Processes based on Honeypots”, in
WEEDS 2006 - workshop on empirical evaluation of dependability and security (in
conjunction with the international conference on dependable systems and networks,
(DSN2006), pp.119-124, 2006.
[Kaâniche et al. 2008] M. Kaâniche, M. Beccuti, C. Brasca, S. Chiaradonna, S. Donatelli, F.
Di Giandomenico, G. Franceschinis, K. Kanoun, J.-C. Laprie, P. Lollini and F. Romani,
Preliminary modelling framework. Critical Utility InfrastructurAL Resilience. Project co-funded
by the European Commission within the Sixth Framework Programme. Deliverable D8, 2008.
[Mura et al. 2001] I. Mura and A. Bondavalli, “Markov Regenerative Stochastic Petri Nets to
Model and Evaluate the Dependability of Phased Missions”, IEEE Transactions on
Computers, 50 (12), pp.1337-1351, 2001.
[Neves et al. 2008] N. F. Neves, P. Verissimo, A. Abou El Kalam, A. Baina, H. Beitollah, A.
Bessani, A. Bondavalli, M. Correia, A. Daidone, G. Deconinck, Y. Deswarte, F. Garrone, F.
Grandoni, H. Moniz, T. Rigole and P. Sousa, Preliminary Specification of Services and
Protocols. Critical Utility InfrastructurAL Resilience. Project co-funded by the European
Commission within the Sixth Framework Programme. Deliverable D10, 2008.

Model-based evaluation of the middleware services and protocols Page 44

[Pouget et al. 2005] F. Pouget, M. Dacier and V.-H. Pham, “Leurré.com: On the Advantages
of Deploying a Large Scale Distributed Honeypot Platform”, E-Crime and Computer
Conference (ECCE '05), Monaco, 2005.
[Provos et al. 2007] N. Provos and T. Holz, Virtual Honeypots — From Botnet Tracking to
Intrusion Detection, Addison-Wesley, Boston, MA, USA, 2007.
[Sousa et al. 2007] P. Sousa, A. Bessani, M. Correia, N. F. Neves and P. Verissimo,
“Resilient intrusion tolerance through proactive and reactive recovery”, in 13th IEEE Pacific
Rim Dependable Computing conference (PRDC-2007), (Melbourne, Australia), 2007.
[Spitzner 2002] L. Spitzner, Honeypots: Tracking Hackers, Addison-Wesley, Boston, 2002.
[UML] UML, “Unified Modelling Language (UML) web site, http://www.uml.org”.
[Vanderviere et al. 2004] E. Vanderviere and M. Hubert, “An adjusted boxplot for skewed
distributions”, in 16th Symposium of IASC (COMPSTAT'04), (Pragues, Czeck republic),
2004.

http://www.uml.org

	INTRODUCTION AND OUTLINE
	PRELIMINARIES
	Metrics definition
	Metrics for quantitative evaluation
	Metrics for correctness analysis

	Extending the UML representation of the CRUTIAL domain

	STATISTICAL MODELS OF ATTACKS
	Overview of the Leurré.com environment and the collected dat
	Methodology
	Identification of silence periods
	Data selection for the modelling of inter-arrival times betw

	Time between attacks distribution
	Conclusion

	PRELIMINARY EVALUATION OF ARCHITECTURAL SOLUTIONS
	PRISM models of CIS
	Description of the system
	Model description
	Verification using Prism

	DEEM Models of the Proactive-Reactive Recovery Strategy
	System Overview
	The Proactive-Reactive Recovery Strategy
	Fault Model and Assumptions
	PRRW Modeling
	Phase Net
	System Net
	Reward Structures

	Model Evaluation and System Analysis

	PRELIMINARY ASSESSMENT OF DEPENDENCIES BETWEEN THE EI AND II
	Scenario, settings, fault conditions and analyzed measure.
	Quantitative analyses

	CONCLUSIONS
	REFERENCES

