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Abstract

Numerical schemes for nonlinear parabolic equations based on the harmonic aver-
aging of cell-centered diffusion coefficients break down when some of these coefficients
go to zero or their ratio grows. To tackle this problem, we propose new mimetic finite
difference schemes that use a staggered discretization of the diffusion coefficient. The
primary mimetic operator approximates div(k·); the derived (dual) mimetic operator
approximates −∇(·). The new mimetic schemes preserve symmetry and positive-
definiteness of the continuum problem which allows us to use algebraic solvers with
optimal complexity. We perform detailed numerical analysis of the new schemes for
linear elliptic problems and a specially designed linear parabolic problem that has
solution dynamics typical for nonlinear problems. We show that the new schemes are
competitive with the state-of-the-art schemes for steady-state problems but provide
much more accurate solution dynamics for the transient problem.

1 Background

Modeling of complex geophysical subsurface and surface flows or nonlinear heat conduc-
tion in cold materials, requires numerical schemes that remain accurate under extreme
conditions where the diffusion coefficient is not only discontinuous but may also become
degenerate. A typical equation is ∂p/∂t + divv = 0 where v = −k(p)∇p. The model has
applications in heat diffusion [4] and moisture transport in porous media [16]. Numerical
schemes for this equation that use harmonic averaging of cell-centered diffusion coefficients
break down when some of these coefficients go to zero or their ratio grows, see Fig. 1.
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The list of compatible discretization methods that have the same problem includes the
standard mimetic finite difference (MFD) [3, 13], hybrid finite volume (FV) [7, 8], mixed
FV [5], discrete duality FV [11, 12], mixed finite element (FE) [15], and virtual element [9]
methods.

Replacement of the harmonic averaging with arithmetic averaging leads to an accurate
solution in one dimension, see the right panel in Fig. 1. In multiple dimensions, a similar
strategy leads to a non-symmetric scheme, unless a two-point flux approximation (TPFA)
formula is employed. While the formula is known to be inaccurate on general polygonal
and polyhedral meshes, lack of symmetry implies only conditional positive definiteness of
the resulting matrices.

Figure 1: Solution snapshots in one dimension for k(p) = p3, p(x, 0) = 10−3, and p(0, t) =
3
√
3t. The panels show solutions of a conventional finite difference scheme with the harmonic

(left) and arithmetic (right) averaging of the cell-centered diffusion coefficients. Accurate
solution approximation is on the right panel.

The families of mimetic schemes developed here use a different approach based on a
new discrete calculus. In the true mimetic spirit they guarantee symmetry and positive
definiteness of the resulting discrete systems on arbitrary polygonal and polyhedral meshes.
These properties typically lead to better performance of algebraic solvers, such as multigrid
solvers. The proposed schemes allow us to use two diffusion coefficients (more generally, two
approximations) on each mesh face. In porous media applications, the nonlinear coefficient
is a continuous function of p but due to its strong nonlinearity different flow regimes
(infiltration, drainage, and capillary rise) require different strategies for calculating face-
based diffusion coefficients that are optimal in some sense. There is strong evidence that
flexibility in approximating face-based diffusion coefficients will be demanded for solving
nonlinear problems.

It is pertinent to mention a related expanded mixed FE scheme proposed in [1]. This
scheme is limited to finite element meshes, use two velocity unknowns u = −∇p and
v = ku, and employ only cell-centered diffusion coefficients. This scheme avoids inversion
of k which happens in the conventional mixed FE schemes. In contrast to the proposed
schemes, upwinding of the diffusion coefficients on mesh faces, which is the well established
practise for solving nonlinear problems in subsurface flows, cannot be incorporated into the
expanded mixed FE scheme.
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Analysis of the new mimetic schemes for linear problems is necessary before moving to
nonlinear problems. We demonstrate with numerical experiments that the new schemes
are competitive with the existing schemes for steady-state elliptic problems but provide
much more accurate solution for a specially designed linear parabolic problem that has
solution dynamics typical for nonlinear problems.

The MFD method preserves or mimics essential mathematical and physical properties
of underlying PDEs. We refer the reader to the review paper [13] and book [2] for the
detailed description of the MFD method. The review paper summarizes almost all known
results on Cartesian and curvilinear meshes for various PDEs including the Lagrangian
hydrodynamics. The book complements the paper by providing numerous examples and
describing basic tools used in the convergence analysis of mimetic schemes for elliptic PDEs.
For parabolic problems the essential properties include the corresponding conservation law,
as well as the symmetry and positive-definiteness of the underlying differential operator.

In the mimetic framework, we discretize pairs of adjoint operators, such as the primary
divergence and the derived gradient operators. Most aforementioned FV and FE methods,
including the original MFD method, discretize the divergence operator div(·) and the flux
operator−k∇(·). The new mimetic schemes use a novel discrete calculus where the primary
operator discretizes the combined operator div(k·) and the derived (dual) gradient operator
discretizes −∇(·). Note that the original MFD schemes use inner products in the space of
fluxes that are weighted by k−1; while the new mimetic scheme use inner products weighted
by k. Using a one-dimensional example, we show that the new schemes can reproduce a
few known methods by selecting different formulas for the diffusion coefficients on mesh
faces.

The mimetic technology generates a parameterized family of schemes (even on simpli-
cial meshes) with equivalent properties [2]. This family may contain members with superior
properties such as the discrete maximum principle [10]. As an additional result, we proved
that a linear reconstruction of the diffusion coefficient inside mesh cells may be incorpo-
rated in the new schemes. This is also true for the original mimetic schemes. Numerical
experiments indicate that the gradient of this reconstruction does not alter the optimal
convergence rate; hence, it increases the parametric space.

The paper outline is as follows. In Section 2, we present a non-standard mixed formula-
tion of the diffusion problem. In Section 3, we develop a new approach to building mimetic
schemes. The properties of the new schemes are verified through numerical experiments in
Section 4. Summary of main results is given in Section 5.

2 Mixed formulation of the diffusion problem

In a domain Ω ⊂ �d, d = 2 or 3, we consider the linear parabolic equation

a
∂p

∂t
− div(k∇p) = b, (2.1)

subject to initial and boundary conditions. Hereafter, p is referred to as the pressure,
k = k(x, t) is a positive, possibly discontinuous, scalar function of space and time, b(x)
is the source term, and a(x) ≥ 0. Without loss of generality, we consider homogeneous
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Dirichlet boundary condition p = 0 on ∂Ω. Other types of boundary conditions can be
also embedded into the discretization technology, see Section 3.2.5.

Let us introduce a vector variable u = −∇p (referred to as the velocity) and reformulate
the diffusion problem (2.1) as a system of two first-order equations:

u = −∇p and a
∂p

∂t
+ div(ku) = b. (2.2)

Note that only the physical velocity ku has continuous normal components across the dis-
continuity of k. When degrees of freedom are associated with gradients, a special numerical
treatment of k is required to get a convergence scheme. In addition, the above equations
may not have a strong solution when k is discontinuous and must be understood in a weak
sense.

In this paper, we assume that k is uniformly bounded from below and above, so that
the original continuum problem is well posed and has a weak solution. Extension of the
proposed technology to nonlinear problems with degenerate coefficients will be done in
future publications.

Let Ωh be a conformal partition of Ω into polygonal (d = 2) or polyhedral (d = 3) cells
c. This mesh may contain non-convex cells. Let hc denote the diameter of cell c and |c|
denote its volume. We use symbol f for a mesh face and |f | for its area. Hereafter, we
use mainly 3D notations to describe the method with a few remarks about lower dimen-
sions. We assume that mesh faces match discontinuity interfaces of function k. Under this
assumption, it is possible to develop a rigorous convergence theory.

3 Mimetic finite difference method

Let Fh and Ph be discrete spaces (formalized later) for the primary unknowns. In the
MFD method the semi-discrete equations have the same structure as that in (2.2): Find
uh ∈ Fh and ph ∈ Ph such that

uh = −GRADph and a
∂ph
∂t

+DIVkuh = bI , (3.1)

where DIVk is the primary mimetic operator that approximates the continuum combined
operator divk, GRAD is the derived mimetic operator that approximates ∇, and bI ∈ Ph

is a projection of the source term. As described later, the gradient operator is dual to
the primary operator (with respect to inner products in Fh and Ph) which is critical for
proving symmetry as well as the positive definiteness of the resulting discrete systems. In
numerical experiments in Section 4, we use the backward Euler time discretization. Since
the time discretization is not critical for the scheme derivation, we set a = 0 in this section.

In subsequent sections we specify discrete spaces for ph and uh. To simplify exposition
of the main idea, we start with a 1D problem where all constructions become transparent.
Based on the definition of the derived gradient operator, schemes I and II can be classified
as global schemes, while scheme III is a local one.
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To approximate the first integral in (3.2), we use the trapezoidal quadrature rule in each
mesh cell which leads to the following discrete Green formula:

n∑
i=1

k̃i−1/2hi−1/2
2

[(GRAD ph)i−1ui−1 + (GRAD ph)iui] = −
n∑

i=1

hi−1/2(DIVkuh)i−1/2pi−1/2.

Inserting the formula for the divergence and changing the summation from cells to nodes,
we obtain the explicit formula for the derived gradient operator:

(GRADph)i = − ki (hi−1/2 + hi+1/2)

hi−1/2k̃i−1/2 + hi+1/2k̃i+1/2

pi−1/2 − pi+1/2

(hi−1/2 + hi+1/2)/2

where p1/2 = pN+1/2 = 0. When k = 1, the coefficient in front of the discrete pressure
gradient is one. Approximation of the physical velocity is

kiui = −ki(GRADph)i = k2
i (hi−1/2 + hi+1/2)

hi−1/2k̃i−1/2 + hi+1/2k̃i+1/2

pi−1/2 − pi+1/2

(hi−1/2 + hi+1/2)/2
≡ Ti(pi−1/2−pi+1/2).

Inserting this formula in the mass balance equation and multiplying each equation by
the cell volume, we obtain a system of algebraic equations for the pressure unknowns only.
The matrix of this system is symmetric, positive definite, and tridiagonal. The off-diagonal
entries in this matrix are given by coefficients Ti.

At this moment, ki is still an arbitrary approximation of the diffusion coefficient. We can
recover the conventional FV scheme [6] with harmonic averaging of cell-centered diffusion
coefficients for a special choice of ki given by

ki =
√

kH
i k

A
i ,

where

kH
i =

(
hi−1/2
k̃i−1/2 +

hi+1/2

k̃i+1/2

)−1
(hi−1/2 + hi+1/2), kA

i =
hi−1/2k̃i−1/2 + hi+1/2k̃

i+1/2

hi−1/2 + hi+1/2

.

When the above formula for the gradient is used as the basis for solving a problem with
the degenerate (or close to zero) diffusion coefficient, we observe a clear difference between
various selections of ki. For instance, we show in Section 4 that the choice ki = kH

i fails
when k̃i+1/2 ≈ 0. The problem with harmonic averaging was already reported in the
literature, e.g. in [17, 14]. For the scheme considered in this section, the choice ki = kA

i

leads to a better scheme. Later, we show how to extend this good scheme to multiple
dimensions.

Often, in a computer code, only cell-centered values k̃i−1/2 are available for our scheme
and values ki are derived somehow from them. Let ki be the s-th order approximation of
the diffusion coefficient at point xi, where 1 ≤ s ≤ 2. The truncation error analysis on a
non-smooth mesh i.e. hi+1/2 − hi−1/2 ∼ O(h), shows three terms in the flux error:

|(ku)(xi)− kiui| ≤ Ch(|k′p′|+ |p′′|) + Chs +O(h2),

6
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where C is a positive constant independent of the mesh, solution and diffusion coefficient.
If the mesh is smooth, i.e. hi+1/2 − hi−1/2 ∼ O(h2), the truncation error estimate becomes

|(ku)(xi)− kiui| ≤ Chs +O(h2). (3.3)

Hence, the second-order estimate of the flux requires s = 2. On a smooth mesh, a variety
of averaging and limited reconstructions algorithms with such a property is available. We
show with 2D and 3D numerical experiments that a more accurate approximation of ki
results in a much smaller discretization error.

3.1.2 Scheme II

Let us assume that exact or approximate nodal values ki are given. The second mimetic
scheme is obtained when we approximate k by a linear function in each mesh cell using ki.
The trapezoidal rule gives us to the following discrete integration by parts formula:

n∑
i=1

hi−1/2
2

[ki−1(GRAD ph)i−1ui−1 + ki(GRAD ph)iui] = −
n∑

i=1

hi−1/2(DIVkuh)i−1/2pi−1/2.

Now, the change of summation gives the typical finite difference formula for the gradient
operator:

(GRADph)i = − pi−1/2 − pi+1/2

(hi−1/2 + hi+1/2)/2
, (3.4)

where p1/2 = pN+1/2 = 0. Formula for the flux is

kiui = −ki(GRADph)i = ki
pi−1/2 − pi+1/2

(hi−1/2 + hi+1/2)/2
.

At this moment, we still have some freedom in selecting ki. For instance, the conventional
FV scheme is recovered for ki = kH

i . With the same assumption on the accuracy of ki as
in the first scheme, we obtain the following truncation error on a non-smooth mesh:

|(ku)(xi)− kiui| ≤ Ch(|p′′|) + Chs +O(h2). (3.5)

The truncation error on a smooth mesh is given by (3.3). Again, an accurate approximation
of ki will lead to a better scheme. Note, that we can extend this scheme to multiple
dimensions only in the case of simplicial meshes. Indeed, on a simplex, it is always possible
to build a linear function that matches the given values ki at centers of simplex faces.

On a general polygon or a polyhedron such a construction is not possible. Instead, we
consider a linear function that approximates k in some sense. For example, we can use a
linear reconstruction from the given cell-based values k̃i−1/2. For our 1D example it means
that we use values of the linear reconstruction at the cell end-points in the trapezoidal rule.
This gives two values k̃

i+1/2
i and k̃

i−1/2
i at each mesh node. The new discrete integration

by parts formula reads:

n∑
i=1

hi−1/2
2

[
k̃
i−1/2
i−1 (GRAD ph)i−1ui−1 + k̃

i−1/2
i (GRAD ph)iui

]
= −

n∑
i=1

hi−1/2(DIVkuh)i−1/2pi−1/2.
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Explicit formula for the gradient is

(GRADph)i = − ki (hi−1/2 + hi+1/2)

hi−1/2k̃
i−1/2
i + hi+1/2k̃

i+1/2
i

pi−1/2 − pi+1/2

(hi−1/2 + hi+1/2)/2
,

where p1/2 = pN+1/2 = 0. The truncation error analysis gives estimates (3.5) and (3.3) on
non-smooth and smooth meshes, respectively.

Remark 3.1 Inserting formulas for the gradient in the divergence equation, we obtain a
cell-centered scheme characterized by a tri-diagonal symmetric positive-definite matrix.

Remark 3.2 A few examples considered so far indicates that there exists many differ-
ent inner products in the space of discrete gradients. The inner products based on the
trapezoidal rule can be written as vector-matrix-vector products with diagonal matrices. In
multiple dimensions, inner products represented by diagonal matrices are accurate approx-
imations of L2 dot products only on a handful of special meshes. On a general mesh, the
approximation technology described in Section 4 leads to a non-diagonal symmetric positive
definite matrix. Note, that inner products represented by non-diagonal 2× 2 matrices can
be introduced in 1D too; however, the resulting schemes have no exceptional properties.

3.1.3 Hybridization and scheme III

In the case of discontinuous coefficient k, the gradients are also discontinuous. In such a
case, the construction of an accurate inner product in the space of gradients becomes a non-
trivial task, since a single number ui cannot represent accurately both left and right limits
of function u. A hybridization technique solves this problem. It allows us to introduce
two unknowns u

i−1/2
i and u

i+1/2
i (instead of ui) and two values k

i−1/2
i and k

i+1/2
i (instead

of ki) at a discontinuity point and close the system of discrete equations by one additional
equation:

k
i−1/2
i u

i−1/2
i = k

i+1/2
i u

i+1/2
i . (3.6)

Moreover, for the efficient code implementation, we double gradient unknowns in all other
mesh points and close the system of discrete equations with the same continuity equa-
tions. Note that it is common to have k

i−1/2
i = k

i+1/2
i almost everywhere except for the

discontinuity points.
Formula (3.6) is general enough to cover all schemes considered above. Using new

notations, we write the primary divergence operator as

(D̃IVk
uh)i−1/2 =

1

hi−1/2
(k

i−1/2
i u

i−1/2
i − k

i−1/2
i−1 u

i−1/2
i−1 ), 1 ≤ i ≤ n. (3.7)

Note that the fractional index labels the cell where the corresponding quantity resides.
Due to the presence of linear constraints (3.6), we have to include them in the discrete
integration by part formula:

n∑
i=1

hi−1/2
2

[
k̃
i−1/2
i−1 (G̃RAD ph)

i−1/2
i−1 u

i−1/2
i−1 + k̃

i−1/2
i (G̃RAD ph)

i−1/2
i u

i−1/2
i

]
=

−
n∑

i=1

hi−1/2(D̃IV
k
uh)i−1/2 pi−1/2 +

n∑
i=2

λi (k
i−1/2
i u

i−1/2
i − k

i+1/2
i u

i+1/2
i ),
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where λi are refereed to as the Lagrange multipliers. The change of summation gives

(G̃RADph)i−1/2i = −2k
i−1/2
i

k̃
i−1/2
i

pi−1/2 − λi

hi−1/2
, (G̃RADph)i+1/2

i = −2k
i+1/2
i

k̃
i+1/2
i

λi − pi+1/2

hi+1/2

.

The one-sided physical velocities are given by

k
i−1/2
i u

i−1/2
i = −2(k

i−1/2
i )2

k̃
i−1/2
i

pi−1/2 − λi

hi−1/2
, k

i+1/2
i u

i+1/2
i = −2(k

i+1/2
i )2

k̃
i+1/2
i

λi − pi+1/2

hi+1/2

.

The hybridization procedure is completed by substituting these formulas in the constraints
(3.6) and the mass balance equations (3.7). Multiplying the mass balance equations by
hi−1/2, we obtain a system for pressure unknowns and Lagrange multipliers with a sym-
metric and positive definite matrix.

To compare this scheme with the previous schemes, we use constraint (3.6) to calculate
the Lagrange multiplier as the function of two pressure unknowns, λi = λi(pi−1/2, pi+1/2).
Eliminating the Lagrange multiplier for the flux formulas, we obtain

k
i−1/2
i u

i−1/2
i = k

i+1/2
i u

i+1/2
i = − (k

i−1/2
i k

i+1/2
i )2 (hi−1/2 + hi+1/2)

(k
i−1/2
i )2 k̃

i+1/2
i hi+1/2 + (k

i+1/2
i )2 k̃

i−1/2
i hi−1/2

pi−1/2 − pi+1/2

(hi−1/2 + hi+1/2)/2
.

When k
i−1/2
i = k

i+1/2
i = ki we recover scheme II with linear approximation of the diffusion

coefficient inside mesh cells. If in addition k̃
i−1/2
i−1 = k̃

i−1/2
i = k̃i−1/2, we recover scheme I.

In the next section we extend the hybridization procedure to multiple dimensions.

3.2 Mimetic schemes in 2D and 3D

3.2.1 Discrete spaces and interpolation operators

The discrete pressure space Ph consists of one degree of freedom per cell corresponding
to the pressure value at the center of mass. The dimension of Ph equals to the number
of mesh cells. For vector ph ∈ Ph, we shall denote by pc its value on cell c. For a given
integrable scalar function p, we denote by pI ∈ Ph the vector of degrees of freedom such
that

pI =
{
pIc
}
c∈Ωh

, pIc =
1

|c|
∫
c

p dx.

The discrete space Fh consists of one degree of freedom per boundary face and two
degrees of freedom per interior face. For vector uh ∈ Fh, we denote by uc its restriction
to cell c, and by uc

f its component associated with face f of cell c (analog of the one-

dimensional quantity u
i−1/2
i ). Hereafter, we consider a subspace of Fh whose members

satisfy the flux continuity constraint

kc1
f uc1

f = kc2
f uc2

f , (3.8)

on each interior face f shared by cells c1 and c2. Like in one dimension, we may set kc1
f = kc2

f

on mesh faces where the diffusion coefficient is continuous; although the sufficient condition
for having an accurate scheme is weaker, kc1

f − kc2
f = O(h2).
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For a given sufficiently smooth (inside mesh cell) vector function u, we define uI ∈ Fh

as a vector of degrees of freedom such that

uI =
{
uI
c

}
c∈Ωh

, uI
c =

{
(uc

f )
I
}
f∈∂c , (uc

f )
I =

1

|f |
∫
f

u|c · nf dx,

where nf is a unit face normal that is fixed once and for all, and u|c · nf is the one-sided
limit from inside cell c.

3.2.2 Primary mimetic operator

The primary divergence operator is defined locally on each mesh cell using a straightforward
discretization of the divergence theorem:

(DIVkuh)
∣∣
c
≡ DIVk

cuc =
1

|c|
∑
f∈∂c

σc,f |f | kc
fu

c
f ,

where σc,f is either 1 or −1 depending on the mutual orientation of the fixed normal nf

and the exterior normal to ∂c. Extrapolating from the one dimensional results, we assume
that kc

f is an accurate (one-sided) approximation of the diffusion coefficient on face f . For
example, kc

f could be defined by some averaging of cell-centered values of the diffusion
coefficient.

Since uh is an algebraic vector, it is convenient to think about the discrete divergence
operator DIVk : Fh → Ph as a matrix acting between two spaces. Note that this matrix
has the full rank when kc

f > 0.
Let us introduce a cell-based diagonal matrix Kc formed by coefficients kc

f , f ∈ ∂c.
Then, the primary divergence operator can be written using the conventional divergence op-
erator, the property can be used in the efficient computer implementation of new schemes:

DIVk
cuc = (DIVcKc)uc, DIVcuc =

1

|c|
∑
f∈∂c

σc,f |f | uc
f .

3.2.3 Derived mimetic operator: continuous diffusion coefficient

In this subsection, we extend schemes I and II to multiple dimensions. Hence, we assume
that kc1

f = kc2
f = kf on all interior mesh faces. The derived mimetic operator should

be a consistent approximation of operator ∇ in the following sense. For k ∈ L∞(Ω),
ku ∈ Hdiv(Ω) and p ∈ H1

0 (Ω), we consider the continuum integration by parts formula∫
Ω

k(∇p) · u dx = −
∫
Ω

(divku)p dx.

The formula implies that operator divk is negatively adjoint to operator ∇ with respect
to the weighted L2 products. To mimic this property in a discrete setting, we replace the
integrals by their accurate approximations. For the first integral, we require

[
vI , uI

]
Fh

=

∫
Ω

kv · u dx+O(h),
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where vectors vI ,uI ∈ Fh are discrete representations of vector functions v,u, respectively.
Similarly, for scalar functions we require that

[
qI , pI

]
Ph

=

∫
Ω

q p dx+O(h).

We assume that the inner products are well defined, i.e. they can be represented by
symmetric positive definite matrices MF and MP (see Section 3.3 for the derivation of
these matrices):

[vh, uh]Fh
= (vh)

TMFuh, [qh, ph]Ph
= (qh)

TMPph. (3.9)

With these notations, the derived mimetic operators GRAD is defined as the operator that
satisfies the discrete integration by parts formula:

[GRADph, uh]Fh
= − [DIVkuh, ph

]
Ph

∀uh ∈ Fh, ph ∈ Ph.

Inserting definitions (3.9) into this formula and using arbitrariness of vectors uh and ph,
we obtain the explicit matrix representation of the derived gradient operator:

GRAD = −M−1
F

(DIVk
)T

MP . (3.10)

Note that matrixMF is in general irreducible; hence, in contrast to 1D schemes, the derived
operator on an unstructured 2D or 3D mesh has a non-local stencil. This property is shared
by all known accurate discretizations of mixed diffusion formulations.

Combining the two equations in (3.1) (with a = 0) and multiplying both sides by matrix
MP we obtain a system of discrete equations with a symmetric positive definite matrix:

MPDIVk M−1
F

(DIVk
)T

MPph = MPbI . (3.11)

The symmetry property is due to the discrete integration by part property, while the
positive definiteness property is due to the full rank of the discrete divergence matrix.

Thus, the new mimetic scheme preserves critical properties of the continuum problem:
symmetry and positive-definiteness. In contrast to the classical mimetic scheme, now we
have freedom of using staggered discretization of the diffusion coefficient in mesh cells and
on mesh faces.

Remark 3.3 The mimetic primary-derived technology can be extended to the case of ten-
sorial diffusion coefficients in the form kK where K is a tensorial factor. The primary
mimetic operator DIVk remains the same. The derived mimetic operator GRAD approx-
imates the continuum operator K∇. Its derivation is based on the following integration by
parts formula:∫

Ω

K−1k(K∇p) · u dx = −
∫
Ω

(divku)p dx ∀u ∈ Hdiv(Ω), p ∈ H1
0 (Ω).

To approximate the first integral, it is sufficient to replace K by a piece-wise constant
tensor.
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3.2.4 Derived mimetic operator: discontinuous diffusion coefficient

In this subsection, we extend scheme III to multiple dimensions. Although the approach
used in Section 3.1.3 can be extended to multiple dimensions, we choose a different strategy
which provides more insight on the physical meaning of the Lagrange multipliers. Consider
the continuum integration by parts formula in cell c:∫

c

k(∇p) · u dx = −
∫
c

(divku)p dx+

∫
∂c

(ku) · np dx. (3.12)

It implies that a cell-based discrete gradient must use additional pressure unknowns on
mesh faces. We define them as λf :

λf ≈ 1

|f |
∫
f

p dx.

Let λc be a cell-based vector of such unknowns ordered similarly to the unknowns in uc.
Using the above formulas, we postulate the following cell-based discrete integration by
parts formula:[
GRADc

(
pc
λc

)
, uc

]
c,Fh

= − [DIVk
cuc, pc

]
c,Ph

+
∑
f∈∂c

σc,f |f | kc
fu

c
fλf ∀uc, pc, λc. (3.13)

Due to constraints (3.8), summation of formulas (3.13) over mesh cells leads to cancellation
of λ-terms in the right hand side on all internal faces. On boundary faces, these terms are
zeroed-out due to homogeneous boundary conditions. Hence, the global gradient coincides
with the gradient operator introduced in the previous section provided that the same
algorithm is used for constructing inner products.

Introduction of additional pressure unknowns allows us to write an explicit formula
for the cell-based gradient using a cell-based mass matrix Mc,F that represents the inner
product [·, ·]c,Fh

:

GRADc

(
pc
λc

)
= −M−1

c,F

⎛
⎜⎝

σc,f1 k
c
f1
|f1|(pc − λf1)

...
σc,fn k

c
fn
|fn|(pc − λfn)

⎞
⎟⎠ , (3.14)

where n is the number of cell faces. Formally, for a general mesh we should use the symbol
nc; however, subsequent discussion is focused on a single cell. The formula for physical
fluxes becomes:

Kc

⎛
⎜⎝
uc
f1
...

uc
fn

⎞
⎟⎠ = −KcM

−1
c,FKc

⎛
⎜⎝ σc,f1 |f1|(pc − λf1)

...
σc,fn |fn|(pc − λfn)

⎞
⎟⎠ , (3.15)

Now, the reason for introducing local gradients becomes clear. Inserting formulas for the
cell-based gradient into constraints (3.8) and the mass balance equations and multiplying
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the latter equations by matrix MP , we obtain a system of algebraic equations with respect
to cell-based and face-based pressure unknowns only:

A

(
ph
λh

)
=

(
MP bI

0

)
,

subject to the homogeneous boundary conditions, λf = 0 for f ∈ ∂Ω. It could be shown
that stiffness matrix A can be assembled from cell-based stiffness matrices:(

qh
μh

)T

A

(
ph
λh

)
=

∑
c∈Ωh

(
qc
μc

)T

Ac

(
pc
λc

)
.

The block structure of each matrix Ac is standard for all mimetic schemes and differs by
the definition of matrix Wc, which is convenient for a computer implementation of new
schemes:

Ac =

(
eT Wc e −eT Wc

−Wc e Wc

)
,

where e = (|f1|, . . . , |fn|)T and Wc = KcM
−1
c,FKc. The difference between schemes I and II is

in definition of matrix Mc,F . The difference between schemes II and III is in the definition
of matrix Kc.

Assembling of local matrices leads to a global matrix with a symmetric positive semi-
definite matrix. Enforcement of essential boundary conditions, makes this matrix positive
definite. That is why the hybridization procedure is the most efficient way for implementing
mimetic schemes. After solving for pressure unknowns, the fluxes are calculated using
formula (3.15). In all steps of the solution algorithm, we need only the inverse of the
elemental mass matrix Mc,F . An efficient algorithm for the direct calculation of the inverse
matrix is described later.

3.2.5 Boundary conditions

Non-homogeneous Dirichlet boundary conditions could be embedded into the definition
of space Ph. Although, here we advocate the hybrid mimetic scheme that uses Lagrange
multipliers. The Dirichlet boundary conditions are imposed on the Lagrange multipliers.

Neumann boundary conditions are essential conditions for fluxes kc
fu

c
f and can be easily

added as constraint conditions on boundary faces, similarly to formula (3.8). In a hybrid
approach, this leads to a more homogeneous computer implementation of the mimetic
schemes.

3.3 Accurate inner products in spaces Ph and Fh

The inner product in space Ph is build by assembling cell-based inner products. This leads
to a significant simplification of construction, since we have only one degree of freedom in
cell c. The explicit formula of the inner product is

[
qI , pI

]
Ph

=
∑
c∈Ωh

[
qIc , p

I
c

]
c,Ph

,
[
qIc , p

I
c

]
c,Ph

= |c| qIc pIc =
∫
c

q p dx+O(hc |c|).
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This implies that the mass matrix MP is diagonal with values |c| on the diagonal.
Similarly, the inner product in space Fh is build by assembling accurate cell-based

inner-products which mimics additivity of integration:

[
vI , uI

]
Fh

=
∑
c∈Ωh

[
vI
c , u

I
c

]
c,Fh

,
[
vI
c , u

I
c

]
c,Fh

=

∫
c

kv · u dx+O(hc |c|). (3.16)

To build an accurate approximation of the cell-based inner product, we can make a few
approximation steps. First, we replace vector function v by its best constant approximation
v0 (e.g., the L2 projection) which leads to an admissible error of order hc. Second, we
approximate function k by a linear function k̃1 (a constant approximation will work too).
We use symbol tilde for analogy with the one-dimensional schemes. Third, we approximate
function u by a function (still denoted by u for simplicity of exposition) that has two special
properties: (a) u·n is constant on each faces f of cell c, and (b) div(u) is constant in c. The
space of such functions is denoted by S(c). It is sufficiently rich and contains the space
of constant vector functions, so that we make an admissible approximation error. The
interpolants uI cover the whole space of cell-based discrete gradients, which is important
for the convergence analysis. Thus, we need to find a symmetric positive definite matrix
Mc,Fh

such that

(vI
0)

T Mc,F uI
c =

∫
c

k̃1v0 · u dx+O(hc |c|) (3.17)

for any constant v0, linear k̃1 and u ∈ S(c). We can write v0 = ∇p1 where p1 is a linear
function such that p1(xc) = 0. Inserting it in the right-hand side of (3.17) and integrating
by parts, we obtain∫

c

k̃1∇p1 · u dx = −
∫
c

(divk̃1u)p1 dx+

∫
∂c

k̃1(u · n) p1 dx. (3.18)

The volume integral in the right-hand side is of high-order with respect to the surface
integral. Indeed, using div(k̃1u) = k̃1div(u) +∇k̃1 ·u and that div(u) is constant, we have∫

c

div(k̃1u)p1 dx =

∫
c

∇k̃1 · (u− u0) p1 dx = O(hc |c|),

where u0 is the best constant approximation of u. By our assumptions, u · nf is constant
on face f and can be pulled out of the face integrals. Finally, we can define the inner
product matrix from

((∇p1)
I
c)

T Mc,F uI
c =

∑
f∈∂c

uc
f σc,f

∫
f

k̃1 p1 dx ∀p1, ∀u ∈ S(c). (3.19)

Now, we use the linearity of the space of linear functions p1 to get an alternative
representation of equation (3.19). Let us introduce the cell-based vector rc = rc(p1) with
the following entries:

rc = {rcf}f∈∂c, rcf = σc,f

∫
f

k̃1 p1 dx.

14



Since k̃1 and p1 are linear functions, we can use the Simpson quadrature rule in 2D. In 3D,
we can reduce this integration to the integration over ∂f using the divergence theorem.
We define matrix Mc,F as a solution of the system of matrix equations:

Mc,F(∇p1)
I
c = rc(p1) ∀p1. (3.20)

Due to the linearity of these equations, it is sufficient to consider only three linearly inde-
pendent functions in 3D: p1,x = x− xc, p1,y = y − yc, and p1,z = z − zc. Let

Nc = [(∇p1,x)
I
c (∇p1,y)

I
c (∇p1,z)

I
c ], Rc = [rc(p1,x) rc(p1,y) rc(p1,z)]

be two rectangular n× 3 matrices. The matrix equation (3.20) is equivalent to

Mc,FNc = Rc. (3.21)

A simple linear algebra allows us to write the explicit formula (which could be verified
by a direct calculation) for matrix Mc,F :

Mc,F = Rc(R
T
c Nc)

−1RT
c + γcPc, Pc = I− Nc(N

T
c Nc)

−1NT
c

with a positive factor γc in front of the projection matrix Pc. A recommended choice for γc
is the mean trace of the first term. A family of mimetic schemes is obtained if we replace
γc by an arbitrarily symmetric positive definite matrix Gc:

Mc,F = Rc(R
T
c Nc)

−1RT
c + Pc Gc Pc.

Stability of the resulting mimetic scheme depends on two factors: (a) the spectral bounds
of matrix Gc that should be close to the value of γc, and (b) the properties of matrix-matrix
product RT

c Nc. Let k̃1 be a linear function over cell c. The product of the first columns of
matrices Nc and Rc is

(∇p1,x)
I
c)

T rc(p1,x) = (∇p1,x)
I
c)

TMc,F(∇p1,x)
I
c =

∫
∂c

(∇p1,x · n)k̃1p1,x dx

=

∫
c

k̃1∇p1,x · ∇p1,x dx =

∫
c

k̃1 dx = k̃1(xc)|c|.
A similar argument works for the dot products of other columns. Thus, the matrix-matrix
product NT

c Rc is well conditioned and does not depend on the gradient of k̃1:

NT
c Rc = I

∫
c

k̃1 dx = k̃1(xc)|c| I.
Remark 3.4 Consider the following matrix equation

Wc,FRc = Nc.

The solution of this equation is the inverse of one of the matrices Mc,F . Only this matrix
is needed in the hybridization procedure. A general solution of this equation is given by

Wc,F = Nc(R
T
c Nc)

−1NT
c + P̃c G̃c P̃c,

where P̃c is the projection matrix on the null space of matrix RT
c .

Remark 3.5 Note that the first term in Wc,F dependents on k̃1(xc) and does not depend
on the gradient of k̃1. For any choice of the gradient, we obtain a family of convergent
schemes. This flexibility enriches a set of the existing mimetic schemes and can be used in
various optimization procedures [10].
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4 Numerical experiments

Let us introduce the following relative errors for pressure and flux:

err(p) =
|||pI − ph|||Ph

|||pI |||Ph

, err(u) =
‖K(uI − uh)‖2
‖KuI‖2 ,

where ||| · |||Ph
is the norm induced by the inner product on Ph, ‖ ·‖2 is the Euclidean norm

and
‖KuI‖22 =

∑
c∈Ωh

‖Kcu
I
c‖22.

For the quasi-uniform meshes considered in the numerical experiments, the Euclidean norm
leads to the same conclusions as any reasonable mesh-dependent L2 norm.

Let us summarize the schemes that will be compared in this section. Scheme I uses one
value, kf , per mesh face (in the definition of the discrete divergence operator) and piecewise
constant approximation, k0, of the diffusion coefficient on mesh Ωh. Scheme II is similar
to scheme I but uses the piecewise linear approximation, k1, of the diffusion coefficient. In
both schemes, coefficient kf is calculated by averaging traces of either k0 or k1 on mesh
face f . Scheme III is similar to scheme I but uses two values kc1

f and kc2
f on faces where

the diffusion coefficient is discontinuous. These coefficients are set to values of k0 at the
mid-point of face f .

4.1 A sequence of 2D meshes and 3D meshes

The numerical analysis is performed on a sequence of smooth and randomly perturbed
quadrilateral meshes, and a sequence of polygonal meshes, see Fig. 3. The smooth mesh is
obtained with the following mapping of vertex coordinates in a square mesh:

x := x+ 0.1 sin(2πx) sin(2πy) e, (4.1)

where e = (1, 1)T . The randomly perturbed mesh is obtained by a random shift of vertices
in a square mesh. The new position of the mesh vertex can be anywhere inside a box of
size 0.8h centered at the original vertex. The polygonal mesh is built in two steps. First,
we generate matching Delaunay meshes in the left and right parts of Ω. Second, we build
a constraint Voronoi tessellation in each subdomain.

The sequence of smooth hexahedral meshes is built similar to the sequence of smooth
quadrilateral meshes. More precisely, we modify formula (4.1) by adding factor sin(2πz)
to the second term and use the result to build a hexahedral mesh.

4.2 Exactness on linear solutions

For a discontinuous piecewise-constant diffusion coefficient, only scheme III is exact for
piecewise linear solutions. Indeed, it could be shown that all steps in the scheme derivation
are linearity preserving. The other schemes are first-order accurate for pressure and velocity
in the discrete L2 norms.
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Figure 3: The first meshes in the three sequences of meshes.

Table 1: Continuous k and sequence of smooth meshes (Fig. 3, left)

1/h Scheme I Scheme II Standard MFD
err(p) err(u) err(p) err(u) err(p) err(u)

20 1.375e-3 5.063e-3 3.103e-3 6.789e-3 2.047e-3 5.058e-3
40 3.480e-4 1.358e-3 8.601e-4 1.827e-3 5.205e-4 1.312e-3
80 8.659e-5 3.836e-4 2.037e-4 4.915e-4 1.307e-4 3.322e-4
160 2.154e-5 1.143e-4 5.103e-5 1.379e-4 3.273e-5 8.369e-5
320 5.366e-6 3.606e-5 1.276e-5 4.095e-5 8.184e-6 2.107e-5
rate 2.00 1.78 1.99 1.85 1.99 1.98

4.3 Numerical comparison of MFD schemes in 2D

We consider the following analytic solution

p(x, y) =

{
a1x

2 + y2, x < 0.5,

a2x
2 + y2 + 1

4
(a1 − a2), x > 0.5,

k(x, y) =

{
b1(1 + x sin(y)), x < 0.5,

b2(1 + 2x2 sin(y)), x > 0.5,
(4.2)

where aibi = 1. We consider two problems with continuous and discontinuous function
k. For the first problem, we set b1 = b2 = 1. For the second problem, we set b1 = 1
and b2 = 20, so that the analytic solution has continuous normal velocity across interface
x = 0.5 and discontinuous tangential velocity.

Tables 1 – 3 show the optimal first-order convergence for the flux and second-order
convergence (superconvergence) for the pressure in the discrete norms. Note that a more
accurate representation of k inside mesh cells does not give us obvious benefits. The new
schemes are competitive with the standard MFD scheme [13]. Since all schemes preserve
a linear solution, the only difference we can expect is the magnitude of the error and not
its decrease rate.

In Tables 4–6, we replaced scheme II with scheme III, since the first two schemes exhibit
similar convergence properties. Scheme I shows degradation in the convergence rate due to
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Table 2: Continuous k and sequence of randomly perturbed meshes (Fig. 3, center)

1/h Scheme I Scheme II Standard MFD
err(p) err(u) err(p) err(u) err(p) err(u)

20 1.339e-3 3.456e-3 2.210e-3 4.423e-3 1.444e-3 4.341e-3
40 3.215e-4 1.523e-3 5.304e-4 1.558e-3 5.304e-4 2.058e-3
80 8.416e-5 7.690e-4 1.359e-4 6.841e-4 9.014e-5 1.027e-3
160 2.030e-5 3.694e-4 3.379e-5 2.871e-4 2.258e-5 5.028e-4
320 5.001e-6 1.855e-4 8.417e-6 1.420e-4 5.645e-6 2.528e-4
rate 2.01 1.05 2.00 1.24 2.06 1.02

Table 3: Continuous k and sequence of polygonal meshes (Fig. 3, right)

# cells Scheme I Scheme II Standard MFD
err(p) err(u) err(p) err(u) err(p) err(u)

412 8.470e-4 6.241e-3 2.674e-3 3.001e-3 1.892e-3 4.148e-3
1591 2.096e-4 2.261e-3 6.554e-4 9.612e-4 4.690e-4 1.248e-3
6433 5.083e-5 8.024e-4 1.572e-4 4.382e-4 1.135e-4 4.285e-4
25698 1.241e-5 2.770e-4 3.886e-5 1.289e-4 2.814e-5 1.227e-4
102772 3.158e-6 1.102e-4 9.693e-6 5.794e-5 6.984e-6 5.814e-5

rate 2.03 1.47 2.04 1.43 2.03 1.57
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lack of approximation properties of the discrete inner product (in the space of gradients)
when only one velocity degree of freedom is used on a discontinuity face. Scheme III
remains to be competitive with the standard MFD scheme [13].

Table 4: Discontinuous k and sequence of smooth meshes (Fig. 3, left)

1/h Scheme I Scheme III Standard MFD
err(p) err(u) err(p) err(u) err(p) err(u)

20 1.287e-2 6.618e-3 1.430e-3 3.926e-3 1.801e-3 5.246e-3
40 6.291e-3 2.977e-3 3.639e-4 1.136e-4 4.571e-4 1.394e-3
80 3.127e-3 1.584e-3 9.137e-5 3.308e-4 1.147e-4 3.616e-4
160 1.561e-3 9.384e-4 2.286e-5 9.928e-5 2.871e-5 9.291e-5
320 7.804e-4 5.949e-4 5.715e-6 3.102e-5 7.181e-6 2.376e-5
rate 1.01 0.86 1.99 1.42 1.99 1.95

Table 5: Discontinuous k and sequence of randomly perturbed meshes (Fig. 3, center)

1/h Scheme I Scheme III Standard MFD
err(p) err(u) err(p) err(u) err(p) err(u)

20 1.239e-2 6.798e-3 1.446e-3 4.541e-3 1.290e-3 5.320e-3
40 6.035e-3 3.109e-3 3.480e-4 1.817e-3 3.202e-4 2.299e-3
80 3.119e-3 1.801e-3 8.765e-5 7.960e-4 7.986e-5 1.136e-3
160 1.485e-3 9.869e-4 2.216e-5 3.598e-4 1.998e-5 5.544e-4
320 7.302e-4 6.163e-4 5.513e-6 1.781e-4 5.000e-6 2.777e-4
rate 1.02 0.86 2.00 1.17 2.00 1.06

Table 6: Discontinuous k and sequence of polygonal meshes (Fig. 3, right)

# cells Scheme I Scheme III Standard MFD
err(p) err(u) err(p) err(u) err(p) err(u)

412 4.227e-3 7.127e-3 2.480e-3 4.722e-3 2.762e-3 7.451e-3
1591 2.273e-3 2.949e-3 6.250e-4 1.567e-3 6.976e-4 2.370e-3
6433 1.206e-3 1.215e-3 1.729e-4 6.273e-4 1.650e-4 9.624e-4
25698 5.986e-4 6.096e-4 3.684e-5 1.956e-4 4.066e-5 2.571e-4
102772 3.020e-4 3.236e-4 9.142e-6 8.164e-5 1.007e-5 1.134e-4

rate 0.96 1.12 2.03 1.48 2.04 1.53
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4.4 Numerical comparison of MFD schemes in 3D

In 3D, we observed similar convergence patterns for the schemes. Therefore, in Table 7 we
present results only for one set of numerical experiments similar to that in Table 4. We
consider analytic solution given in (4.2), i.e. it is constant in the z-direction. The new
scheme is competitive with the standard MFD scheme and is slightly more accurate.

Table 7: Discontinuous k and sequence of smooth hexahedral meshes.

1/h Scheme I Scheme III Standard MFD
err(p) err(u) err(p) err(u) err(p) err(u)

10 2.394e-2 2.558e-2 3.930e-3 2.291e-2 3.987e-3 2.547e-2
20 1.115e-2 9.218e-3 1.081e-3 6.751e-3 1.088e-3 7.618e-3
40 5.325e-3 3.929e-3 2.788e-4 1.805e-3 2.804e-4 2.023e-3
80 2.601e-3 2.048e-3 7.026e-5 4.816e-4 7.071e-5 5.197e-4
rate 1.07 1.22 1.94 1.87 1.94 1.86

4.5 A parabolic equation

The above conclusions can be extended to linear parabolic problems with smooth solutions
provided that accurate time discretization is employed. But here we consider a specially
designed problem with a time-dependent diffusion coefficient that shows importance of the
staggered discretization of the diffusion coefficient. The problem was inspired by numerical
examples in [17, 14]. Despite being linear, the solution of this problem has dynamics typical
for solutions of nonlinear heat conduction equations.

The backward Euler time discretization of (2.1) reads

un+1
h = −GRADpn+1

h and a
pn+1
h − pnh
Δt

+DIVkun+1
h = (bn+1)I , (4.3)

where Δt is the time step, pnh is the solution at time moment tn, and bn+1 = b(x, tn+1).
Inserting the first equation into the second one and using the duality relationship (3.10),
we observe that the resulting discrete operator can be symmetrized by multiplying both
sides by the diagonal matrix MP . To reduce the impact of the time integration error, we
use small time steps Δt ∼ h2.

Let us consider the parabolic equation (2.1) in rectangular domain (0, 3) × (0, 1) with
a = 1.0, zero source term, and the time-dependent diffusion coefficient:

k(x, t) =

{
3c(ct− x) if x < ct,
ε otherwise,

where c = 0.4. The analytic solution is know for ε = 0 and is equal to p0(x, t) = 3
√
k. This

equation approximates a well known Marshak equation for nonlinear heat conduction.
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We set ε = 10−9 so that we can replace the unknown exact solution p(x, t) with p0(x, t)
in the error estimates. To be as close as possible to the known solution, we set the time-
dependent Dirichlet boundary condition p = p0(0, t) on the left side of Ω, the constant
boundary condition p = 3

√
ε on the right side, and the homogeneous Neumann boundary

conditions on the remaining sides. The initial condition is constant equal to 3
√
ε.

Figure 4: Solution snapshots at times T = 3.0 and T = 5.0 for the standard MFD scheme.

Figure 5: Solution snapshots at times T = 3.0 and T = 5.0 for the new MFD scheme.

We solve the parabolic equation on a randomly perturbed quadrilateral mesh that have
three times more cells in the x-direction than in the y-direction. The sequence of such
meshes is similar to one of the above sequences. We use the arithmetic averaging of the
face-based diffusion coefficients kf .

For any fixed t, function p0(x, t) is not in H1(Ω). Although, we do not know regularity
of the modified solution p(x, t), we may expect slower convergence rate on meshes with
reasonable resolution. Results of numerical experiments presented in Table 8 confirm this
hypothesis. Comparison of Figs 4 and 5 show that the standard MFD scheme leads to
incorrect speed of propagation of the solution.
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Table 8: Parabolic equation, spatial error at time T = 3.0.

Mesh Δt Scheme III
err(p) err(u)

30x10 4.0e-3 2.157e-2 5.073e-2
60x20 1.0e-3 1.163e-2 2.950e-2
120x40 2.5e-4 7.573e-3 1.975e-2
rate 0.75 0.68

5 Conclusion

Analysis of numerical schemes for nonlinear parabolic equations in one dimension shows
that the numerical schemes based on harmonic averaging of cell-centered diffusion coeffi-
cients break down when some of these coefficients go to zero or their ratio grows. To address
this issue, we developed a novel discrete calculus that leads to a new family of second-
order accurate mimetic finite difference schemes on polygonal and polyhedral meshes. The
primary mimetic operator approximates continuum operator div(k·), the derived (dual)
mimetic operator approximates ∇(·). In the true mimetic spirit, the new mimetic schemes
preserve symmetry as well as the positive-definiteness of the continuum problem which
allows the use of algebraic solvers with optimal complexity. These schemes use a staggered
discretization of the diffusion coefficient, one value per mesh cell and up to two values per
mesh face; therefore, they have the flexibility required to build robust numerical algorithms
for nonlinear problems. For instances, upwinding of the diffusion coefficients on mesh faces,
which is the well established practise for solving nonlinear problems in subsurface flows,
can be easily incorporated into the new mimetic schemes. However, the analysis of the
new schemes for linear problems is necessary before applying them for solving nonlinear
problems. We have shown that the new schemes are competitive with the existing schemes
for steady-state problems but provide much more accurate solution for a specially designed
transient problem those solution dynamics is similar to that of nonlinear heat conduction
problems.
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