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Error Correcting Properties of Redundant

Residue Number Systems

FERRUCCIO BARSI AND PIERO MAESTRINI

Abstract-The error correcting properties of the redundant residue
number systems (RRNS) are investigated through a more natural ap-
proach than was previously known. The necessary and sufficient condi-
tion for the correction of a given error affecting a single residue digit of
any legitimate number in an RRNS is determined. The minimal redun-
dancy allowing the correction of the whole class of the single residue
digit errors is derived and an efficienit procedure for error correction is
given. Moreover, it is shown that a smaller redundancy and a single re-
dundant modulus may allow the correction of certain important sub-
classes of single residue digit errors, e.g., the set of errors affecting a
single bit in the code. Examples are given.

Index Terms-Arithmetic error codes, error detection and correction,
residue arithmetic, residue codes, residue number systems.

I. INTRODUCTION

S INCE their introduction, the residue number systems
(RNS) were considered a promising way to provide a very

fast arithmetic. This idea was originated from the modular na-
ture of the addition, subtraction, and multiplication in RNS,
i.e., from the well-known property that the ith digit of the
sum, difference, and product is exclusively dependent on the
ith digits of the operands [1]. This property determines the
potential high speed of the residue arithmetic, since carries and
borrows are suppressed in the addition and subtraction and,
furthermore, because the multiplication is executed in a single
step by means of a modular hardware not dissimilar from the
one implementing the addition.
However, such advantages of the residue arithmetic are neu-

tralized by the very awkward nature of some operations, i.e.,
division, magnitude comparison, sign detection, additive and
multiplicative overflow detection, which, conversely, are much
simpler in positional systems.
Because of this, the interest has shifted toward the fault tol-

erance characteristics of RNS, for application in such cases
where both transmission and computational errors are to be
controlled.
In RNS, the error detecting and correcting capability is usu-

ally achieved by the addition of one or more redundant residue
digits. The use of RNS for error detection or correction has
some interesting advantages over the conventional arithmetic
error codes based upon positional number systems as sum-
marized by the following arguments.
Argument 1: In RNS, the modular nature of most arithmetic

operations is naturally reflected by a modular organization of
the arithmetic processor, where each digit of the representa-
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tion is processed separately from the others by a dedicated
module. As far as modular operations are individually tested,
this fact implies that any failures localized in a single arith-
metic module has a local effect; i.e., a single residue digit is al-
tered. All errors in this class, or important subclasses thereof,
are easily detected or corrected in RNS.
Argument 2: In RNS, the residue digits are not hierarchi-

cally ordered, as contrasted to positional number systems. This
observation suggests that some kind of "graceful degradation"
may be easily introduced in computers based upon RNS in the
case of permanent faults affecting any determined number of
residue digits. In fact, the faulty modules may be discon-
nected and the remaining modules redistributed between non-
redundant and redundant digit's, thus allowing an arbitrary
compromise between lower precision and reduced error control
capability.
Argument 3: Because of their nature, the arithmetic opera-

tions in RNS are most naturally realized by table lookup tech-
niques, each residue digit requiring different tables. By storing
such tables in appropriate memory devices (READ-MOSTLY
memories or electrically alterable READ-ONLY memories), gen-
eral purpose arithmetic modules are realized. This allows an
easier application of the degradation techniques mentioned in
Argument 2 and the introduction of a standby spare organiza-
tion at low cost, since a general purpose spare module may re-
place any faulty module, by simply storing the appropriate
tables.
The error detecting and correcting properties of RNS have

been discussed to some extent in the literature [2] -[4], [61.
This paper, through a more natural approach to the problem,
provides a deeper insight into the error correcting capabilities
of RNS. In particular, the redundancy necessary and sufficient
for single residue digit error correction is determined, and an
efficient error correcting procedure is derived that directly op-
erates on the residue representation of numbers. Mandelbaum
[6] has found an equivalent condition for error correction in
the case where two redundant moduli are used; however, his
procedure for error correction operates on a positional (e.g.,
binary) representation of numbers and requires, for implemen-
tation, a separate positional processor. An alternative proce-
dure, which also operates on the residue representation, has
been presented by Watson [2] ; however, it requires more re-
dundancy than the method being presented.
Additionally, in this paper it is shown that the consideration

of subsets of the set of single residue digit errors is also of in-
terest, since certain important error classes (e.g., the errors ef-
fecting a single bit in the binary encoding of residue digits)
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may be corrected with less redundancy and by the use of a sin-
gle redundant modulus.

II. DEFINITIONS AND BASIC PROPERTIES

Given a set of n pairwise prime positive integers ml, M2,
... , mn called moduli, the nonnegative integers X in the range
[0, M), where M=mIm2 iMn, are uniquely represented
by the n-tuples xI, x2, - * * ,xn of their residues modulo
mi (xi = IXImi, i= 1, 2, ,n). The set of the n-tuples and
the interpretation function assigning to each n-tuple a natural
number in the range [0, M), and vice versa, are defined as the
residue number system (RNS) of moduli m 1, m2, * * *, Mn.
Given an RNS of moduli ml, m2, * * *, mn and an integer X

in the range [0, M), then the integer Xi = [X lM/m, is defined
as the mi-projection of X [4]. More generally, the integer
Xp = IX IMmp, where mp = milm12 ***mik, is defined as the
mp-projection of X.
The following theorem is straightforward.
Theorem 1: IfX # Xp, the residue representations ofX and

Xp uniquely differ in one or more of the residue digits modulo
mi, mi2, * *, mik-

Proof: Since m1 (Mi # mi1, mi2, , mik) is a divisor of
M/mp and Xp = IXIM/mP, then fX Imj = IXp Imj;' ie. any
pair of residue digits modulo mi ofX and Xp coincide. More-
over, assume that the remaining residue digits ofX and Xp also
coincide. Then, from X m, = Xp mi (I < iSi n), it follows
that IXIM = Xp |M;' i.e., X = Xp. Since this contradicts the
hypothesis, at least a pair of residue digits I X Imism Xp Imism
(1 < s < k) are necessarily different.
This paper will be concerned with the redundant residue

number systems (RRNS), representing the integers in the range
[0, M), where M = HI=I mi, by the (n + r)-tuples of their resi-
dues modulo the n + r pairwise prime moduli Ml,M2,-- ,
Mn, mn, , , mn+,. The moduli mi and the residue digits
xi (i = 1, 2, , n) will be referred to as nonredundant moduli
and nonredundant digits, respectively. The moduli mk and the
residue digits Xk (k = n + 1, - * *, n + r) will be referred to as re-
dundant moduli and redundant digits, respectively. The prod-
uct of redundant moduli, mR = mn+1 mn+2 . ' m,n+r is de-
fined as the redundant product. The (n + r)-tuples representing
the integers in the range [0, M) are defined as legitimate num-
bers, while the (n + r)-tuples related to integers in the range
[M,MmR) are defined as illegitimate numbers. Theorem 2 im-
mediately follows from the above definitions.
Theorem 2: The mR -projection XR of any number X in the

range [0, MmR) is a legitimate number.
Assume that a legitimate number X in a given RRNS

is altered by an error effecting the single residue digit
xi (1 < i < n + r). Then a different integer X will be gener-
ated; and, since jX |,,, = [X rn for any mi 0 mi, then also
X|kirn/,im= IXIMmRImi [5] and the following equation
holds for an appropriate integer pi:

'If a congruence holds modulo m, then it also holds modulo any di-
visor ofm r5 .

2If a congruence holds for several pairwise prime moduli, then it also
holds for a modulus equal to their product [5]1.

XC=X+iMMRMi

The value of the residue digit in error is

Xi= IXImi= Xi+p M R

The difference

ei= Ixi-ximI=A Pi Mn |

mi
(2-1)

which will be referred to as error digit, completely describes the
error under consideration.
The following property [4], whose proof is omitted for the

sake of brevity, will be used extensively in the following test.
Theorem 3: Let X be a legitimate number in the RRNS of

moduliml,m2, * * *, mnmn+m, *.,. mn,+r, where r > 1. If
mR > Mi (i = 1, 2, - - *, n), then all integers X differing from
X in a single residue digit xi (1 Si S n + r) are illegitimate
numbers.

Incidentally, observe that Theorem 3 and the mi-projections
provide a very natural approach to deriving the well-known [2]
error detecting properties of RRNS. In fact, in the hypothesis
of Theorem 3, all errors effecting a single residue digit of a
legitimate number X are detected by any procedure leading to
the identification of illegitimate numbers. The identification
may derive from the straightforward observation that a given
integer X in the RRNS of moduli ml,m2, - -- , Mn+, is a le-
gitimate number if and only ifX = XR; i.e., if the "consistency
check" introduced by Watson [2] is verified.

III. ERROR CORRECTION IN RRNS

Once an integer X has been detected as being in error, other
means are required to unambiguously determine the legitimate
number X from which X was generated as a result of some ma-
chine failure, under the hypothesis of single residue digit errors.
The basic properties leading to error location and correction
are stated by the following theorems.
Theorem 4: Let X be an illegitimate number in the RRNS

of moduli ml, m2,--,m,Mm,,n+ 1, ..., mn+r. Then there ex-
ists a legitimate numberX differing from X in the single residue
digit xi iff the mi-projection Xi is a legitimate number.

Proof: The condition is sufficient since, by Theorem 1, X
and Xi uniquely differ in the residue digit xi. Then, the legiti-
mate number X = Xi is a solution to the problem. In order
to prove the necessity, assume that X is a legitimate number
with IXImi = IXIm. for m1 * mi. Then IXIMmR/mi =

X lmRmm [5], i.e., Xi =Xi. Since X= Xi + Pi (MMRImi)
for some nonnegative pi, and X has been assumed legitimate, it
follows that Xi = Xi is also legitimate.
Theorem 5: Under the hypothesis of Theorem 4 and if

mR = H,= mMn+i > mi (1 < i < n + r), the legitimate number
differing from X in the single residue digit xi is unique.

Proof: Assume that X and X' are two different legitimate
numbers, both differing from X in the single residue digit xi.
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From the hypothesis, I X IMmR/mi = Ix' IMmR/mi; i.e., Xi =
Xi. Since X = Xi + Pi (MmR /mi) and X' = Xi + p (MmRIm1)
for some nonnegative integers pi and pi, from the inequalities
OSX<M, 0 -X' <AM, 0 -Xi = Xi <MmRImi,MmRIMi >M,
it follows that pi = pi = 0 and X = X4, thus contradicting the
original assumption.
In the hypothesis of errors affecting single residue digits,

from Theorems 4 and 5 it follows that any given illegitimate
number X may be derived from as many legitimate numbers as
it has legitimate projections. If the projections ofX all are il-
legitimate, except the single mi-projection Xi (1 < i < n + r),
then the wrong residue digit xi is unambiguously determined.
Once the error has been located in the residue digit xi, error
correction is immediate and unambiguous ifmR > mi. In fact,
the legitimate number Xi differs from X in the single residue
digit xi (Theorem 1). Then, by Theorem 5, Xi coincides with
the legitimate number X, originating X by the effect of a single
residue digit error.
Consider in an RRNS of moduli m1, m2, ,mn, mfn+ 1,

...*,mn+r, where mR > mi (1 < i < n + r), a legitimate num-
ber X and assume that a single error ei (1 < i < n + r) affects
the residue digit xi of X, thus originating (Theorem 3) an ille-
gitimate number X. In most cases, two or more projections of
X may be legitimate, thus making the error localization impos-
sible. As usually required, we shall restrict our consideration to
the case where a given error ei is correctable when affecting
any legitimate number X. Then, in order to evaluate the error
correcting capabilities of a given RRNS and to optimally de-
fine an RRNS with given error correcting capabilities, the fol-
lowing problems are to be solved.
Problem 1: Given an RRNS, determine, for each residue digit,

the class of errors leading to illegitimate numbers X all of
whose projections except one are illegitimate, when affecting
any legitimate number X.
Problem 2: Given, for each residue digit, the class of errors

whose correction is required, determine the smallest redundant
product such that the errors of the given class originate illegiti-
mate numbers X all of whose projections except one are ille-
gitimate, when affecting a single residue digit of any legitimate
number X.
The resolution of both problems is a consequence of the fol-

lowing theorem, whose proof is given in the Appendix.
Theorem 6: Assume that an error ei = piMMRImi Imi (1 <

pi < mi- 1) affects the single residue digit xi (1 < i < n + r) of
any legitimate number X in the RRNS of moduli m 1, M2, -- *,
mn,mn+ 1, *.,mn+ri where mR = Hls= I mn+s> mk ( < k <
n + r), thus originating an illegitimate number X. Then, for
any X, the projection XF (j 0 i, 1 6j < n + r) is illegitimate if
and only if the following inequality holds:

MmimmR > m (3-1)
+pimilm

From Theorem 6, the determination of the class of errors
whose correction is possible in a given RRNS is immediate, as
stated by the following corollary, whose proof is straight-
forward.

Corollary 1: The error ei = Pi MmRImIi Jin affecting the
residue digit xi (1 < i < n + r) of any legitimate number X in
the RRNS of moduli ml, M2, , mn, mn+, . Mn+r
where MR >mk (1 < k < n + r), r > 2, is correctable if in-
equality (3-1) holds for every j # i.
Note that the additional hypothesis r > 2 has been added to

point out that inequality (3-1) cannot hold for j=n + 1 if
r =1, since in this casemR = mi =mn+ 1-
The problem of the optimal definition of an RRNS with an

assigned error correcting capability has been discussed in the
literature, assuming that the class of the errors to be corrected
coincides with the whole set of the single residue digit errors.
A further contribution in this assumption is given in Section
IV. In Sections V and VI it is assumed that the class of errors
to be corrected coincides with an important subset of the set
of single residue digit errors (i.e., the errors affecting a single
bit of the binary encoding of the residue digits), and it is shown
that, in this hypothesis, considerable error correcting capabili-
ties may be retained with much less redundancy.

IV. AN EFFICIENT PROCEDURE FOR SINGLE RESIDUE
DIGIT ERROR CORRECTION

The redundancy necessary and sufficient to allow the correc-
tion of the whole class of the single residue digit errors is easily
derived from the following theorem.
Theorem 7: Assume that, in an RRNS of moduli ml, m2,

* *, mn mn 1M , mn+r, an arbitrary illegitimate number X
is given such that the mi-projection X, is legitimate, where i is
also arbitrary. Then the m*-projections (j 0 i, I <j < n + r)
all are illegitimate if and only if r > 2, mR > max (Mimj).

Proof: Given the illegitimate number X, assume that the
mi-projection Xi (1 < i < n + r) is legitimate. Then X =
Xi + pi(MmR /m) may be assumed as originated by the single
residue digit error ei = PiMmR/mi Im affecting the legitimate
number Xi. Since X is arbitrary and X / Xi, pi may be any in-
teger in the range [1, mi - 1]. As stated by Theorem 6, the
m1-projection Xi (j * i, i 6<j S n + r) is illegitimate if and only
if the inequality (3-1) holds. Since pi ranges in the complete
system of residues modulo mi, except the number zero, and
Mi, m1 are relatively prime, the expression I± pim1 iMn also
ranges in the same system of residues [5] , except the number
zero. Then, for appropriate Pi, the expression ± pim, IMn
equals 1 and inequality (3-1) becomes

mR>-mImj, jki, 1<j n+r. (4-1)

Since the subscripts are arbitrary, (4-1) may be restated
as mR > max (mim1). The additional hypothesis r> 2 points
out that (4-1) cannot hold for j = n + 1 if r = 1; i.e.,
mR = mn+ 1l
Equation (4-1) also states the minimal redundancy allowing

the correction of the whole class of the single residue digit er-
rors. In fact, if mR > max (mim1) and an arbitrary single resi-
due digit error ei affects any legitimate number X, an illegiti-
mate number X is originated, whose mi-projection X1 is
legitimate and equals X (Theorems 4 and 5), while Xi is illegiti-
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mate for every j * i; thus making the error correction
unambiguous.
An equivalent result, for the case where r = 2, has recently

been derived by Mandelbaum [6]. However, the theory based
upon the mi-projections presented above also suggests an effi-
cient procedure for error correction, which operates on the
residue representation of the numbers and makes exclusive use
of the modular operations provided by a residue arithmetic
processor. This contrasts with Mandelbaum's procedure, which
requires for implementation a separate positional (e.g., binary)
processor. The procedure being presented also compares fa-
vorably with the alternative method known from the literature
[2], based upon base extension and table lookup. In fact, this
method generally implies the use of more redundancy than
stated by theorem 7, since most values of mR in the range
[max (mim1), 2 max (mimi)) are to be discarded.
The procedure for error correction is the following.
Phase 1: Given the number X = {1,x2, ** ,bx ..

to be tested, its mi-projection (1 < i < n + r) is first determined
by base extension [1]; i.e., the residue digit x1i* is computed
from the digits X (j i) such thatXi=i l ,* ,*
Xn+r} falls in the range [0, MmR/mi). The base extension pro-
cedure is carried out by considering the residue digits as fol-
lows: a) the nonredundant digits, except xi if i < n, in an ar-
bitrary order (at the end of this step, the intermediate result is
saved for subsequent use); 2) the redundant digits, except xi if
i> n, in an arbitrary order; and 3) the digit xi. This phase of
the error correction procedure requires 2(n + r)- 1 modular op-
erations in the worst case.
Phase 2: Phase I yields a mixed-radix [1] representation for

Xi of the form

j=j
n+ r-I

M + + an+r-,1 H mj (4-2)
j=1

where O<ak <mk (1 k<n +r) and an+r-i = 0. The sub-
scripts of the moduli are placed according to the ordering es-
tablished in Phase 1. Two cases are to be considered.

Case a: If i > n, the ordering of the modules guarantees
that Xi <M if and only if ak = 0 for k > n in (4-2). Then, in
this case, the magnitude evaluation of Xi is carried out without
any further arithmetic.

Case b: If i < n, (4-2) does not allow direct evaluation of
Xi against M, since the multipliers of ak do not include the le-
gitimate modulus mi for any k. Then a mixed-radix conversion
procedure is resumed from the step computing an-1 by utiliz-
ing, for initialization, the intermediate result saved during
Phase 1. In this procedure, the recomputed digit x* is con-
sidered first, and the redundant digits follow in any order. The
final result is a mixed-radix representation for Xi, where the
multipliers of ak are divided by M for k > n. Thus, Xi <M if
and only if ak = 0 for k > n. This additional phase of the error
correcting procedure requires 2(r + 1) modular operations in
the worst case.
Phase 3: Phases 1 and 2 are iterated for different i until a

legitimate mi-projection is found. If Xi <M, the correct num-
ber X = Xi is unambiguously determined under the hypothesis
of single residue digit errors, and the procedure stops. In fact

the hypothesis that two or more mi-projections are legitimate
is excluded by Theorem 7, unless X = X is legitimate; in this
case Xi = X = X for any i, and the procedure keeps its validity.
If the mi-projections all are illegitimate, the number X is recog-
nized as illegitimate, but it cannot originate from any single
residue digit error affecting a legitimate number; thus the error
correction is impossible.
Example 1: Given the RRNS of moduli mI = 1,m2 = 16,

M3 = 17, m4 = 3, m5 = 7, m6 = 13, where M = m1m2m3 =
2992, mR = m4m5m6 = 273 (observe that max (mim1) =

m2m3 = 272 <mR), assume that the number X = 359 070 =
{8, 14, 13, 0, 5, 10} is given. The mi-projections are com-
puted in any sequence (e.g., i= 1, 2, 3, , 6) until a legiti-
mate Xi is found. Actually, X1 =62 046 >M;X2 = 1713 <M.
Then X is illegitimate; the correct number is X = = 1713 =
{8, 1, 13, 0, 5, 10}.

V. CORRECTION OF SINGLE-BIT ERRORS BY THE USE OF
TWO OR MORE REDUNDANT MODULI

A condition under which a single residue digit error ei is cor-
rectable, when affecting an arbitrary legitimate number X, has
been given in Corollary 1. As an immediate consequence, the
redundancy necessary to correct a given subclass of the class of
the single residue digit errors is determined, and it is verified
that such redundancy may be less than that required to achieve
the error correcting capability extended to the whole class of
single digit errors.

In fact, given an RRNS of moduli m1,m2, ,mn,mn+1,
,mn+r where r> 2, assume that E-={e!,e?, ,e.},

(1< i < n + r, h < mi - 1), is a subset of the set of the errors
that may affect the ith residue digit, and again take ek' =

IPi MmRImi Imz. IfI|+pkm-I|m3 1 for each ek in Ei and for
every m1i=mi, then the right member of inequality (3-1)
becomes

mim
"

+Pk mi|ms mimi (5-1)

and from Corollary 1 it follows that a redundant product
mR < mim1 is sufficient to correct the errors in Ei. If this rea-
soning is iterated for all mi (i = 1, 2, * * *, n + r), it is concluded
than an RRNS with r > 2, MR < max (mim1) may allow the
correction of the single residue digit errors in the subclass
{E1,E2 , ,En+r}.
If the subsets Ei are assumed nonvoid for all i, a lower bound

for the redundant product allowing the correction of the errors
in the above defined subclass is also found. In fact, for each
ei = PiMMRImi Imz the pair of values yielded by the expres-
sion ± pimj Im, is complementary modulo mi. If the smaller
of such values is denoted by y, then y < mi/2 and the condi-
tion of Corollary 1 becomes mR > 2m1 (j # i); or, equivalently,
since i and j are arbitrary, MR > 2 max (mk), where
1 < k < n + r. This proves that any RRNS allowing the correc-
tion of the errors in {E1, F2, * * *, En+r}, where El is nonvoid
for each i, also allows the detection of the whole class of single
residue digit errors.
The existence of RRNS where MR <max (mimd), whose er-

ror correction capability is limited to a subclass of the set of
the single residue digit errors, is of interest provided that the
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TABLE I

0 0000 8 1000
1 0111 9 1111
2 1110 10 0110
3 0101 11 1101
4 1100 12 0100
5 0011 13 1011
6 1010 14 0010
7 0001 15 1001

TABLE II

0 0000 8 1100
1 0001 9 1101
2 0011 10 1111
3 0010 11 1110
4 0100 12 1000
5 0101 13 1001
6 0111 14 1011
7 0110 15 1010

TABLE III

0 0000000 23 1100000 46 0100000
1 0010000 24 1110000 47 0110000
2 0100100 25 0000100 48 1100100
3 0110100 26 0010100 49 1110100
4 1101110 27 0101110 50 0001110
5 0000001 28 1100001 51 0100001
6 0010001 29 1110001 52 0110001
7 0100101 30 0000101 53 1100101
8 0110101 31 0010101 54 1110101
9 1101100 32 0101100 55 0001100
10 0000011 33 1100011 56 0100011
11 0010011 34 1110011 57 0110011
12 0100111 35 0000111 58 1100111
13 0110111 36 0010111 59 1110111
14 1101101 37 0101101 60 0001101
15 0000010 38 1100010 61 0100010
16 0010010 39 1110010 62 0110010
17 0101011 40 0001011 63 1101011
18 0111011 41 0011011 64 1111011
19 1101111 42 0101111 65 0001111
20 0000110 43 1100110 66 0100110
21 0010110 44 1110110 67 0110110
22 0101010 45 0001010 68 1101010

correctable errors coincide or include some important class of
errors. As an example, we shall consider the case when the
subclass under consideration includes the set of errors affecting
a single bit in the binary code of the residue digits. In fact,
under a very general hypothesis, it can be assumed that these
are the errors whose probability is the highest. A procedure
for the optimal determination of an RRNS allowing the correc-
tion of the single-bit errors will be given later in this Section.
Let c] and ci' be two words in the binary code of the ith

residue digit, whose Hamming distance is one [this will be
denoted by D(ci, c1"),= 1], and x4 and x4, respectively, the
residues coded by cl and ct. Then, a fault altering c] in c4 de-
tennines a single-bit error ej1k whose correction is possible if

e1t= x-jXjX m,EEi. (5-2)

Thus, the subsets Ei of the errors whose correction is possible
include all the errors affecting a single bit in the binary code of
the ith digit, provided that a code of ni = [ log2 mi bits3 may

31f ni > F log2 mi, the problem has a trivial solution, since a code may
be selected where there exist no pairs c k,ci such that D(ck,I I~~~(e ,i~=1

be found, by which the relation (5-2) is satisfied for all pairs
ci,c1 , such that D(Ci, ce")= 1.
The existence of binary codes with such property is depen-

dent upon the particular subset Ei under consideration. A
number of conditions under which such codes exist have been
detennined [7] . In particular, solutions are found under very
general hypotheses if the cardinality of Ei is not smaller than
2ni, although a smaller cardinality is sufficient if particular
moduli are considered. Examples of encodings are given in
Tables 1-111.
Given an RRNS of moduli m,m21,-mM2mnn+1,

mn+r, where r> 2, mR < max (mim1), such that the errors in
the subclass {E1, E2, - - - , En+r} are correctable, the error cor-
recting procedure substantially coincides with the one given in
Section IV, as summarized below.
Phase 1: Given an illegitimate member X, the mi-projections

Xi (1 < i < n + r) are first computed as explained in Section IV.
Phase 2: The mi-projections are evaluated as in Section IV.
Phase 3: If the mi-projection Xi is legitimate and the mi-

projections k, (j # i, 1 < <S n + r) all are illegitimate, the cor-
rect number X = Xi is immnediately determined. If either no le-
gitimate mi-projection is found, or two or more legitimate
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mi-projections exist, the error correction is not possible.
Example 2: Assume that the RRNS of moduli ml = 11, M2 =

16, M3 = 17, M4 = 7, M5 = 23 is given, whereM= mlm2m3 =

2992, MR = M4M5 = 161. Observe that M is the same as in
Example 1, while MR < max (mim) = M2m3 = 272. The sub-
sets of the correctable errors E are determined as

El = {3,4,5,6,7,8}

E2 = {2,4,7,8,9,12,14}

E3 = {2,4,5,6,7,10,11,12,13,15}

E4 = {1,2,3,4,5,6}

Es = {1,6,7,8,9,11,12,14,15,16,17,22}.

The binary encoding of the residue digits modulo m2 is given
in Table I. This code satisfies the previously discussed require-
ments for single-bit error correction. Binary codes with the
same property are easily determined for the remaining moduli
and are omitted for the sake of brevity.
Let us consider the legitimate number X = 125 = {4,13,6,6,

10}: from Table I it is seen that the binary code for x2 = 13 is
1011. Assume that a single-bit error affects the residue digit
modulo 16, which then becomes 1111. The illegitimate num-
ber X= 120 553 = {4,9,6,6,10} is thus obtained. The mi-
projections ofX are

X1 = 32 969; X2 = 125; X3 = 7209;

X4=51 737; X5= 15833.

Since only X2 is legitimate, the error is correctable;X = X2 =

125 is the correct number.
Example 3: Consider again the RRNS and the binary encod-

ing defined in Example 2. Assume that, given the legitimate
number X = 125 (where again X2 = 101 1), a multiple-bit error

affects the residue digit modulo 16, which becomes 0010. The
illegitimate number X = 90446 ={4,14,6,6,10} is thus ob-
tained, whose mi-projections are

Xl = 2862; X2 = 125; X3 = 5438;

X4=21630; X5 =6670.

Since both X1 and X2 are legitimate, the error correction is
not possible.
In order to optimally define an RRNS with single-bit error

correcting capability, the following procedure may be used.
Step 1: Consider a set of t pairwise relatively prime moduli.

This set includes both the nonredundant and redundant mod-
uli, although the partition is still undetermined. As a first step
for each modulus mi (1 < i < t) and for each integer pk in the
range [1, min- 1], determine the smallest integer ik,1 such
that the inequality

nk)> Mimi (3-1)
I+imj Imi

holds for every m1 mi (1 6j < t). For each modulus mi, the

integers mk,i defined above determine a partial ordering in the

set of the integers p* (1 .pk .mi - 1), pg" being defined as
not being a successor to p*2 ifmk l <M 2

Step 2: For each mi, the required cardinality of Ei, denoted
card (Ei), is estimated [e.g., card (Ei) = 2Fl0g2 Mi] such that
the existence of a binary encoding with the above discussed
property is possible. Then, a subset Pi of the set of the integers
p* is defined such that card (P) = card (Ei) and such that any

hp* in Pi is not a successor to any pi not in Pi. Taking an inte-
ger pf GPi such that any pk E Pi is not a successor to pf, con-
sider for subsequent use the integer m4,i.
Step 3: Determine the largest of the integers mf,1, denoted

mf (1 < i < t). Then consider the subsets of the given set of
moduli such that each subset contains two or more moduli,
and select among them the subset SR such that the product of
the moduli in SR, denoted by mR, is not smaller than mtR and
such that the product of the moduli in any other considered
subset is either smaller than mfR or larger than MR. The mod-
uli in SR are assumed to be redundant moduli; the remaining
moduli are assumed to be nonredundant. The product of the
nonredundant moduli is again denoted by M. An RRNS is thus
completely defined.
Step 4: The error digit ek = pk MmR Mi Imi is computed;

from Theorem 6 it follows that ei is correctable in the above
defined RRNS. If the computation of eik is iterated for each
pkin Pi and for all i, a subclass {E1l, E2, * Et of correct-

able errors is defined.
Step 5: For each residue digit, a binary code is determined

such that relation (5-2) holds for all pairs Ci, ci in the code
such that D(c , Cr') = 1. If such a code cannot be determined
for some mi, the procedure is iterated from Step 2 with a bet-
ter estimate of card (Ei).

VI. CORRECTION OF SINGLE-BIT ERRORS BY THE USE
OF A SINGLE REDUNDANT MODULUS

As far as subclasses of the single residue digit errors are con-
sidered (e.g., the errors affecting a single bit in the code),
Theorem 6 suggests a different procedure for error correction,
by which the requirement of two or more redundant moduli is
removed.

In fact, given an RRNS of n + 1 moduli, where MR =

Mn+, mR >Mk (1 <k.n), assume that an error ei=
PiMmn+ 1/mi I., affects a nonredundant digit xi of an arbi-

trary legitimate number X. If the hypothesis of Theorem 6 is
verified for mi # mi ranging in the nonredundant subset of
moduli (1 <j < n), then the m1-projections Xi are illegitimate,
while the mi-projection Xi is legitimate. Moreover, since, as
previously observed, (3-1) cannot be satisfied forj = n + 1, the
mn+ l-projection Xn+ I is also legitimate. Since two legitimate
projections are found (i.e., Xi and X,,+ 1), the error localiza-
tion is ambiguous, unless it can be established by a different
means that the error does not affect the redundant digit.
This discrimination is again derived from Theorem 6 since

any error en+ 1 = Pn+ 1 MImn+ 1 affecting the redundant resi-
due digit, and such that (3-1) is verified for each j < n, origi-
nates an illegitimate number X whose mi-projections (j < n) all
are illegitimate, while the single mn+ 1 -projection X,+ I is
legitimate.
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The above arguments are summarized by the following.
Corollary 2: Given an RRNS of moduli ml, m2, * , Mn,

mn+1 where -MR =mn+1 >Mk(l 6k6n), the error es=
|PiMMR IMi Im, affecting the residue digit xi (I < i < n + 1) of
an arbitrary legitimate numberXis correctable if the inequality

MR
Mi mj

I±pimi mi
holds for every j # i, 1 <j < n.
Assume that for each modulus mi (1 < i < n + 1) a subset

Ei of error digits is given such that the hypothesis of Corollary
2 holds for every ei in Ei. Thus, as far as our consideration is
limited to the single residue digit error in the subclass {E1, E2,
.* *, En+1}, the following procedure may be used for error
correction.

1) Given an illegitimate number X, the mi-projections Xi
are computed.

2) The mi-projections are evaluated.
3) If the single mn+ 1 -projection X,,+ 1 is legitimate, the error

is localized in the redundant digit andX = Xn+ 1 is the correct
number. If two legitimate projections are found, i.e., Xn+1 and
Xi (1 < i < n), the error is assumed to affect the nonredundant
digit xi and X = A', is the correct number. If three or more
legitimate projections are found, the error correction is not
possible in the given RRNS.
As compared with the case where two or more redundant

moduli are available, this procedure may allow the same or a
wider error correcting capability by the use of a smaller re-
dundancy, because lesser constraints exist in the choice of MRR.
However, if an error e,, 1 occurs, which is not an element of
E,,+ 1, an illegitimate number X having two legitimate projec-
tions, X,+1 and Xi (1 < i < n), may be originated, and a wrong
correction may follow. This is the main drawback to the
above procedure; although it is not different in principle from
the possibility of a wrong correction in the use of any proce-
dure for single residue digit error correction if an error affect-
ing multiple residue digits occurs.
The preceding procedure may again be used for the correc-

tion of the class of the errors affecting a single bit in the binary
code of the residue digits. An RRNS with such error correct-
ing capability is optimally defined by a procedure that is not
dissimilar from the one derived in Section V when two or more
moduli are used, as sketched below.
Step 1: Assume that the subset of the nonredundant mod-

uli m,m2, - ,mt is given, and denote by M=Hl I mi
the range of the legitimate numbers. For each modulus
mi (1 < i < t) a subset Pi and an integer m{R,i are defined, as
explained in the procedure of Section V, Steps 1 and 2.
Step 2: Define MR = mt+ 1 as the smallest positive integer,

pairwise prime with any given mi such that MiR > max (mrR,i),
(1 < i < t). Then, determine the subset PR of the positive in-
tegers modulo mR such that the hypothesis of Corollary 2
holds for each element ofPR.
Step 3: From the subsets P1,P2 , * Pt,PR, and by the

use of the relation ei = piMmRImIi in' the subclass {El , E2,
*-.,Et,ER} is determined. The errors in this subclass are

correctable in the RRNS of moduli ml, M2, * , mt, MR.
Step 4: For each residue digit, a binary code is determined

such that the relation (5-2) holds for all pairs ci, ct in the code
such that D(cl, c') = 1. If the encoding is unsuccessful for the
redundant modulus, a larger mR is selected and the procedure
is resumed from Step 2. If the encoding is unsuccessful for
some nonredundant mi, a better estimate is attempted for card
(Ei), and the procedure is iterated from Step 1.
Example 4: Assume that the RRNS of moduli ml = 11,

M2 = 16, M3 = 17, M4 = 69 is given, where M =mlm2m3 =
2992, mR = i4. Observe thatM is the same as in the previous
examples, while MR is smaller. The subsets of the correctable
errors are determined as

= {l,2,5,6,9, l0}
E2 = {1,3,4,8,12,13,15}

E3= {3,4,7,8,9,10,13,14}

E4 = { 1,5,6,15,19,23,25,26,30,39,43,44,46,50,54,63,64,68}.

The binary encoding of the residue digits modulo m2 and Mi4
are given in Tables II and III. Such codes satisfy the require-
ments for single-bit error correction. Binary codes with the
same property are easily determined for the remaining moduli
and are omitted for the sake of brevity.
Let us consider the legitimate numberX = 125 = {4,13,6,56}.

From Table II it is seen that the binary code for x2 = 13 is
1001. Assume that a single-bit error affects the residue digit
x2, which is altered in 1000. The illegitimate number X=
116 252 = {4,12,6,56} is thus obtained.
The mi-projections ofX are

X1 = 3444; X2 = 125; X3 = 6956; X4 = 2556.

Since two legitimate projections are found, the error is cor-
rectable;X = X2 = 125 is the correct number.
Example 5: Again consider the RRNS and the binary encod-

ings of Example 4. Given the legitimate number X= 125 =
{4,13,6,56}, from Table III it is seen that the binary code for
X4 = 56 is 010001 1. Assume that a single-bit error affects the
residue digit X4, which is altered in 1100011. The illegitimate
number X = 137 757 = {4,13,6,33} is thus obtained.
The mi-projections ofX are

XI =6381; X2 =8727; X3 =4173; X4= 125.

Since the single M4-projection is legitimate, the error is cor-
rectable;X = X4 = 125 is the correct number.

APPENDIX
PROOF OF THEOREM 6

In order to prove that inequality (3-1) is necessary, assume
that the residue digit xi of an arbitrary legitimate numberX is
affected by the error ei, thus originating (Theorem 3) the ille-
gitimate number A' whose projection Xj (j $ i) is illegitimate.
Since the residue digits of X= Xi and X coincide, except for
the single digit x., Xi and X are congruent modulo MmR fInm,
i.e.,
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__ MmR
= i+pi

MMR
1 6pi<mi.

Min.
(A-1)

Similarly, for the projection X, (1 <j < n + r,i i) there ex-
ists an appropriate pi such that

_ _ MmR
X=Xj+pj , Opj<in1mj.

Mi
(A-2)

By the hypothesis, and observing that the existence of an ille-
gitimate X, implies MR > Mi,

0<XiM- 1; M<Xj< -1 (A-3)
ml

and, by combination of inequalities (A-3),

0< xi - Xi <MmRImj. (A-3')

Replacing in (A-3') the difference Xi - Xi derived from (A-1)
and (A-2),

MmR MmR MmR

Mi m -

that is,

O<p,m,-p1mi<mi,
or, equivalently,

pimj - p1mi = I pimj1,
The combination of (A-1), (A-2), and (A4) gives

MMmR
Xi=Xipei i mi i in

mi,* m; Mmim

Substituting for Mj in the inequalities (A-3),

fci1m MMRI Pi1fj, Im1
-MMR MMR

X M--|pi jImil

Xi< - I Pimj |m -1ml mimi
The inequalities (A-6') and (A-6") are necessarily true i
legitimate and X1 is illegitimate. Since Xi = X is an arl
integer in the range [0, M- 1], replace the appropriate e:
of this range in (A-6') and (A-6") as follows:

-IPim Imi >MMimi

MmR MmR
|Ipimn1,, 1 M.

Mmim mi
Then for MR the following inequalities hold:

mimimR>-'
PiMi 1,mi

(A-811)mR > mm
mi - Pimi Imi

i.e., more symmetrically

MR
Mimi

Ipimjli

This proves the necessity of the condition of Theorem 6.
The sufficiency is proved by contradiction. Assume that the
inequalities (A-8') and (A-8") hold, i.e.,

mR > -Mm1±pimjImi
and that an error affecting the single residue digit xi (1 6 i <
n + r) of a legitimate number X originates an illegitimate num-
ber X, whose projection X1 is legitimate. As stated by Theo-
rem 3, the projection Xi is also legitimate. From the inequali-
ties 0 SXi<M, 0< Xi<M and since, by the hypothesis,
mR > mij, we obtain

-MmRImj<-M<Xi- Xi<M MmR/mi-

From the combination of (A-1) and (A-2),

MmR MmR
Xi - Xi =PiM piM-

(A-9)

(A-10)

(A4) If Xj - Xi > 0, (A-4) is again derived, and, since

MmR MmR
Pi pi<M,

i~~ ~ ~ ~~~i M

the following inequality is derived:

(A-5) m
MR<m

Ipimj lmi
(A-6') which contradicts the original assumption.

If A', - Xi < 0, we derive from inequality (A-9)

(A-6) 0<X-X+M R <MMR
in1 ml

if Xi is and, introducing (A-10),
bitrary MMR MMR
xtreme 0<pi MMR MmR <MmR

Mi mi Mi
Then,

0<pimj-(pi- l)mi<mi,

(A-7"t)
or, equivalently,

pimi - (pi - 1) mi = Pimi |mi
Observing that

- (pim1- p1mi) = mi - pimflIi = - Pimj lmi
(A-8 )

and since, combining (A-10) and (A-9),
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-M< Xi - Xi =piMmRIMi - p,MmRImM <O,

the following inequality is derived:

mim
mR < -pmc h opimi mi o

which again contradicts the original assumption.
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