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Abstract
This scoping review assesses the current use of simulation-based design optimization (SBDO) in marine engineering, 
focusing on identifying research trends, methodologies, and application areas. Analyzing 277 studies from Scopus and 
Web of Science, the review finds that SBDO is predominantly applied to optimizing marine vessel hulls, including both 
surface and underwater types, and extends to key components like bows, sterns, propellers, and fins. It also covers marine 
structures and renewable energy systems. A notable trend is the preference for deterministic single-objective optimization 
methods, indicating potential growth areas in multi-objective and stochastic approaches. The review points out the necessity 
of integrating more comprehensive multidisciplinary optimization methods to address the complex challenges in marine 
environments. Despite the extensive application of SBDO in marine engineering, there remains a need for enhancing the 
methodologies’ efficiency and robustness. This review offers a critical overview of SBDO’s role in marine engineering and 
highlights opportunities for future research to advance the field.

1 Introduction

Simulation-based design optimization (SBDO), also known 
as simulation-driven design optimization (SDDO), has 
emerged as a critical tool in marine engineering, profoundly 
impacting various aspects of the field. This approach, 
which integrates numerical solutions with computer-aided 
design  (CAD) software and optimization algorithms, 
empowers engineers to refine performance, cost-efficiency, 
and safety in marine structures, including ships, underwa-
ter vehicles, offshore platforms, and notably, marine energy 
production systems.

Traditional marine engineering practices, reliant on 
empirical data and heuristic approaches, often face limita-
tions in adaptability and precision. These methods, though 
time-tested, struggle to cope with the increasing complex-
ity of marine engineering challenges, especially in the face 

of stringent environmental regulations and the demand for 
higher efficiency. SBDO addresses these challenges by ena-
bling a more nuanced exploration of design possibilities, 
leveraging computational power to identify optimal solu-
tions that balance performance, cost, and environmental 
considerations.

In ship hull design, SBDO replaces traditional methods, 
which are heavily reliant on experience and trial-and-error 
approaches. By analyzing hydrodynamic performance across 
different hull designs, SBDO enables the optimization of 
shape and dimensions, thus reducing drag and enhancing 
fuel efficiency [1–3].

For marine propulsion systems, SBDO is invaluable in 
dealing with the complexity of various components like 
engines, propellers, shafts, and rudders. It facilitates the 
optimization of these components for maximum efficiency 
and reduced fuel consumption [4–12].

A pivotal area where SBDO is making significant strides 
is in the development and optimization of marine energy 
production systems. As the world increasingly seeks sustain-
able energy sources, marine energy systems, such as tidal 
[13–21] and wave energy converters [22–25], have gained 
prominence. SBDO plays a crucial role in designing these 
systems to maximize energy extraction and efficiency while 
ensuring resilience to marine environmental challenges. 
The optimization of these systems is vital for advancing 
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renewable energy technologies and contributes significantly 
to sustainable marine practices.

Additionally, SBDO enhances the safety and reliability of 
marine structures. For offshore structures [26], which face 
harsh environmental conditions, SBDO is instrumental in 
evaluating and improving structural integrity under various 
scenarios.

Looking ahead, the field of SBDO in marine engineer-
ing is poised for significant advancements. Emerging trends 
like the integration of machine learning algorithms and the 
incorporation of real-time data analytics are expected to fur-
ther revolutionize SBDO applications. These advancements 
will not only refine the optimization process but also open 
new avenues for addressing complex, multifaceted marine 
engineering challenges. This scoping review aims to pre-
sent a comprehensive, current overview of SBDO in marine 
engineering, highlighting its applications and pointing to 
future research directions within marine and ocean engineer-
ing contexts.

2  Scoping Review Methodology

Due to a noticeable increase in research output and the pro-
liferation of primary research over the past few years, the 
need to systematically identify and synthesize the existing 
literature has become mandatory in research. This critical 
issue has first arisen in clinical medicine but nowadays it 
represents a priority in many other disciplines including 
engineering [27]. Scoping reviews are extremely useful to 
accomplish this goal. The original framework for conducting 
scoping reviews was proposed by Arksey and O’Malley [28] 
and further extended by Joanna Briggs Institute (JBI) Col-
laboration in 2015 [29]. Recently, the JBI Scoping Reviews 
Methodology Group formally defined scoping reviews as a 
“type of evidence synthesis that aims to systematically iden-
tify and map the breadth of evidence available on a particu-
lar topic, field, concept, or issue, often irrespective of source 
(i.e., primary research, reviews, non-empirical evidence) 
within or across particular contexts” [30]. Despite other 
review methods, scoping reviews use a broader approach for 
mapping literature and addressing a broader research ques-
tion without performing articles’ quality assessment [31].

2.1  Research Questions

Central to this review is the exploration of current best prac-
tices in SBDO applied to marine engineering. This inquiry 
is structured into three fundamental questions: 

1. What are the primary aims and approaches in the exist-
ing literature on SBDO methods in marine engineering, 
and how do they compare?

2. What issues are encountered when applying SBDO 
methods to marine engineering problems?

3. What are the main research gaps and potential future 
directions in this field?

2.2  Inclusion and Exclusion Criteria

The inclusion criteria for the articles in this review were 
meticulously defined to ensure a focused and relevant col-
lection of literature. Articles were selected based on their 
direct relevance to SBDO applications in marine engi-
neering. This included studies demonstrating the use of 
SBDO in practical marine engineering projects, theoretical 
advancements in SBDO methods specific to marine appli-
cations, and reviews of SBDO methods within the marine 
engineering context.

Exclusion criteria were equally stringent to maintain the 
review’s scope and quality. Articles not directly related to 
SBDO, such as those focusing on general design optimi-
zation without a clear simulation-based component, were 
excluded. Studies outside the realm of marine engineering, 
or those employing SBDO in a manner not applicable to 
marine engineering challenges, were also omitted. Fur-
thermore, non-peer-reviewed articles, such as conference 
abstracts/papers and editorials, were excluded to ensure 
the review’s academic rigor.

2.3  Databases and Keywords

Web of Science (WoS) and Scopus were chosen as the 
primary databases for their extensive coverage of inter-
disciplinary scientific literature, ensuring a comprehensive 
collection of relevant articles in marine engineering and 
optimization. These databases are renowned for their rig-
orous indexing of high-quality, peer-reviewed academic 
journals, which aligns with the review’s emphasis on aca-
demic rigor.

The bibliographic search strategy was carefully 
designed to capture the broad scope of SBDO research 
in marine engineering, employing a combination of key-
words specifically targeted within the titles, abstracts, 
and keywords sections (TITLE-ABS-KEY) of articles. 
The chosen keywords aimed to include a comprehensive 
range of studies relevant to the field: (“Simulation*” 
OR “Computation*”) AND (“Optimi*”) AND 
(“Design*” OR “Shape*” OR “Form*”) 
AND (“Ship*” OR “Hull” OR “Vessel” OR 
“Marine” OR “Ocean”). This strategic choice 
ensured the inclusion of pertinent research while maintain-
ing a focused scope on SBDO applications within marine 
engineering.
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2.4  Search Procedure

The preferred reporting items for systematic reviews state-
ment extended to scoping reviews (PRISMA-ScR) are used 
as reporting guidelines [32]. The PRISMA flow diagram 
(see Fig. 1) meticulously outlines the process undertaken 
for the selection of articles in the present scoping review. 
The articles search was conducted on August 1st, 2022, 
with no restriction on the date of publication and type 
of study, but considering only journal papers written in 
English. The diagram begins with the identification phase, 
where 3143 records were sourced through WoS and Sco-
pus, indicating a comprehensive initial search strategy. 
Reference lists of all included articles were scanned to 
look for literature that had not been obtained previously.

Subsequent stages in the diagram reflect the screening 
and eligibility assessment processes. Notably, a significant 
number of records were excluded during the initial screen-
ing, likely due to title (2281) and abstract (370) relevance 
checks. This highlights the precision of our inclusion cri-
teria, ensuring that only the most pertinent articles were 
considered (492) for full-text review.

The eligibility phase, as depicted, involved a more 
detailed review of the full texts, leading to further exclu-
sion of articles that did not meet the specific criteria set 
for this review. These criteria were crucial in filtering out 

articles that did not include simulation, optimization strat-
egies, or design/shape optimization.

Finally, the included studies (277), as shown in the dia-
gram, represent a curated collection of articles that passed 
through this rigorous selection process, ensuring a high 
degree of relevance and quality in the research articles 
selected for this review.

3  Results

The following subsections delineate the comprehensive 
findings of the scoping review, focusing on the key devel-
opments and trends within the realm of SBDO in marine 
engineering. This analysis aims to distill a broad spectrum 
of research efforts into discernible patterns, offering insights 
into the evolution, current practices, and future directions in 
the field. By examining a variety of aspects, from publica-
tion trends and journal distributions to the nuanced details 
of optimization techniques and application areas, this section 
endeavors to provide a holistic understanding of the state-of-
the-art in SBDO as applied to marine engineering.

It may be noted that different terms have been used inter-
changeably to describe the overarching process of integrat-
ing computational simulations with design optimization in 
marine engineering. While SBDO and SDDO are prevalent, 
the analysis reveals both their widespread use and nuanced 

Fig. 1  PRISMA flow chart
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differences. SBDO emerges as the most comprehensive 
term, encompassing the full spectrum of leveraging simula-
tion tools for optimizing design parameters. This terminol-
ogy aligns with the holistic approach of using simulations 
to inform and drive the optimization process, where the 
objective is to enhance design performance metrics while 
navigating through the constraints imposed by complex 
marine engineering challenges. On the other hand, SDDO 
often highlights the initial stages of the design process, 
where simulations guide the conceptual and preliminary 
design decisions before formal optimization techniques are 
applied. This term underscores the importance of simu-
lations in shaping the design space and influencing early 
design choices, which are crucial for setting the stage for 
subsequent optimization. The review suggests that while 
these terms broadly address the same domain of integrat-
ing simulations with optimization, they can reflect different 
focuses or stages within the broader SBDO process. This 
distinction is vital for understanding the scope and emphasis 
of various studies within the field, as well as for appreciat-
ing the multifaceted nature of SBDO in marine engineering.

Figure 2a illustrates a chronological trend in the number 
of publications per year on the topic. Starting from 1994, 
the year of the first publication retrieved on the topic [1], a 
noticeable increase in publications can be observed over the 
years (specifically starting from 2009), indicating a growing 
interest and advancement in the field. It’s important to note 
that the data for the year 2022 is partial, as the bibliographic 

research was conducted on August 1, 2022. This uptick 
reflects the evolving complexity and significance of SBDO 
in addressing contemporary challenges in marine engineer-
ing. The progressive increase underscores the technology’s 
rising relevance, potentially correlating with advancements 
in computational capabilities and the growing demand for 
efficient, optimized marine systems.

Figure 2b presents a distribution of publications across 
various journals, highlighting those with the highest fre-
quency of articles. Overall the Ocean Engineering journal 
covers 17.2% of the overall publications, whereas the other 
journals all contain less than 10% of the publications on 
SBDO. Moreover, the category ’Others’ encapsulates a 
range of journals that individually contribute to less than 
2% of total publications, signifying a wide dissemination of 
research in this field across diverse scientific platforms. This 
distribution not only reflects the interdisciplinary nature of 
the field but also points to the key academic outlets that are 
central to the dissemination of SBDO research.

Based on a detailed analysis of the distribution and con-
tributions, the results offer intriguing insights into global 
research trends and collaborative dynamics. The geo-
graphical distribution (see Fig. 3) showcases a significant 
concentration of contributions from China, accounting for 
29.3% of the papers reviewed, with a diverse representa-
tion from 48 different entities. This is followed by Italy 
(13.9%), the United States (11.9%), the United Kingdom 
(5.7%), South Korea (5.1%), Iran (4.3%), Japan (3.4%), 

Fig. 2  Publications trend (a) and journals occurrences (b)
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and Germany (3.1%), highlighting a global interest and 
varied focus across these regions. The predominance of 
university and research centers contributions, with 89% 
of the instances (see Fig. 4), signifies the academic incli-
nation of SBDO research, whereas the industry and small 
and medium enterprises (SMEs), defense agencies, and 
regulatory bodies’ engagement, though lesser in number, 
underscore the multi-sectoral relevance of SBDO appli-
cations in marine engineering. This diverse geographical 
and institutional representation underscores the universal 
appeal and applicability of SBDO techniques across differ-
ent marine engineering challenges, reflecting a rich picture 
of research efforts aimed at advancing marine technology 
and sustainability. The data suggest a vibrant and col-
laborative research ecosystem, with significant contribu-
tions emerging from both academia and industry, pointing 
towards an integrated approach to innovation in marine 
engineering through SBDO.

The following subsections present a categorization of 
SBDO research into several key areas, resulting in a systematic 
description of the vast body of work in this domain. The exam-
ination begins with problem formulation strategies, identifying 
the complex nature and challenges of the design optimizations 
present in the various studies. Subsequent analysis delves into 
the parameterization techniques used in SBDO. The focus then 
shifts to the solvers utilized in SBDO and optimization strate-
gies. Finally, a deeper discussion of the applications is given.

3.1  Problem Formulations

The field of SBDO in marine engineering exhibits a range 
of problem formulations, from straightforward deterministic 
single-objective optimization to more complex multi-objective 
and stochastic optimization approaches. The evolution towards 
embracing these complexities is gradual, reflecting a prefer-
ence for simpler, more intuitive methods (see Fig. 5).

Central to the SBDO approach is the deterministic single-
objective optimization, which remains predominant due to its 
clear and straightforward formulation:

This formulation, with f as the objective function, x as the 
design variables (with xl and xu the lower and upper bounds), 
y as the environmental and/or operational conditions, gi 
as inequality constraints, and hj as equality constraints, is 
favored for its ability to produce clear and concise results, 

(1)

min
x

f (x, y)

subject to gi(x, y) ≤ 0, i = 1,… ,m

and to hj(x, y) = 0, j = 1,… , p

and to xl ≤ x ≤ xu.

Fig. 3  Publications occurrences geographical distribution (absolute value per country on a logarithmic scale)

Fig. 4  Publications origin occurrences by entity
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making it highly suitable for demonstrating new SBDO 
methodologies in marine engineering.

Despite the potential to address a broader spectrum of 
design criteria, the uptake of multi-objective optimization, 
that reformulate the problem in Eq. 3 as follows

is cautious (see Fig. 5a, top). This approach, involving 
the simultaneous optimization of multiple conflicting k 

(2)

min
x

{f1(x, y), f2(x, y),… , fk(x, y)}

subject to gi(x, y) ≤ 0, i = 1,… ,m

and to hj(x, y) = 0, j = 1,… , p

and to xl ≤ x ≤ xu,

objectives, faces challenges due to its increase in required 
computational resources and complexity. Figure 6 presents 
a comprehensive depiction of the SBDO process using the 
extended design structure matrix (XDSM) [33]. This repre-
sentation includes the three main blocks (shape parametriza-
tion, numerical solver, and optimizer) of the process, includ-
ing also a stopping criteria, which may encompass either 
the convergence of the optimization method or constraints 
imposed by a limited computational budget.

The adoption of stochastic optimization (see Fig. 5a, bot-
tom), which factors in uncertainty and variability, is still 
limited. Techniques like robust design optimization (RDO) 
[8, 26, 34–37], that focus on performance stability under 
uncertainty, reliability-based design optimization (RBDO) 

Fig. 5  Problem formulation: (a) occurrences by year (top) single- versus multi-objective and (bottom) deterministic versus stochastic; (b) num-
ber of objectives overall occurrences for multi-objective problems; (c) use of constraints overall occurrences
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[24, 38–41], which emphasizes safety and reliability stand-
ards under probabilistic uncertainty models, and reliability-
based and robust design optimization (RBRDO) [42–44], 
that combines RDO and RBDO approaches to ensure that a 
design is both robust against variability and reliable in terms 
of meeting safety or success criteria, are not yet widespread, 
pointing to a significant potential area of development in the 
field, representing only 9% of the existing literature.

Figure 5a clearly illustrates the continued preference for 
single-objective over multi-objective optimization (top) 
and deterministic over stochastic optimization (bottom) 
approaches in the marine engineering domain. These prefer-
ences underscore the field’s inclination towards methodolo-
gies that offer straightforward applicability and simplicity. 
Figure 5b, on the other hand, reveals a modest but grow-
ing interest in multi-objective optimization, with a limit to 
the number of objectives, indicating a cautious approach to 
embrace complexity in optimization challenges. Examples 
of many-objectives optimization problems (number of objec-
tives greater than 3) are given in [45–49] for 4 objectives and 
in [50–52] for 5 objectives.

Furthermore, the analysis of problem formulations in 
SBDO studies, as depicted in Fig. 5c, reveals that a signifi-
cant majority of problems (63%) are formulated with con-
straints. This indicates that complex real-world conditions 
and requirements are typically encountered in marine engi-
neering applications. Constraints in SBDO may originate 
from design, regulatory and safety requirements, physical 
limitations, and environmental considerations.

The predominance of constrained problems underscores 
the need for optimization methodologies that can effectively 
account for these limitations, balancing the achievement of 
design objectives with adherence to constraint boundaries. 
Interestingly, a notable 19% of the problems are identified 
as unconstrained. This suggests scenarios where design 
freedom is less restricted, possibly in more theoretical or 

exploratory studies, or in cases where the primary focus is 
on optimizing a single aspect of design without the need for 
balancing it against other factors. Another possibility is the 
use of implicit geometrical constraints, such that they don’t 
need to be considered in the problem formulation anymore 
because they are satisfied by definition. However, Fig. 5c 
also highlights a critical gap in current SBDO research—a 
lack of clarity or information regarding the problem formu-
lation in 18% of the papers. This ambiguity in the formula-
tion, specifically the absence of clear statements on whether 
the problems are constrained or not, points to a potential 
oversight in the documentation or conceptualization of 
SBDO studies. It raises questions about the comprehensive-
ness and depth of problem understanding in these cases. 
The absence of explicit mention of constraints may lead to 
challenges in replicating or building upon the research, as 
the constraints (or lack thereof) significantly influence the 
optimization process and outcomes. Furthermore, the figure 
brings to light an important aspect of SBDO that appears 
to be insufficiently addressed: the strategies for dealing 
with constraints. Effective constraint handling is crucial in 
SBDO, as it directly impacts the feasibility and practicality 
of the optimized solutions. The lack of detailed discussion 
on constraint management techniques in a considerable num-
ber of studies suggests a need for more focused research in 
this area. This includes the development and application of 
advanced constraint-handling techniques, which are essential 
for ensuring that the solutions generated by SBDO are not 
only optimal in a mathematical sense but also viable and 
effective in real-world applications.

The scoping review has finally highlighted a notably 
sparse yet significant application of multidisciplinary design 
optimization (MDO) methodologies within the broader con-
text of SBDO in marine engineering, encompassing only 
about 8% of the studies. This is particularly noteworthy 
in a field inherently requiring integration across various 

Fig. 6  Overview of a general 
SBDO process through the 
XDSM diagram
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disciplines such as hydrodynamics, structural engineering, 
and materials science for optimal design solutions. MDO 
problems focusing on resistance/powering and seakeep-
ing performance improvement have been addressed in the 
context of various vessels, including surface combatant 
[44, 53], frigate [54], and multi-hulls [43, 55]. These stud-
ies highlight the application of MDO in enhancing specific 
performance parameters of marine vehicles. A multilevel 
hierarchy system approach, which allows for the integration 
of results from synthesis-level optimization into subsystem 
optimization and overall coordination of multi-level design 
systems, was demonstrated in studies like [56] and [57]. 
These works employed methods like constructive artificial 
neural networks for the MDO of twin H-body vessels and 
multi-hulls, considering objectives and constraints related to 
cavitation, structural integrity, stability, hull forms, weights, 
costs, and payload capacity. System-level MDO, considering 
seakeeping, maneuvering, and resistance assessment, was 
explored in [45], showcasing the comprehensive nature of 
this MDO approach. In contrast, a generalized collabora-
tive optimization (CO) method for resistance optimization of 
small water-plane area twin hull (SWATH) vessels was pro-
posed in [58], signifying the adaptability of CO in focused 
optimization tasks. The optimization of an autonomous 
underwater vehicle (AUV) for various performance metrics 
such as rapidity, maneuverability, resistance, and energy 
consumption through CO was undertaken in studies like 
[59] and [60]. Additionally, a modified bi-level integrated 
system collaborative optimization for resistance and weight 
reduction of a SWATH was proposed in [61]. The appli-
cation of a multi-objective MDO based on the all-at-once 
architecture for weight minimization and endurance maxi-
mization of an AUV was demonstrated in [62]. Resistance 
optimization and wake flow uniformity of an offshore aqua-
culture vessel were addressed in [63], while [64] utilized 
a concurrent subspace design method for comprehensive 

MDO of an AUV, covering hull form, structure, propulsion, 
energy, maneuverability, and general arrangement. Further 
studies explored a range of MDO applications [65], from 
hydrostructural optimization [9, 38, 66] to energy consump-
tion minimization [67], showcasing the diversity of MDO 
applications in marine engineering, employing various 
architectural approaches such as fluid–structure interaction 
coupling [68], super element-based multi-level analysis [69], 
and uncertainty quantification in system-level MDO [70].

3.2  Design‑Space Parameterization

In the realm of SBDO, the parametrization of the design 
space is a critical step that significantly influences the 
optimization process. Parametrization can be categorized 
broadly into fully-parametric (FPM) and partially-parametric 
models (PPM) [71]. FPMs define every aspect of the design 
using parameters, offering high control and predictability. 
PPMs, however, combine parametric elements with non-
parametric or fixed aspects, providing a balance between 
control and flexibility. This distinction is crucial in SBDO, 
where the choice of parametrization technique impacts the 
feasibility, efficiency, and scope of the optimization task.

Figure  7a shows the predominant preference for 
FPM, accounting for 72%. This dominance suggests a 
trend towards well-defined, controlled, and interpretable 
approaches in design variable specification. FPM approaches 
include CAD-based [72], analytical [73, 74], scaling [57], 
sectional area curves [75–77], partial differential equations 
[1], Ferguson [40], Legendre [78], Bezier curves [17, 35, 
79–82] and surfaces [3, 70], Splines [83, 84], B-splines 
[7, 51, 85–94], T-splines [95], F-splines [96], NURBS [6, 
97–101], PARSEC [102], Lackeby [103, 104], and Akima 
[105]. On the other hand, PPM methods such as free-form 
deformation (FFD) [63, 66, 106–124], radial basis func-
tions (RBF) [55, 125–130], arbitrary shape deformation 

Fig. 7  Occurrences of (a) fully- versus partially-parametric modeling for shape modification and (b) distribution of design-space dimensionality
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[131–135], patches [136–139], blending [136, 140, 141], 
and morphing [142], accounting for 28%, are indicative of 
the need for more adaptable and flexible design approaches. 
Overall, Splines family (Spline, NURBS, B-Spline, 
T-Spline) approaches are the most used among the FPM, 
whereas FFD is the most used among the PPM methods.

Figure 7b illustrates the distribution of design space 
dimensionalities and the cumulative sum of the associated 
occurrences. Most studies concentrate on problems with 10 
dimensions or fewer, indicating a focus on moderately com-
plex design challenges. However, the presence of problems 
with higher dimensionality, greater than 50 [66, 97, 113, 
143–145], up to 420 dimensions [146], reveals the presence 
of applications with highly complex and high-dimensional 
optimization challenges. These high-dimensional optimiza-
tions are often facilitated by the use of adjoint gradients 
[34, 66, 130, 146, 147], since the computational cost of 
adjoint gradients scales favorably with the number of prob-
lem dimensions. Despite this success, adjoint solvers are 
not commonly used in the maritime field. This could be 
due to the relatively high complexity of these solvers which 
hampers a widespread adoption of the adjoint method for 
high-dimensional problems. Because of its high potential, 
research on adjoints for optimization should receive more 
attention. It is finally important to note that a significant 
portion of the works reviewed, approximately 26%, do not 
explicitly specify the dimensionality of the design space. 
This omission indicates a gap in the reported information, 
meaning the presented distribution may only partially rep-
resent the problem dimensionalities encountered in SBDO 
research. The absence of detailed dimensionality data under-
scores a potential area for improvement in the clarity and 
completeness of reporting in the field.

The problem dimensionality diversity raises the issue of 
the curse of dimensionality [148], where larger design spaces 
exponentially increase computational costs and complicate 
the optimization process. Despite the variety of methods 
used for SBDO, considering both FPM and PPM, the defi-
nition of the design space still represents the true bottleneck 
in design processes. By limiting free variables, parametric 
models can significantly save time and costs. Hence, choos-
ing restrictions based on experience, constraints from pro-
duction, operational requirements, and market acceptance 
is crucial. Good parametric models stem from conscious 
choices of restriction, emphasizing the need for dimensional-
ity reduction techniques in SBDO.

The development of dimensionality reduction techniques 
for shape optimization only recently gained attention. The 
simplest method to reduce the dimensionality of the design 
space is to identify the most important variables for the 
design problem and discard the remaining ones by setting 
them to a constant value during the optimization process, 
i.e. a factor screening, also known as feature selection. 

This process is conducted off-line (or upfront) the SBDO 
procedure. Sensitivity analysis has been used in [149] to 
prescribe the design space, whereas Pearson correlation 
coefficient has been used in [52] as a variable screening 
metric. On the contrary, online methods (during the SBDO 
procedure) have been proposed addressing dynamic space 
reduction in [129, 150], where not the dimensionality of 
the design space is assessed, but the design variable range, 
exploring roughly the whole design space at the beginning 
of the SBDO and then restricting the variables range runt-
ime, focusing on the most interesting part of the domain. 
However, these approaches do not always provide the best 
solution, since factor screening is not able to evaluate the 
importance that the fixed variables could have during the 
optimization process, especially when combined with other 
variables, and dynamic space reduction could not take into 
account possible multi-modalities of the objective func-
tion, thus missing the optimum region. Hence, industrial 
design, in general, is increasingly searching for such dimen-
sionality reduction methods that can capture, in a reduced-
dimensionality space (possibly upfront), the underlying most 
promising directions of the original design space, preserving 
its relevant features and thereby enabling an efficient and 
effective optimization in the reduced space. The remedy has 
been found in dimensionality reduction techniques such as 
unsupervised learning, feature extraction, and modal repre-
sentation, overall known as representation learning. These 
methods are capable of learning relevant hidden structures 
of the original design-space parameterization and have been 
developed focusing on the assessment of design-space vari-
ability and the subsequent dimensionality reduction before 
the optimization is performed. A method based on the 
Karhunen-Loève expansion (KLE, equivalent to the proper 
orthogonal decomposition, POD) has been formulated in 
[112] for the assessment of the shape modification variabil-
ity and the definition of a reduced-dimensionality global 
model of the shape modification vector. No objective func-
tion evaluations nor gradients are required by the method. 
The KLE is applied to the continuous shape modification 
vector, requiring the solution of an eigenvalue problem for a 
Fredholm integral equation. The discretized Fredholm equa-
tion can be solved using principal component analysis. The 
method has been successfully applied to the optimization 
of the Delft catamaran in deterministic [151, 152] and sto-
chastic [43, 153] conditions, the DTMB 5415 model [154], 
Wigley hull [155], as well as on different propellers [49, 
92, 156]. Off-line methods improve shape optimization effi-
ciency by reparameterization and dimensionality reduction, 
providing the assessment of the design space and the shape 
parameterization before optimization and/or performance 
analysis is carried out. The assessment is based on the geo-
metric variability associated with the design space, making 
the method computationally very efficient and attractive (no 
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simulations are required). Nevertheless, if the dimensional-
ity reduction procedure is fed only with information on the 
shape modification vector, they may overlook the correla-
tion between geometric variance and the actual objective 
function, since small variations in the geometry can pro-
duce significant variations in the objective function, e.g. flow 
separations and cavitation. For this reason, dimensionality 
reduction based on KLE has been extended to include physi-
cal information related to the optimization problem, result-
ing in significant improvements in both deterministic [157, 
158] and stochastic [44] cases. A similar approach has been 
achieved via the active subspace method [122, 123], which 
involves the identification of the so-called active subspaces 
of the input parameter space by analyzing the sensitivity 
of the output with respect to the input parameters, often 
using gradient information. Obviously, the use of physical 
information has a computational cost and cannot always be 
afforded by designers upfront the SBDO procedure. For this 
reason, a further attractive proposal is to substitute physical 
information with physics-related geometrical parameters. A 
recent example has been provided in [159] where geometric 
moments are used to include physics information, applying 
it to two different ships.

3.3  Numerical Solvers

Figure 8 presents a compelling overview of the evolving 
solver usage in SBDO studies from 1994 to 2022. The 
graph shows the cumulative sum of occurrences for various 
solvers. These are potential flow methods (PF), Reynolds-
averaged Navier–Stokes (RANS), and the finite element 
method (FEM). Each solver represents distinct computa-
tional approaches in SBDO.

The PF solver, while exhibiting a consistent increase in 
cumulative occurrences over the years, has been outpaced 
by the RANS solver since 2018. The increase in PF usage 
indicates its continued relevance, particularly in problems 
where potential flow assumptions are valid, such as in the 
early stages of aerodynamic or hydrodynamic design. PF 
solvers are mainly based on the boundary elements method 
(BEM), see e.g. [24, 92, 160–164], but other examples have 
been found, such as strip theory [73, 91, 103, 165, 166], 
slender body [167], vortex lattice [4, 168], and blade ele-
ment momentum [10, 46] methods, as well as isogeometric 
analysis combined with BEM [95, 159, 169]. It is important 
to recognize that within the realm of PF solvers, a signifi-
cant portion are developed as proprietary, in-house tools, 
tailored to specific research or industrial needs. This trend 
underscores the specialized nature of PF solvers, which often 
require customization to address unique challenges in fluid 
dynamics and hydrodynamics. Nevertheless, commercially 
available options have also been used, see e.g. [25, 85, 96, 
127, 128, 149, 170–174].

The RANS solver shows a quartic trend in its cumulative 
occurrences. This significant rise reflects the growing prefer-
ence for RANS in SBDO studies. The main cause is likely 
due to its enhanced capability in capturing complex turbu-
lent flows and its applicability in a broader range of fluid 
dynamics problems compared to PF. This, in combination 
with an increase of computational resources which makes 
RANS affordable for practical applications, results likely in 
a strong increase of RANS usage over the years. The quartic 
nature of the trend suggests an accelerating adoption rate, 
highlighting RANS as an increasingly preferred tool for fluid 
dynamics optimization in recent years, as also reflected by 
the distribution between commercial (see, e.g., [15, 16, 
175–187]), in-house developed [188–190], and open-source 
[23, 191–197] solvers that is notably balanced. Commercial 
tools are widely used in various industries for their compre-
hensive capabilities and robust support structures. On the 
other hand, there are several notable in-house RANS solvers, 
which are developed within academic or research institutions 
for specific applications or research purposes.

Finally, the use of FEM solvers [116] shows a more lim-
ited cumulative occurrence in SBDO studies despite its criti-
cal role in structural analysis. This might be indicative of 
the specific focus of the studies under consideration, pos-
sibly skewed more towards fluid dynamics than structural 
optimization. However, the presence of FEM, mainly com-
posed of commercial software, see e.g., [198–201], under-
scores its importance in the SBDO landscape, particularly 
for problems involving structural response and material 
optimization.

Fig. 8  Cumulative sum of the kind of solvers used as a function of 
the publication year
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The trends observed in Fig. 8 are indicative of the evolv-
ing preferences and technological advancements in the field 
of SBDO. The overtaking of PF by RANS in recent years 
points to a paradigm shift in solver selection, driven pos-
sibly by the increasing complexity of design problems and 
the need for more sophisticated fluid dynamics modeling 
capabilities. The limited but present use of FEM highlights 
the diverse range of optimization challenges addressed in 
SBDO, necessitating a variety of computational tools to 
cater to different aspects of marine engineering design.

3.4  Optimization Methods

In the evolving landscape of SBDO, the selection of optimi-
zation algorithms and the possible integration of surrogate 
methods play pivotal roles. These strategies are key in navi-
gating the complex design spaces and computational chal-
lenges inherent in SBDO. The choice between global, local, 
or hybrid algorithms, as well as the adoption of surrogate-
based approaches versus surrogate-free methods, reflects 
a strategic balance between exploration and exploitation, 
accuracy, and computational efficiency.

3.4.1  Algorithms

Figure 9a illustrates the year-by-year usage of global, local, 
and hybrid algorithms in SBDO studies. The trend towards 
global optimization algorithms signifies a strategic shift in 
SBDO. Global algorithms, known for their ability to explore 
the entire design space, are increasingly favored. This prefer-
ence likely stems from their stochastic nature and heuristic 
methods, which are adept at avoiding local optima: a critical 
advantage in complex, multimodal design landscapes. The 
rising trend of global algorithms suggests an industry-wide 
acknowledgment of the complexity and unpredictability 
inherent in SBDO problems.

Within the realm of global optimization, genetic algo-
rithms (GAs, see, e.g., [11, 202–217]) and particle swarm 
optimization (PSO, see, e.g., [14, 218–221]) dominate. 
As shown in Fig. 9b, GAs cover 65% of global methods, 
leveraging mechanisms inspired by biological evolution, 
such as selection, crossover, and mutation. This allows for 
a robust exploration of the design space, making them par-
ticularly effective for non-linear, discrete, or mixed-variable 
optimization problems. PSO, with 24%, employs a swarm 

Fig. 9  Optimization algorithm occurrences (a) trend and subdivision by (b) global and (c) local categories
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intelligence approach that simulates social behavior patterns, 
providing a balance between exploration and exploitation in 
the search process. Within the remaining 11% of the global 
methodologies, several notable algorithms have been iden-
tified and warrant mention. These include the infeasibility-
driven evolutionary algorithm [87, 184, 222], simulated 
annealing [26, 87], artificial bee colony [126, 223], and 
dividing rectangles [154, 224].

Considering local methods, the preference for sequential 
quadratic programming (SQP, see, e.g., [77, 84, 225–229]) 
and methods like quasi-Newton [1] methods (e.g., the 
Broyden-Fletcher-Goldfarb-Shanno, BFGS algorithm [91, 
230]) and pattern search, also known as Hooke and Jeeves 
algorithm [103, 165, 182, 231], as seen in Fig. 9c, aligns 
with problems where a good initial guess is available, and 
the design space is less rugged. In particular, SQP, with its 
ability to handle nonlinear constraints efficiently, is apt for 
fine-tuning solutions within a well-defined local region, 
complementing the global search methodologies. The 
steepest descent (SD) algorithm [3], the simplex method, 
also known as Nelder-Mead algorithm [97, 127, 232, 233], 
and other gradient-based approaches [234] are overall less 
preferred.

Finally, hybrid approaches deserve some hints. It may 
be noted that hybrid approaches include both memetic 
approaches (hybrid global/local) [60, 110, 153, 158, 175, 
176, 189, 235], as well as hybridization of different global 
algorithms [108], global methods with reinforcement learn-
ing [236], and local algorithms with multi-start approaches 
[164, 200]. Among the memetic approaches the SHERPA 
(simultaneous hybrid exploration that is robust, progressive, 
and adaptive) algorithm [18, 55, 134, 135, 237, 238], noted 
for its robust and adaptive capabilities in handling complex 
design challenges, is gaining recognition in various engi-
neering domains, not only marine. However, its proprietary 
nature, being exclusive to a specific software environment, 
presents potential limitations in terms of widespread adop-
tion and accessibility, particularly in academic and open-
source research communities where transparency and adapt-
ability of algorithms are often paramount.

3.4.2  Surrogates

Figure 10a compares the trend of solving SBDO problems 
with and without surrogate methods. The recent overtaking 
of surrogate-based methods over surrogate-free approaches 
marks a significant development in SBDO. In surrogate-
based optimization, the original optimization problem in 
Eq. 3 is reformulated by approximating the objective func-
tion f (x) and the eventual functional constraints gi(x) and 
hj(x) with surrogate models, denoted as f̂ (x) , ĝi(x) , and ĥj(x) 
respectively. This approach transforms the original optimi-
zation task into a more computationally tractable form by 

minimizing the surrogate objective function while ensuring 
that surrogate constraints are satisfied. The reformulated 
optimization problem is expressed as:

Surrogate models, serving as approximations of the actual 
objective and constraint functions, offer substantial com-
putational savings. The cubic trend of surrogate-based 
methods (see Fig. 10a) reflects their growing importance in 
dealing with high-fidelity simulations that are computation-
ally expensive, allowing for more iterations and a deeper 
exploration within feasible turnaround times.

The predominance of Gaussian process (GP, see, e.g., 
[52, 91, 121, 156, 190, 194]) and Kriging (KG, see, e.g., 
[7, 26, 34, 45, 58, 108, 114, 193, 209, 239–246]) meth-
ods (34%) in surrogate-based optimization, as shown in 
Fig. 10b, underscores their efficacy in capturing complex, 
nonlinear relationships with a relatively small number of 
samples. When it comes to practical applications, the dis-
tinction between GP models and KG models can become 
blurred despite their differences in original contexts and 
typical interpretations. This is particularly true in the 
context of surrogate modeling. In many cases, especially 
in computer experiments and design of experiments, the 
terms are used interchangeably, as the underlying math-
ematical principles are very similar. Both methods are 
highly appreciated for their ability to provide accurate pre-
dictions (excelling in modeling smooth functions) and a 
statistical framework that quantifies prediction uncertainty 
which is crucial for decision-making in the optimization 
process. However, computational challenges occur when 
applied to large datasets. Other popular methods like RBF 
(21%, see, e.g., [50, 127, 134, 149, 151, 189, 223, 247, 
248]), response surface methodologies (RSM, 18%, see, 
e.g., [15, 16, 39, 59, 106, 109, 140, 141, 180, 249–252]), 
neural networks (NN, 14%, see, e.g., [4, 17, 20, 56, 57, 86, 
162, 173, 175, 197]), and support vector machines (SVM, 
5%, see, e.g., [63, 104, 199, 253, 254]) each offer unique 
advantages, such as local approximation capabilities and 
flexibility in modeling complex patterns. Specifically, 
RBFs are beneficial for multidimensional interpolation and 
smooth transitions, though they can struggle with larger, 
high-dimensional data; RSM is effective for design of 
experiments and process optimization but is less suited 
for non-linear or complex problems and requires extensive 
experimentation for accurate modeling; NNs, with their 
flexibility for complex relationships, are ideal for large 
datasets, but require significant data and are computation-
ally intensive; lastly, SVM provide robust performance 

(3)

min
x

f̂ (x, y)

subject to ĝi(x, y) ≤ 0, i = 1,… ,m

ĥj(x, y) = 0, j = 1,… , p.
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in high-dimensional spaces but are sensitive to kernel 
and parameter choices and computationally demanding 
for large datasets. This nuanced understanding of each 
method’s strengths and weaknesses is crucial in guiding 
the selection of the most appropriate surrogate modeling 
technique for specific engineering optimization problems. 
Finally, the other 9% surrogate-based approaches are com-
posed of trust-region methods [2, 53], elliptic basis func-
tion [255], orthogonal polynomial methods [256], and 
hyper-surrogate approaches [186], where multiple surro-
gate methods are used, like RSM, RBF, and KG, and then 
averaged to get the objective prediction.

It may be noted that in the present scoping review, and 
under the statistics provided in Fig. 10b, works that char-
acterize RBF models as single-layer NN are categorized 
under the use of RBF surrogates, rather than as conven-
tional NN implementations. This classification stems from 
the mathematical alignment of single-layer RBF networks 
with RBF interpolation, highlighting their role as surro-
gate modeling techniques. In these instances, the RBF’s 
function is used primarily to approximate complex nonlin-
ear relationships within the data, distinguishing it from the 

multi-layered, deep-learning frameworks typically associ-
ated with NNs.

Transitioning to another critical aspect of surrogate-based 
optimization, it is essential to acknowledge the pivotal role 
of the initial training and sampling approach employed for 
the surrogate models. The effectiveness of surrogate meth-
ods, as discussed earlier, hinges significantly on the quality 
and representativeness of the initial training data or design 
of experiments (DoE) used to construct these models. This 
data fundamentally influences the surrogate’s ability to 
accurately capture the underlying behavior of the objec-
tive function and constraints. Therefore, the selection of an 
appropriate DoE becomes a key determinant in the success 
of surrogate-based optimization processes. Among the vari-
ous DoE employed (see Fig. 10c), the Latin hypercube sam-
pling (LHS), see, e.g., [39, 56, 58] covers 37% of the cases 
(including optimal [26, 239] and universal [194] LHS) and 
this can be attributed to its effectiveness in generating well-
distributed samples across the design space, ensuring a rep-
resentative and unbiased training set for surrogate models. 
Other techniques include central composite design (CCD, 
7%, e.g. [141, 157, 178, 180, 238], Sobol (7%, e.g. [120, 

Fig. 10  Surrogate-based versus surrogate-free occurrences trends (a), surrogates categories (b), and design of experiments used for initial train-
ing (c)
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127, 250]), uniform design (UD, 5%, e.g. [48, 54, 199]), 
full factorial (FF, 5%, e.g. [229, 241, 257]), and finally the 
remaining 12% includes orthogonal arrays (5%, [50, 107, 
189]), Hammersley/Halton sequences [70, 151, 156], as well 
as random/Monte Carlo sampling [37, 195, 197]. However, 
it is noteworthy that in 27% of the cases, the specific DoE 
strategy employed remains unidentified or unspecified. 
This lack of clarity on the training approach used can have 
implications for the interpretability and reproducibility of 
the optimization results. Consequently, this highlights a 
gap in the current body of research, underscoring the need 
for more transparent and detailed reporting of the sampling 
methodologies in surrogate-based optimization studies to 
better understand their impact on the effectiveness of the 
surrogate models.

In the domain of surrogate-based optimization, the 
development of multi-fidelity or variable-fidelity methods 
has emerged as a key strategy to enhance the effectiveness 
of surrogate models while also conserving computational 
resources. These methods leverage varying levels of model 
fidelity, combining computationally expensive high-fidelity 
simulations with less costly lower-fidelity approximations 
in order to construct more informed and efficient surro-
gates. Despite their potential benefits, the scoping review 
reveals that only 12% [2, 53, 61, 80, 91, 107, 142, 157, 189, 
258] [230, 259, 260] of surrogate-based approaches have 
employed multi-fidelity methodologies, and their application 
appears sporadic over the years covered by the review. This 
limited utilization raises questions about the popularity and 
perceived benefits of multi-fidelity methods in this specific 
field. It is unclear whether this lack of widespread adop-
tion is due to a general underutilization of these methods in 
the industry, or if there exist ambiguities and uncertainties 
regarding the actual advantages of integrating multi-fidelity 
approaches in surrogate-based optimization for marine engi-
neering applications. This observation points to a potential 
area for further investigation and clarification, as the effec-
tive use of multi-fidelity methods could significantly impact 
the efficiency and accuracy of optimization processes in this 
domain.

In concluding the discussion on surrogate-based optimi-
zation, it is crucial to recognize the role of adaptive sampling 
or active learning methods in enhancing the effectiveness 
of these models 261. Such techniques, for both single- and 
multi-fidelity methods, start with an initial DoE, subse-
quently adapted by incorporating new samples x⋆ in areas 
most beneficial for optimization. A variety of strategies have 
been employed for this purpose, including, among others, 
the so-called acquisition function � based on: the validation 
of the best found [54, 64, 80, 86, 108, 151, 154, 180, 193, 
244], the maximum uncertainty [107, 157], the expected 
improvement [34, 91, 157, 230], and lower confidence 
bounding [60, 157]. These methods aim to iteratively refine 

the surrogate model by focusing on regions of the design 
space where additional information can significantly influ-
ence the optimization outcome. Despite the apparent advan-
tages of these adaptive techniques, this scoping review indi-
cates that in 21% of the surrogate-based methods employing 
adaptive sampling approaches, the specific technique utilized 
remains unspecified. This lack of detail not only hinders the 
full understanding of the method’s implementation but also 
obscures the comparative analysis of different techniques’ 
efficacy. Given the potential impact of adaptive sampling 
on the accuracy and efficiency of surrogate-based optimiza-
tion, particularly in marine engineering applications, this 
represents a significant gap in the current literature. A more 
transparent and detailed reporting of adaptive sampling 
methods could provide deeper insights into their benefits 
and limitations, fostering their more informed and effective 
use in the field.

An example of how SBDO workflow shown in Fig. 6 can 
be extended to the use of a general single-fidelity surro-
gate approach, including active learning, is given in Fig. 11. 
The diagram illustrates how the surrogate model acts as an 
intermediary between the numerical solver and the optimi-
zation algorithm. This arrangement facilitates the applica-
tion of the optimization algorithm directly on the surrogate 
model to identify the optimal solution, denoted as xmin and 
f̂min . Concurrently, an active learning-driven optimization 
procedure operates in parallel. This procedure employs an 
acquisition function, � , to systematically pinpoint potential 
new candidate solutions x⋆ to be sampled. These candidates 
are then processed through the numerical solver if the prede-
fined stopping criterion has not yet been met. This dual-path 
approach integrates surrogate modeling with active learning 
to efficiently converge towards the optimum by balancing 
the exploration of the solution space and the exploitation of 
known high-potential areas. A further example of XDSM 
diagram extended to multi-fidelity methods can be found 
in [262].

3.5  Applications

Figure 12 shows the breakdown of the SBDO applications in 
marine engineering. The overwhelming majority of SBDO 
applications are dedicated to vehicle design (87%), which 
includes ships (see, e.g., [263–268]), submarines (see, e.g., 
[269, 270]), and various types of watercraft. This domi-
nant focus can be attributed to several factors: (i) marine 
vehicles often have complex design requirements balancing 
hydrodynamic efficiency, stability, load capacity, and speed, 
consequently SBDO provides a powerful tool to optimize 
these competing factors; (ii) the marine vehicle industry is 
highly competitive, with a constant demand for improved 
performance and efficiency and SBDO enables designers 
to explore innovative shapes and configurations that might 
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not be feasible through traditional design methods; (iii) 
the increasing environmental regulations and the push for 
energy efficiency drive the need for advanced optimization 
techniques to meet these stringent standards. The use of 
SBDO in the development of renewable energy solutions in 
marine settings, such as wave [22–25, 78, 186] and ocean-
thermal [271] energy converters, pumps [272], and tidal [13, 
14, 16–21], marine/ocean current [79, 81, 229, 241, 258, 
273], river hydrokinetic [101, 163], and offshore wind [173, 
182, 274] turbines, highlights its growing importance, cov-
ering 10% of the literature. This category’s smaller propor-
tion might be due to the relatively newer field compared to 

traditional marine vehicle design. Furthermore, the design 
of renewable energy systems involves complex interactions 
with the marine environment, requiring sophisticated models 
that can be challenging to optimize. The smallest category in 
the breakdown is offshore applications (3%), which include 
steel catenary risers [39, 219], deep-sea test miners [239], 
platforms and semi-submersible structures [26, 247, 275], 
mooring systems [164], and ocean bottom flying nodes 
[257]. Factors influencing this lower percentage include 
high stakes and safety concerns, as well as complex envi-
ronmental conditions. Offshore structures are often subject 
to stringent safety standards due to the high risks involved, 
possibly leading to a more conservative approach in adopt-
ing new optimization techniques. Moreover, the design of 
offshore structures must account for a wide range of envi-
ronmental conditions, making the optimization process more 
challenging.

Among vehicle design, Fig. 13 offers insights into where 
optimization efforts are being primarily focused. Specifi-
cally, 86% is composed of surface vehicles, 13% underwater, 
and the remaining 1% amphibious. The optimization of sur-
face vehicles can be pivotal in enhancing various aspects like 
hydrodynamic efficiency and seakeeping, resulting in less 
fuel consumption, improved stability and payload capacity. 
SBDO’s significant role in surface vehicle design may be 
due to the large economic and environmental impact of these 
vessels, driving a need for continuous improvement in their 
performance and efficiency. Underwater vehicles include 

Fig. 11  Example of extension of the XDSM diagram towards single-fidelity surrogate-based SBDO with active learning

Fig. 12  Occurrences of SBDO applied to marine engineering main 
applications fields
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submarines [72, 82] and autonomous underwater vehicles 
(AUVs, see, e.g., [178, 179, 183, 222]). The design opti-
mization of these vehicles focuses on aspects like efficient 
maneuverability, stability under water, and energy efficiency 
for extended mission ranges. The application of SBDO in 
underwater vehicle design indicates a focus on specialized 
performance characteristics unique to the underwater envi-
ronment, such as pressure resistance and stealth capabili-
ties. Finally, amphibious vehicles [37, 65] are specialized 
vehicles that operate both in water and in air or land. The 
design challenges for amphibious vehicles are particularly 
complex due to the need to optimize performance in two 
very different environments. SBDO can play a key role in 
balancing these dual requirements, optimizing aspects such 
as buoyancy, stability, and propulsion efficiency.

Due to the predominance of surface vehicles, a further 
breakdown has been conducted in this subfield. The sub-
categories are shown in Fig. 14. A significant focus on 
containerships (see, e.g., [234, 276]) in SBDO applications 
aligns with their vital role in global trade. Optimization for 
these vessels likely focuses on maximizing cargo capacity, 
fuel efficiency, and minimizing environmental impact, cru-
cial for cost-effective and sustainable operations. The Korea 

research institute of ships and ocean engineering (KRISO) 
container ship (KCS) represents the most used benchmark 
in this sub-category, see, e.g., [6, 51, 77, 89, 110, 117, 122, 
128, 180, 194, 234], serving as a standard reference model 
for various hydrodynamic studies. The optimization of mili-
tary [54, 277, 278] and patrol [87, 231] vessels underscores 
the importance of performance, stealth, and agility in these 
applications. SBDO can be instrumental in enhancing these 
attributes, contributing to the effectiveness and safety of 
naval operations. As for containerships, also military vessels 
have their specific standard benchmark, represented by the 
David Taylor model basin (DTMB) 5415 model, which has 
been extensively used for hull-form optimization purposes 
[2, 44, 53, 109, 114, 131, 139, 145, 154, 158, 189, 224, 226, 
260, 278]. The application of SBDO in tanker design (see, 
e.g., [278]) reflects the need for optimizing fuel efficiency 
and safety, given their role in transporting large volumes 
of liquid cargo, including oil and chemicals. The KRISO 
very large crude carrier (KVLCC2) model is the actual 
benchmark in this sub-category, see, e.g., [106, 245]. The 
application of SBDO in several further categories indicates 
a broad spectrum of optimization goals, from enhancing the 
efficiency of bulk carriers [111, 116, 214, 246] and fishing 
[47, 100, 115, 132, 140, 181, 232, 279] vessels to improv-
ing passenger comfort and safety in passenger’s vessels [99, 
127, 150, 236], including yachts [1, 9, 36, 70, 175, 176, 192] 
and cruise ships [48, 121]. The optimization of inland [10, 
94, 210, 225] and special ships also points to specialized 
requirements, perhaps related to shallow waters navigation 
or unique operational roles like research vessels [166, 280], 
survey ships [221], or offshore aquaculture [63, 119].

As shown in Fig. 14, the strongest emphasis on surface 
vessels is represented by multi-hull designs, such as cata-
marans and trimarans, suggesting a focus on seakeeping 
and efficiency, resulting in improved stability and speed. 
Multi-hulls present unique design challenges that SBDO 
can help address, particularly in balancing stability with 
performance. For these reasons a deeper analysis has been 
conducted on multi-hull vessels, revealing three main sub-
categories, which are catamarans, trimarans, and SWATH 
vehicles (see Fig. 15). Catamarans, with two parallel hulls 
of equal size, offer stability and spaciousness, making them 
popular for passenger ferries and recreational vessels. SBDO 
in catamaran design [85, 137] likely focuses on optimizing 
hull shape for stability [43, 107, 108] and reducing resist-
ance, improving fuel efficiency [52, 127, 142, 162, 242, 
282]. The standard benchmark model used for developing 
and assessing SBDO methodologies is represented by the 
Delft catamaran, see, e.g., [42, 112, 151, 152]. Trimarans, 
featuring a main hull with two smaller outrigger hulls, are 
known for their speed and stability, making them suitable for 
high-speed ferries and racing yachts. In trimaran design [57, 
125], SBDO can play a crucial role in optimizing the hull 

Fig. 13  Occurrences of SBDO applied vehicles sub-categories

Fig. 14  Occurrences of SBDO applied to surface vehicles sub-cate-
gories
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configuration for balance and speed [141, 174, 211, 238], 
ensuring structural integrity [201] while maximizing perfor-
mance [55, 104, 130, 134, 135, 147, 167, 283, 284]. The use 
of SBDO in trimarans can also address specific challenges 
like wave-piercing capabilities [254] and maneuverability, 
enhancing their performance in various marine conditions. 
SWATH vessels are designed to minimize hull volume at the 
water’s surface, reducing the impact of waves and provid-
ing a smoother ride in rough seas. SBDO in SWATH design 
[56, 58, 118, 161, 206, 230, 250, 252] is likely centered on 
optimizing the hull shape and configuration [61, 153, 249] 
to achieve the desired stability and seakeeping qualities [91, 
190], making them ideal for applications like research ves-
sels and coast guard ships. It should be finally highlighted 
that Fig.  14 does not account for the hull-form studies 
applied to the Wigley [97, 267] and systematic series S60 
[83, 177, 202, 223, 263] benchmark models because they 
cannot be included in any of the specified subcategories. 
Nevertheless, they have been used for specific development/
assessment of SBDO method [73, 74, 98, 124, 126, 129, 
133, 155, 171, 172, 187, 220, 276, 285], as well as for par-
ticular operational/environmental conditions, like high speed 
[228] and shallow waters [137], or retrofitting [11, 243].

Finally, a breakdown of SBDO applied to marine com-
ponents is presented in Fig. 16. Propulsors, including pro-
pellers [38], water jets [104, 240], and thrusters [253], are 
critical for the movement and maneuverability of marine 
vehicles. Shape optimization in this area focuses on improv-
ing hydrodynamic efficiency [5, 7, 46, 156, 185, 207, 259], 
reducing cavitation [8, 88, 92, 235], and minimizing noise 
[4, 168, 286]. The optimization could involve refining blade 
shapes and angles [12] to enhance propulsion efficiency 
while reducing fuel consumption [36, 49] and environ-
mental impact [10, 11, 90], including also retrofitting solu-
tions, like equalizing ducts [93]. Marine vehicle appendages 
include rudders [6], fins [66, 113], and keels [175], which 
play essential roles in stability and steering. Shape optimi-
zation in appendages [157, 169, 188, 191] aims to enhance 

hydrodynamic performance, improve maneuverability, and 
reduce drag [195]. This might involve optimizing the size, 
shape, and positioning of these components to achieve a bal-
ance between stability and agility [9, 70]. Structures likely 
encompass the hull and superstructure of marine vehicles, 
as well as substructures of offshore platforms [26, 173, 
247, 272, 274]. Shape optimization in structures focuses 
on enhancing overall hydrodynamic performance, maxi-
mizing space utilization, and ensuring structural integrity 
[40, 200, 201, 287]. In addition, it involves tweaking hull 
forms for better wave resistance, stability, and seakeeping 
qualities, crucial for efficiency and safety [68, 203], includ-
ing crashworthiness [143, 144, 198, 218]. In sailboats and 
sailing yachts, the optimization of sail shapes is vital for 
maximizing wind propulsion efficiency [244]. This involves 
determining the optimal curvature, material stiffness, and 
positioning of sails to harness wind power effectively, which 
is essential for performance in competitive sailing and lei-
sure cruising [34, 102]. Finally, anti-roll tanks are used to 
stabilize ships by reducing rolling motion caused by waves. 
Shape optimization in anti-roll tanks aims to maximize their 
effectiveness in damping roll motion while minimizing the 
impact on the vessel’s overall performance and weight dis-
tribution [166, 245].

The detailed breakdown of shape optimization in various 
marine vehicle components underscores the comprehensive 
and multifaceted nature of design challenges in marine engi-
neering. Shape optimization in each of these areas requires 
a deep understanding of fluid dynamics, material properties, 
and operational conditions. The focus on specific compo-
nents like propulsors, appendages, and structures reflects 
the industry’s commitment to enhancing performance, 
safety, and environmental sustainability. The optimiza-
tion of sails and anti-roll tanks highlights specialized areas 
where SBDO can significantly impact vessel performance 
and passenger comfort. This analysis demonstrates the criti-
cal role of shape optimization in advancing the design and 

Fig. 15  Occurrences of SBDO applied to multi-hulls sub-categories Fig. 16  Occurrences of SBDO applied to marine components follow-
ing the primary classification level
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functionality of marine vehicles. It highlights the technologi-
cal advancements in SBDO and its application in addressing 
the nuanced and complex design requirements of different 
components of marine vehicles.

Overall, this analysis underscores the adaptability and 
potential of SBDO across various facets of marine engineer-
ing, promising continued innovation and improvement in the 
design of marine vehicles, renewable energy systems, and 
offshore structures.

4  Discussion

The marine engineering field, while recognizing the advan-
tages of more comprehensive multi-objective and stochas-
tic optimization approaches, shows a marked preference for 
simpler, deterministic single-objective formulations. This 
trend results from the tendency to provide a simple and 
clear demonstration of new SBDO methodologies. At the 
same time, it highlights important areas for future growth 
such as the adoption of stochastic problem formulations, 
such as RDO, RBDO, and RBRDO. These approaches more 
accurately reflect the uncertainties characteristic of marine 
environments and align with broader trends in marine engi-
neering, including digitalization, sustainability, and evolv-
ing regulatory landscapes. The analysis of problem formula-
tions in SBDO studies reveals a landscape where constrained 
problems dominate, reflecting the complex nature of marine 
engineering challenges. However, the significant proportion 
of studies with unclear formulations and the apparent gap 
in the discussion of constraint-handling strategies highlight 
areas for improvement in SBDO research. Future studies 
would benefit from a more explicit focus on the nature and 
management of constraints, thereby enhancing the relevance, 
applicability, and impact of SBDO in marine engineering. 
The scarcity of MDO applications also highlights a poten-
tially huge area for growth and development in marine 
engineering research. As the field continues to develop, an 
increased recognition of the benefits of a more integrated 
multidisciplinary approach is expected. MDO is especially 
useful in tackling complex design challenges that encompass 
multiple engineering facets. Future research could focus on 
developing more accessible and efficient MDO methodolo-
gies, facilitating their broader adoption in marine engineer-
ing optimization problems.

The variety of parameterization techniques reflects a 
range of approaches to defining design spaces, while the 
distribution of design space dimensionalities reveals both 
a focus on more manageable problems and an interest in 
tackling more complex, high-dimensional optimization 
challenges. This analysis underscores the need for contin-
ued innovation in SBDO methodologies, particularly in 
addressing the challenges posed by high-dimensional design 

spaces, and overcoming the curse of dimensionality. Dimen-
sion reduction techniques such as factor screening, sensi-
tivity analysis, and dynamic space reduction are classical 
approaches to mitigate the curse of dimensionality. How-
ever, these techniques do not capture multi-modalities of the 
objective function and may therefore fail to find the optimum 
region. Unsupervised learning, feature extraction, and rep-
resentation learning such as KLE and POD overcome these 
issues and do not require objective function evaluations or 
gradients. These methods are based on geometrical variance 
and do not account for the relation between geometrical vari-
ation and the variation of the objective. The inclusion of 
physical (objective) information is therefore identified as a 
promising way to improve dimension reduction techniques. 
Nevertheless, for practical application in an industrial con-
text, where parametrization methods are mainly CAD-based, 
designers cannot easily retrieve the original design variables 
from the reduced design space (also known as the pre-image 
problem). It can be noted that a back-mapping procedure, 
called parametric model embedding (PME) [288], has been 
recently proposed. The PME simply extends the design-
space dimensionality reduction procedure based on KLE/
PCA using a generalized feature space that includes shape 
modification and design variables vectors together with a 
generalized inner product, building an embedded model of 
the original design parameterization.

The choice of numerical solvers in SBDO studies reflects 
an evolving landscape. The growing preference for RANS 
solvers over potential flow methods marks a shift towards 
more comprehensive fluid dynamics modeling. This transi-
tion aligns with the industry’s push towards capturing more 
complex, turbulent flows and the increasing availability of 
computational resources. However, the consistent but lim-
ited use of FEM solvers indicates a potential underutiliza-
tion in structural optimization aspects of marine engineer-
ing. Future research could benefit from a more integrative 
approach that combines RANS for fluid dynamics with FEM 
for structural analysis, potentially leading to more compre-
hensive and effective optimization in marine engineering.

In the field of engineering optimization, the emphasis 
is often on achieving an optimal solution in a single itera-
tion of an algorithm, reflecting the practical constraints of 
time and resources. Traditional stochastic global methods, 
while robust in exploratory capacity, typically require mul-
tiple iterations to ascertain solution reliability due to their 
inherent randomness. This necessitates a shift towards 
deterministic variants of global evolutionary strategies and 
population-based methods. These deterministic adaptations 
aim to retain the broad exploratory characteristics of global 
methods but enhance the consistency and predictability of 
outcomes in each individual run. Additionally, the strate-
gic integration of these deterministic global methods with 
deterministic local search techniques marks a significant 
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advancement in optimization practice. This hybrid approach 
synergistically merges the expansive exploration capabilities 
of global methods with the focused, efficient refinement of 
local optimization techniques, such as gradient-based or line 
search methods. The result is an approach that effectively 
leverages the strengths of both methodologies, facilitating 
convergence to the most optimal solution within the con-
straints of a single algorithmic execution. Such develop-
ments in deterministic global methods, complemented by 
hybridization with local searches, are particularly salient in 
engineering contexts. They offer a streamlined and effec-
tive means of identifying the global optimum, aligning with 
the practical exigencies of engineering optimization where 
timely and reliable solutions are paramount.

The trends and preferences in optimization algorithms 
and surrogate methods in SBDO reflect an evolving field that 
continually adapts to the intricacies of marine engineering 
design problems. The shift towards global optimization and 
the increasing reliance on surrogate-based methods indicate 
a strategic response to the challenges of high-dimensional, 
complex design spaces. This evolution underscores the 
industry’s commitment to finding a balance between com-
putational efficiency and the need for thorough, accurate 
design exploration. It can be noted how the extension to 
multi-fidelity approaches, as well as, the integration of active 
learning/adaptive sampling procedure for the surrogate train-
ing process, is however still limited. These two branches 
represent a pathway to follow for future research to assess 
clearly the pros and cons of multi-fidelity versus single-
fidelity methods, as well as identify the most efficient and 
effective DoE in combination with active learning/adaptive 
sampling procedure. It may be emphasized that, as for the 
problem formulation, the literature presents several unclear 
statements on which DoE is used for surrogate training, as 
well as what kind of acquisition function has been used in 
the case of active learning. This represents a huge gap in 
interpretability and repeatability of the methodologies, that 
have to be filled.

Finally, the current distribution of SBDO applications 
in marine engineering indicates a strong focus on vehicle 
design, reflecting both the industry’s needs and the matu-
rity of optimization techniques in this area. However, the 
presence of renewable energy and offshore applications, 
although smaller in proportion, is significant. It suggests 
a growing recognition of SBDO’s potential in these areas, 
particularly in response to global trends toward sustainable 
energy and the need for environmentally resilient offshore 
infrastructure. As the field of SBDO evolves, it might be 
expected to see a diversification in its applications. The 
renewable energy sector, in particular, may experience 
growth in SBDO applications as the demand for sustaina-
ble energy solutions increases. Furthermore, advancements 

in SBDO methodologies might lead to greater adoption in 
offshore applications, addressing the unique challenges 
posed by these environments. The distribution of SBDO 
applications across different types of marine vehicles 
reflects the diverse challenges and priorities in marine 
vehicle design. The prominence of SBDO in surface vehi-
cle optimization aligns with the global scale and economic 
significance of these vessels. The focus on underwater 
vehicles highlights the technological advancements and 
specialized requirements in this sector. Meanwhile, the 
application in amphibious vehicle design, although likely 
less in comparison, underscores the complexity and inno-
vation in multi-environment vehicle design. SBDO is a 
crucial tool in advancing the design and performance of 
various types of marine vehicles, addressing unique chal-
lenges, and contributing to the evolution of more efficient, 
capable, and environmentally friendly marine transpor-
tation and exploration technologies. The breakdown of 
SBDO applications across various types of surface ships 
demonstrates the versatility and significance of optimiza-
tion techniques in addressing the diverse design and opera-
tional challenges of different ship categories. The focus 
on containerships and military vessels reflects economic 
and strategic priorities, while the emphasis on multi-hulls 
indicates an interest in innovative hull designs. The diverse 
application across other ship types, such as tankers, bulk 
carriers, fishing, and passenger ships, highlights the broad 
applicability of SBDO in enhancing various aspects of 
marine vessel design and operation.

In summary, while SBDO has become a cornerstone 
in marine engineering, there is a clear path forward for 
further advancements. Embracing complex optimization 
methodologies, expanding the use of MDO, and integrat-
ing various computational solvers could pave the way for 
more innovative and sustainable solutions in marine engi-
neering. These developments, coupled with the broader 
trends in digitalization and environmental consciousness, 
are poised to significantly shape the future of SBDO in 
this field.

It finally should be noted that although focusing exclu-
sively on peer-reviewed journal papers has ensured the 
academic rigor and reliability of the sources reviewed, it 
may have limited the representation of industrial applica-
tions of SBDO in marine engineering. Industrial projects, 
especially those involving multi-objective and constrained 
optimization problems as well as multi-disciplinary 
efforts, are often not documented in the academic data-
bases surveyed. This is due to various factors, including 
proprietary considerations and the publication venues typi-
cally preferred by industry practitioners, such as industry 
magazines, conference contributions, and books detailing 
larger research and development projects.
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5  Conclusions

The scoping review conducted in this study underscores 
the increasingly pivotal role of simulation-based design 
optimization (SBDO) in marine engineering. Our findings 
illuminate how SBDO is not just a facilitator of improved 
performance and cost-efficiency in marine engineering 
systems and components but also a catalyst for innovation 
and adaptation in the face of evolving technological and 
environmental challenges.

Significantly, our analysis reveals a low use of more 
sophisticated, multi-objective, and stochastic optimization 
approaches in SBDO, despite the complex, dynamic nature 
of marine environments. There remains a predominant 
reliance on simpler, deterministic single-objective formu-
lations, highlighting a crucial area for future development. 
This gap underscores the necessity for more advanced 
algorithms that can more accurately model and navigate 
the uncertainties inherent in marine engineering, including 
factors like wave dynamics and ocean currents.

Moreover, the review highlights the emergence of 
high-fidelity solvers in SBDO, signaling a shift towards 
more nuanced and detailed simulation capabilities. This 
advancement is indicative of the field’s progression 
towards tackling more complex optimization challenges, 
further driven by the integration of active learning and 
adaptive sampling techniques in surrogate-based optimiza-
tion models and the development of design-space dimen-
sionality reduction procedures for addressing the curse of 
dimensionality problem.

In conclusion, this scoping review not only reaffirms 
the significant potential of SBDO in revolutionizing 
marine engineering practices but also identifies critical 
pathways for future research. These include the need for 
more integrative, multidisciplinary approaches, and the 
development of optimization methods that are both com-
putationally efficient and robust in the face of the unique 
challenges posed by the marine environment. As the field 
continues to evolve, these insights will be instrumental in 
guiding the next generation of research and innovation in 
SBDO, paving the way for more sustainable, efficient, and 
advanced marine engineering solutions.
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