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Abstract
Car telematics is a large and growing business sector aiming to collect mobility-related data (mainly private and commercial 
vehicles) and to develop services of various nature both for individual citizens and other companies. Such services and appli-
cations include information systems to support car insurances, info-mobility services, ad hoc studies for planning purposes, 
etc. In this work we report and discuss some of the key challenges that a car telematics pilot application is facing within the 
EU project “Track and Know”. The paper introduces the overall context, the main business goals identified as potentially 
beneficial of big data solutions and the type of data sources that such applications can rely on (in particular, those available 
within the project for experimental studies), then discusses initial results of the solutions developed so far and ongoing lines 
of research. In particular, the discussion will focus on the most relevant applications identified for the project purposes, 
namely new services for car insurance, electric vehicles mobility and car- and ride-sharing.

Keywords Mobility · Big data analytics · Car insurance · Mobility services · Carpooling

1 Introduction

Mobility data generation and analysis is at the core of the 
business of many mobility–related companies, including car 
insurances and associated technology providers. Indeed, pro-
viding fresh and detailed information about the mobility of 
vehicles and single users can be fundamental in optimizing 
services. This is the case for car insurances, where a good 
knowledge of the driving attitude of the customer allows to 
identify the most appropriate contractual conditions, typi-
cally associated with the risk of causing accidents. Indeed, 
risky customers create risks both for their safety and for the 
car insurance profit, and the best customers for car insur-
ance providers are indeed the safe ones. For this reason, 
in the long term the business objectives of the company 
should include not only identifying the risky subjects, but 
also providing them useful feedbacks to correct their risky 
behaviours. Similarly, services aiming at supporting alterna-
tive transportation solutions, such as car pooling or electric 

vehicles, require to know which kinds of mobility needs the 
user has, and then infer what kind of changes to her daily 
routines are needed to fit the requirements of the new solu-
tion. In case of car pooling, that means aligning with the 
mobility of other users; in the case of electric vehicles, we 
have to take into consideration the limited autonomy of cur-
rent batteries, the relatively low availability of recharging 
points, and the relatively long recharge times.

In this paper we summarize the objectives and the chal-
lenges of a pilot application scenario of the EU project Track 
and Know in the car telematics sector, mainly addressing 
services and applications in the three areas mentioned above: 
car insurance, electric vehicle mobility and shared-mobility. 
In particular, the main goal of the application is to analyze 
the big mobility data currently produced by car telematics 
technology providers for routine tasks (e.g. providing driv-
ing statistics for car insurance companies) and then extract 
insights that can be useful for advanced services.

The data sources generated by car telematics typically 
include movement traces of vehicles that mount an ad hoc 
device. Such device periodically establishes the position of 
the vehicle through GPS technology and also measures other 
physical characteristics, such as speed and accelerations. In 
particular, GPS traces are usually collected at a fixed rate or 
through fixed rules (for instance combining constraints on 
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time passed and distance traveled since last recorded loca-
tion), while acceleration data are mostly recorded when spe-
cific conditions are met, for instance the overall acceleration 
exceeds some given threshold. One standard functionality 
of this kind of devices is to produce an alert in case of sus-
pected crash, detected as very large and sudden accelera-
tions, which are timely sent to a human operator to check 
whether a real crash happened (for instance by calling the 
vehicle owner) or it was a false alarm.

These data bases provide a good opportunity for develop-
ing mobility data analysis models that try to recognize the 
risk factors behind vehicle crashes, both for being able to 
predict them and to provide the users indications of how to 
reduce their (expected) risk. Also, the analysis of long-term 
mobility needs of a user can provide objective and detailed 
information about the impact that a change in mobility 
modalities could have on her daily needs. In the context 
of electric vehicles, in particular, battery recharge is cur-
rently needed more frequently and takes much longer times 
than fossil fuel-based cars, therefore the habits and timings 
established in the user’s daily activity might change when 
switching to electric power. Clearly understanding what kind 
of changes would take place, how big they are, what portion 
of the mobility they would affect and what ecological and 
economical impact they would bring, would provide the user 
the means for taking an informed decision. Similarly, adopt-
ing carpooling as (exclusive or complementary) transporta-
tion means would clearly require some efforts and changes 
in the daily mobility. Carpooling can take place only for 
those movements that have a match with other users’ travels, 
therefore it would be helpful to measure in a data-driven 
way what is the “carpoolability” ratio of a specific user’s 
mobility. Also, such matches are never perfect, and require 
the user to anticipate or delay the trip, as well as to move 
(typically walking) to meet the travel partner. Finally, a com-
plex daily mobility might require the interaction with sev-
eral different users (the different drivers that give the user a 
lift), which might make carpooling overall cumbersome and 
unsustainable in the long run. Clearly, carpooling has posi-
tive effects in economical and ecological terms. All these 
factors, and possibly others, contribute to define pros and 
cons of carpooling for the single user, helping her to decide 
whether to adopt it or not as well as companies and public 
bodies to evaluate the most likely potential of carpooling on 
a given geographical area.

This contributions of this work can be summarized in 
two directions:

• first, a set of interesting application-driven analysis prob-
lems are defined, some of them new, some others adapted 
from existing issues;

• second, a set of preliminary results have been obtained on 
some of the challenges discussed. While far from defini-

tive, the experiments support our initial ideas, confirm-
ing their feasibility and potential, which however, will 
require further investigation to turn they into solid and 
ready-to-market solutions.

In the next sections we briefly present the application 
context and questions (Sect. 2), the data sources such appli-
cations are based on (Sect. 3), the main technical challenges 
identified (Sect. 4), and some preliminary results over some 
of the research directions discussed (Sect. 5). Finally, some 
conclusive remarks close the paper.

2  Innovative business objectives for car 
telematics

The car telematics core business is to collect data from 
telematics devices and develop advanced solutions and 
algorithms for sophisticated data analysis, in order to help 
insurance companies assessing the insurance risks, provide 
services for the management of accidents, and to facilitate 
communication between companies and customers. Further-
more, an increasing number of car telematics companies pro-
vide services to car manufacturers, the main activities being 
the following: developing statistics algorithms on individual 
driving styles and habits, help the car manufacturer to create 
custom warranty programs derived from driving behavior 
and offer personalized services to its own customers.

We divide the discussion into the three main application 
areas of the demonstrator: car insurance, electric mobility, 
shared mobility.

2.1  Car insurance

Car insurance is one of the most important application fields 
of car telematics, and the movement data collected by the 
latter is typically used to provide several services to end 
users, such as pay-as-you drive contracts, anti-theft control 
and prompt emergency rescue in case of accidents.

A fundamental task of car insurance companies is to find 
the most appropriate policy pricing for a customer, which 
consists in a trade-off between profit and competitiveness. 
The most intuitive way to do it is to estimate the customer’s 
risk of having accidents in the near future, since high-risk 
ones are likely to cause the company a loss (paying the costs 
of her accidents) while low-risk ones are more likely to pro-
vide a plain profit. This business case stems from this idea.

The basic objective is not only to recognize the real risk 
level of a customer, but also to understand possible causes. 
Therefore, we aim to two distinct results:

• Predicting the customer’s risk score given a car insurance 
customer, provide a risk score relative to the near future, 
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e.g. the next year or the next 3 months. We expect this 
estimate to be greatly dependent on how the customer 
drives and the conditions of the surrounding environment 
(traffic, etc.). The methodologies proposed are based on 
the computation of individual driving features, describ-
ing how much the user drives and how much dynami-
cally. More details and preliminary results are given in 
Sect. 5.

• Inferring risk mitigation strategies given a car insurance 
customer and her risk score, we would like to identify 
the characteristics of her driving that mostly determine 
her risk score. From a prescriptive viewpoint, that will 
provide the customer indications of how to improve her 
risk score, with benefits for her (in terms of safety and 
insurance costs) and the insurance company (in terms 
of costs for accidents). The general approach currently 
under development will try to query the predictive 
models adopted, in order to understand which features 
decided for the prediction (see Sect. 4 for some more 
details).

As the raw mobility data collected by car telematics com-
panies is limited to positions and events of the vehicle, with 
no vision of what happens around it, it is clear that in order 
to achieve our main goals we need to add some information 
about the context. Similarly, the raw mobility data describes 
elementary events (position, acceleration, etc.) whereas any 
proper modeling requires a higher-level vision of what is 
happening to the user. Such higher-level ones should pro-
vide some clear semantics, e.g. some typical maneuvers that 
involve sequences of deviations, sudden decelerations, etc. 
Recognizing and making them explicit is expected to be an 
important need.

Finally, the data involved in this business case imposes 
several access restrictions that inhibit the end-user of appli-
cations to directly access them. The motivations for such 
restrictions range from individual privacy to competitive 
advantage of the data provider. Therefore, in order to make 
the solutions developed practically applicable in an indus-
trial scenario the following important requirement emerges: 
the data processing that starts from the raw data and termi-
nates with the final results must work essentially unmanned, 
i.e. without the user interacting or accessing anything but 
highly aggregated data, e.g. the final risk scores and associ-
ated mitigation strategies.

2.2  Electric mobility

While the EVs industry and their adoption is expanding 
in most EU countries, the switch from fossil fuel to EVs 
still suffers from a lack of a clear understanding of the 
pros, cons and habit changes that each user is going to 
experience. The overall target of this business case is to 

analyze the mobility of a individual and provide her an 
objective, data-driven information to detect and quantify 
possible issues in switching to an fully electrical vehicle. 
For instance, the limited autonomy of batteries and the 
current limited availability of recharge stations in some 
areas might require to heavily change the route of some 
trips of the user, requiring longer travels and also much 
longer refill times (battery recharges on average vehicles 
can take up to some hours, against the few minutes needed 
for typical gas refills). Such information can help compa-
nies and individual users to evaluate the ease of conversion 
to EV mobility.

In the general context of urban mobility, electric mobility 
requires the development of new systems that are natively 
integrated with control, diagnostics and vehicle connectiv-
ity systems. With the new systems under development there 
will be the possibility for each driver to be able to monitor 
the performance of the electric vehicle with simple Apps, 
as well as allowing the use of a lot of information on the 
status of the vehicle components (e.g. battery charge level, 
etc.) or to receive alerts in case of interruption of the top-up, 
unexpected movements, and access to real-time positioning 
services or sharing of driving data. Furthermore, the grow-
ing spread of electric vehicles will also lead to an evolution 
in the insurance world, since the components that make up 
electric vehicles, such as batteries, will also be insured. The 
impact will also be significant in the long-term fleet rental 
sector, where the transition to electric mobility will favor the 
spread of new business models, such as pay as you charge, 
always based on telematics.

The main focus of this demonstrator is on understanding 
the impact of EV switching on the individual:

• Estimate costs/benefits of EVs for the individual given an 
individual customer with her mobility history, evaluate 
her costs or savings in terms of money and time in case of 
switching towards an EV, i.e. provide detailed description 
of what kind of habit changes, time loss and additional 
distances traveled the user is expected to incur into, in 
case an EV is used in her daily mobility. That should take 
into consideration daily mobility needs, and therefore 
usual paths, as well as charging point availability (with 
corresponding detours from the fastest trip) and charg-
ing times. The solutions under development in Track and 
Know will exploit a complete, network-based view of the 
individual mobility, simulating the battery consumption 
of the user for her daily trips, and contextualizing pos-
sible issues against the part of mobility they affect.

Such general goal will require to understand the mobility 
needs of the users both at the individual and at the collec-
tive level, identifying the most frequent areas of interest or 
the most frequent or typical routes adopted, as that can help 
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assessing the relevance (weight) of the area or route for the 
main objective.

A key task involved is to derive the consequences of the 
limited autonomy and longer recharge times of EVs com-
pared to traditional vehicles, since these two factors might 
make some fossil fuel-based trip impossible or uncomfort-
able for an EV. Finding EV-compliant alternative routes for 
the travels of a user, possibly differentiating among trips of 
different nature (systematic vs. occasional, long vs. short, 
easy to substitute with public transport vs. others), and 
measuring their efficiency constitutes a starting point for 
the main objective.

2.3  Shared mobility

Sharing vehicles (either through car-sharing or by ride-shar-
ing, i.e. using the user’s private vehicle) is a basic measure 
to reduce traffic congestions, the derived environment foot-
print, and the personal costs (fuel consumption as well as 
maintenance costs).

Car-sharing is increasingly becoming a popular, flexible 
and affordable mobility solution that grows progressively in 
the metropolis all over the world. It is a simple, ecologically 
sustainable and alternative paradigm of mobility, especially 
from an environmental point of view, because it decreases 
the mean insurance (pay-as-you-drive pricing will decrease, 
since the personal vehicle is used much less) and mainte-
nance costs of the car (less kms driven mean less vehicle 
wear), especially in congested urban centers.

The latest research in the area of Shared Mobility predicts 
that the global carpooling market will grow at a compound 
annual growth rate (CAGR) of 8% from around 22 million 
users in 2017 to 47 million in 2025, with more than 500,000 
vehicles by 2025 (Frost and Sullivan 2016). For this reason, 
car telematics companies are venturing into providing tech-
nological solutions for Shared Mobility that also include 
advanced fleet management and insurance telematics for 
operators in the Mobility sector and for rental companies.

Despite the clear difference between the two cases, EVs 
mobility and vehicle/ride-sharing have several common 
points. In particular, both of them would greatly benefit from 
a clearer understanding of the pros, cons and habit changes 
that each user is going to experience when she joins it. The 
overall target of this business case is to provide objective, 
data-driven means to measure such aspects and let service 
providers and individual users to evaluate the ease of adop-
tion of car-pooling and/or car-sharing.

We remark that studying car-pooling and studying car-
sharing are rather distinct problems, yet they share a large 
part of concepts and basic tasks, and therefore they are dis-
cussed here as a unique subject.

Our main focus here is the following:

• Estimate costs/benefits of car/ride-sharing for the indi-
vidual given an individual customer with her mobility 
history, evaluate her costs or savings in terms of money 
and time in case of adoption of car/ride-sharing. That 
should take into consideration daily mobility needs, and 
therefore the importance that each trip has in the overall 
mobility demand of the individual. The solution under 
development in Track and Know exploit a network-based 
view of the individual mobility, which makes it possible 
to find travel partners that not only can share a trip, but 
whose overall mobility matches the user’s one, making 
it easier to organize the daily mobility.

Synchronizing with other users (to travel together in the 
ride-sharing case, or to take the shared car in the other case) 
usually affects the efficiency of the travel in terms of time 
delays and slight changes in the itinerary. Finding car/ride-
sharing alternative routes for the travels of a user (maybe 
focusing on the most relevant ones) and measuring their 
efficiency constitutes a starting point for the main objective.

3  Data collection and preprocessing for car 
telematics applications

The main information sources involved in this application 
context are related to the mobility of individuals (in the spe-
cific case, car insurance customers). In particular, all the 
problems and solutions discussed in this paper are based on 
the following types of information, for a large set of private 
vehicles:

• Positions: a list of timestamped WGS84 GPS position 
(latitude and longitude) related to anonymized vehicles 
(via anonymous IDs) with an additional labelling about 
the vehicle travelling status, the satellite connection sta-
tus and the cardinal orientation of the car. This data is 
collected at an average rate of one position every 1.5 min, 
though there are some exceptions.

• Events: position data (as above) enriched with threshold-
base labels describing motion events occurring in a given 
times stamp, such as harsh acceleration, harsh braking 
and (possibly multiple) harsh cornering, with additional 
accelerometer metrics related to each event position. 
These data are collected whenever the accelerometer 
detects an acceleration exceeding predefined parameters 
(not disclosed to the project).

• Crashes: position data (as above) related to crash events 
with additional accelerometer metrics (tri-axial average 
and tri-axial maximum accelerations). This dataset con-
tains all machine-detected crash conditions, basically 
meaning violent decelerations, including false positives. 
The records report the result of a manual validation per-
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formed by a human operator, therefore distinguishing the 
true positives from the negative ones.

• Car models: a list of registries about car age, brand and 
model, related to the anonymous vehicle IDs.

In particular, the data sample involved in the Track and 
Know project was provided by the OctoTelematics company 
(www.octot elema tics.com), currently the largest player in 
the global market, and covers three geographical areas (see 
Fig. 1), representing three very different and important situ-
ations to be considered in the analyses and services:

• A very large city (London, UK).
• A moderately large city (Rome, Italy).
• A whole region, composed of variable-size cities (Tus-

cany, Italy).

Also, the data provider has different penetration indexes 
in the two countries involved (the difference is an order of 
magnitude), thus providing a natural testbed for analysis 
tools over heterogeneous data richness, including transfer 
learning issues.

The large-scale collection of mobility data inevitably 
brings several quality issues due to a number of causes, 
yielding either imperfect records (for instance, due to 
GPS error or incorrect device configuration) or missing 
ones (for instance, lost data packages). Trying to mitigate 
such issues requires an ad hoc approach that studies the 
characteristics of the data sample at hand. In particular, 
several analyses require the reconstruction of trips out of 
raw GPS points recorded for each device: determining the 
start and end of each trip in a precise way requires specific 
heuristics (e.g. Mousavi et al. 2017) and, in particular, 
in our scenario we adopted a spatio-temporal criterion, 

as described in Sect. 5; reconstructing the detailed path 
(which roads were traversed) might require map matching 
and similar solutions; also, singling out noise and errors is 
important for obtaining good results, yet, while it is rela-
tively easy to identify large anomalies (which we imple-
mented in our preprocessing steps simply removing points 
very far from the others), detecting those of moderate size 
in the data (e.g. a distortion large enough to move a point 
over the wrong road segment, yet too small to be spotted 
by visual inspection) can be very challenging.

Finally, several applications require to associate some 
semantics to the raw data. That is currently realized in 
the project by simply joining external information, for 
instance by attaching to each GPS location the weather 
conditions, local traffic and points-of-interest around it. An 
alternative, more sophisticate approach consists in infer-
ring such semantics from the available data; for instance, 
it is currently under study the identification of recurrent 
trips or the spatial aggregation of driving events aimed 
to identify areas were some specific behaviours are more 
frequent, e.g. bad road conditions leading to frequent sud-
den decelerations.

4  Technical challenges and related works

The business cases described in the previous section pre-
sent several challenges from the technical viewpoint, since 
they mostly require a deep understanding of human mobil-
ity starting from raw data lacking any detailed semantics. 
In this section we discuss some of the most important 
ones, linking them to existing literature and highlighting 
the specificities of our context.

Fig. 1  Geographical areas covered by the data employed in the demonstrator

http://www.octotelematics.com
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4.1  Individual‑centered mobility modeling

A specific type of semantics is related to the meaning that 
the different parts of the mobility have for the individual: 
recurrent vs. systematic trips, frequent locations vs. single 
visit ones, transit locations vs. long stays, etc. To infer this 
type of information we need to model the mobility of the 
individual as a whole, creating a single, complete picture of 
it. This process is currently ongoing exploiting Individual 
Mobility Networks (Rinzivillo et al. 2014), a network-based 
representation that integrates important locations, move-
ments and their temporal dimension in a succinct way. Such 
model allows several different types of inference (detecting 
the purpose of the trip, simulating realistic mobility agen-
das, etc.), in contrast to others that are tailored around a 
specific objectives, e.g. predicting next location (e.g. Amirat 
et al. 2019). Integrating as much information as possible in 
a single formalism and inferring from it mobility indicators 
useful for the predictive/prescriptive purposes of the dem-
onstrator are among the key challenges.

4.2  Prediction of (crash) risk probability

Risk in this context means probability of accidents, which 
are (in statistical terms) rare events. That, together with the 
lack of a clear set of predictive indicators to adopt, make the 
risk prediction a difficult task.

The existing literature addresses the problem from 
various perspectives. A large body of works focus on real-
time prediction of individual crashes, i.e. try to identify 
the events that lead to a crash in next few seconds, thus 
providing feedbacks to the user as she drives, e.g. Wang 
et al. (2010). Similarly, though following completely dif-
ferent directions, Yutao et al. (2017) try to related crashes 
to both behavioural characteristics and physiologic param-
eters. Other approaches work on identifying areas that show 
characteristics usually associated with accidents, such as 
increased traffic density, adverse weather conditions, etc., 
e.g. Lee et al. (2003) and Mannering and Bhat (2014). While 
extremely useful, such approaches result to be not applica-
ble to fields like car insurance, where we are interested in 
creating a general risk profile of the user, thus implicitly 
involving the prediction of her crash risk in the long run, 
such as few months in the future. Only few, early works are 
available on this direction, e.g. Wang et al. (2017), limited 
to simplistic approaches.

The approach under development will take into consid-
eration several aspects, ranging from the driving behaviour 
of the user to the types of environment she usually traverses 
– the latter includes both static information, such as road 
categories, and dynamic ones, such as weather during driv-
ing time.

4.3  From prediction to prescription

Achieving a good prediction accuracy often conflicts with 
the understandability of the predictive model. It is well 
known that in difficult settings very complex models (deep 
learning, large random forests, etc.) can achieve far better 
performances than simpler ones (decision trees, Bayes-
ian classifiers, etc.); yet, the former are usually not human 
understandable. One of our main objectives is not only to 
provide good predictors for the car crash application, but 
also extracting risk mitigation guidelines for the user (the 
driver), which means we are interested in understanding 
which factors made a driver a risky one, in order to propose 
changes in her behaviour that can reduce the risk. While 
that makes simpler models more appealing, the project will 
explore also methodologies coming from the “explainable 
AI” community (e.g. Guidotti et al. 2018), aimed to extract 
from a black-box model an explanation for each prediction 
obtained. Current work within the project is addressing the 
problem exploring approaches based on adversarial learn-
ing (Kurakin et al. 2017), which traditionally tackles similar 
problems yet with very different purposes, and counter-fac-
tual analysis (see e.g. Poyiadzi 2019).

4.4  Models transferability

The various types of mobility models involved in this 
demonstrator are expected to be highly dependent on the 
specific geographical area under study. For instance, it has 
been empirically verified that the trip purpose prediction 
models proposed by Rinzivillo et al. (2014) work very well 
in the areas where they were extracted, their performances 
degrade dramatically if applied to areas with different char-
acteristics. At the same time, not all areas of interest for the 
demonstrator are equally well covered by data, due to the 
non-homogeneous penetration of tracking devices, making 
it difficult to build different models for different areas. For 
instance, the penetration of GPS vehicle trackers in UK is 
an order of magnitude lower than Italy, and other countries 
where this market just started show even lower values. All 
this calls for methodologies that make it possible to adapt 
models built in data-rich areas to less rich ones, basically a 
geographical instance of the general transfer learning prob-
lem (Pan and Yang 2009).

4.5  Defining proper notions of electrificability 
and shareability of individual mobility

Measuring how much the mobility of an individual is com-
patible with alternative transport modalities – in our case, 
EVs and car sharing/pooling, both with their own constraints 
– is a not well defined problem. Existing work measured 
the ratio of trips that are perfectly compatible with them 
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(Guidotti et al. 2017; Janssens et al. 2012), or simply com-
pare general mobility demand (based on trip length dis-
tribution and other overall descriptors, for instance, as in 
Donati et al. 2015) but without a more realistic evaluation of 
the effort required on behalf of the user to adapt her whole 
mobility. In the case of EVs, that means changing times and 
routes to intercept charging stations when needed. Moreover, 
mobility optimization might intersect energy distribution 
issues, including the balance of energy consumption on the 
grid or how to use vehicles as potential distribution means, 
as studied in Neaimeh et al. (2015); for car sharing/pooling, 
it means to change times of travels, or even reschedule part 
of them. Providing such definitions and the tools for com-
puting their values is another challenge the project (and this 
demonstrator in particular) is going to pursue.

5  Preliminary results and insights 
on the data

This section summarizes some of the first insights and pre-
liminary results obtained over the datasets adopted in the 
demonstrator, and focused on the main demonstrator objec-
tives and most promising analytical tools.

All experiments are based on a trajectory extraction 
process that scans the raw GPS traces of an individual in 
chronological order, filters out noisy points (here defined as 
those whose distance from the previous point would imply 
an average speed above 250 km/h), and identify stops (here 
defined as moments where the vehicle moved less than 50 m 
in the last 20 min). A trajectory is then defined by the points 
between two consecutive stops.

5.1  Mobility‑based characterization 
of geographical areas

Most analyses and models extracted from data are highly 
dependent on the characteristics of the territory under 
study. In particular, it is known that mobility models 
extracted in one region might not work well in other ones, 

thus raising an issue of transferring models across differ-
ent areas. In this direction, the technical activities of the 
Track and Know project are addressing the problem of 
characterizing different areas based on a wide variety of 
indicators, with the aim of better assessing the similarity 
of different geographical areas (the idea being that models 
are more easily transferrable between similar areas) and 
possibly devise mechanisms to adapt models across areas 
with different characteristics.

The initial exploration on this line considered the follow-
ing families of mobility-based city indicators:

• Spatial Concentration of population: various measures 
of concentration are computed over each city, including 
spatial entropy and Moran’s I, based on a fixed tessella-
tion of the territory.

• Traffic flows distribution: starting from the traffic net-
work among the sub-areas of a city, various indexes are 
computed, such as the modularity index (Newman 2006), 
as well as the fitness of such traffic distribution with 
standard mobility models like the gravitational model 
(IZA World of Labor 2016).

• Distribution of IMNs properties: for each individual esti-
mated to be resident in the city, we build his mobility 
network (Rinzivillo et al. 2014) and analyze its network 
features, such as number of nodes, etc.

• Road network and traffic concentration: the static struc-
ture of roads in the city is analysed, by computing for 
instance their spatial concentration, and by joining them 
with real mobility data we measure how much the traffic 
is concentrated in a few km of roads.

Examples of the above mentioned measures are shown in 
the following Fig. 2, plotting their spatial distribution over 
the Tuscany region. It is clearly visible that most indicators 
have a rather high heterogeneity over the territory, meaning 
that each city shows some difference from others, including 
close ones. At the same time, each indicator is significantly 
different from the others, thus bringing potentially useful 
and non-redundant information.

Fig. 2  Spatial distribution of sample city indicators over the Tuscany region: a population entropy, b modularity, c fit to gravitation model, d no. 
of nodes in IMNs, e roads concentration, f traffic concentration
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Discussion of results the experimental results obtained 
confirmed our working assumption about the possibility of 
identifying local, discriminating properties of a territory 
looking at its mobility in conjunction with its geography. 
The usability of such features has been tested on some spe-
cific analysis task (Sect. 5.3), yet it is still to understand how 
well they capture the phenomena they describe, and whether 
they are correlated with other contextual features.

5.2  Individual mobility networks

Based on the paradigm introduced by Rinzivillo et  al. 
(2014), the mobility of an individual can be summarized 
by a graph representing the locations visited by the user 
(inferred from the single start- and end-points of each trip 
performed) and the transitions between locations, together 
with spatio-temporal distributions associated to each loca-
tion and transition. IMNs are a basic tool to analyze the 
population of an area through the characteristics of the 
individual that live there. First explorations show that the 

differences across different areas are not easy to spot through 
direct visual inspection, as shown in the following Fig. 3.

Therefore, new ways of representing, aggregating and 
visualizing IMNs are under study, to enable a more effec-
tive comparative analysis of different territories.

In addition to that, human mobility is a dynamic phe-
nomenon that can change significantly in time, and therefore 
IMNs can represent the gradual evolution of users’ chang-
ing mobility needs. The following Fig. 4 shows an example 
where the IMN of a user has been computed over 2 months 
(left) and then recomputed over the following 2 months 
(right).

In can be easily seen that while the core parts of the user’s 
mobility are preserved (north of the city), its spatial range 
extended significantly over new areas. Also, the frequency 
of visits of the new areas (represented by the size of the cor-
responding nodes) suggest they became part of the user’s 
routines. How to integrate such evolution patterns in a com-
prehensive model of human mobility is a challenging ques-
tion that is currently under study.

Fig. 3  Sample IMNs for six different cities in Tuscany; apparently, no clear visual feature characterize cities

Fig. 4  Temporal evolution of a IMN computed over 2-months periods; changes in mobility are clearly visible
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Discussion of results the preliminary results confirm the 
usability of IMNs for summarizing individual mobility, 
yet also showing that the level of detail of the identified 
locations can be sometimes too fine (each user has several 
tiny locations that are difficult to analyze), and that the time 
component in long-duration data must be considered in a 
more comprehensive way, for instance developing dynamics-
aware models.

5.3  Geographical transfer of mobility models

As previously discussed, the data availability in the mobil-
ity domain is often heterogeneous, allowing to build strong 
models (for instance, predictive ones) on some geographical 
areas where rich data are accessible, but not on other, less 
rich areas. It is well known that any (non-trivial) mobility 
model is tightly linked to the area it describes, therefore we 
expect that a good model built on a (data-rich) area does not 
work equally well on different regions.

There are two main ways to tackle the problem. One 
consists in developing a strategy that takes a strong model 
built on a specific area A and adapts it to work on a differ-
ent area B by exploiting the (relatively little) information 
available over the latter. The already cited approaches in 
Rinzivillo et al. (2014) represent examples of such line of 
work. Another, simpler way consists in recognizing which 
are the areas where the model developed on area A is likely 

to perform well. This clearly requires to study the features 
of the areas that make them somehow compatible, i.e. they 
apparently obey to the same kind of rules. In the follow-
ing we briefly report some results obtained on this second 
direction, where the city descriptors introduced in a previous 
section (Sect. 5.1) have been deployed to group cities into 
clusters.

First, a simple prediction problem is defined: predicting 
the traffic of the next hour in key areas of a city. In par-
ticular, each of the 270 + municipalities of Tuscany, Italy 
was divided in a regular grid and 10 representative cells 
were selected, 5 among the top 10% traffic and 5 within 
the 80–90% percentile of traffic. For each city, then, a time 
series representing the aggregate hourly traffic volume of 
such cells is obtained, and the prediction task is to predict 
the next value based on previous ones. The prediction model 
adopted is a standard XGBoost regressor (Chen and Guestrin 
2016). The next figure shows four sample cities analyzed 
(Fig. 5a) and a sample hourly time series (Fig. 5b).

The matrix in (Fig. 5c) shows, for each pair (A, B) of 
cities, the normalized RMSE (root mean square error) of 
predictions obtained on B by using the model learnt on city 
A. The cities have been clustered through a hierarchical 
agglomerative method based on the city features already 
introduced in Sect. 5.1, which yielded four clusters. The 
matrix described above has the rows and columns sorted 
according to the cluster each city belongs to, resulting in 

Fig. 5  Sample cities analyzed (a), sample hourly time series and (c) normalized root mean square error (NRMSE)
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a block matrix, blocks being delimited by red lines. What 
we can see, is that blocks on the diagonal, corresponding to 
cities in the same cluster, exhibit a brighter color than oth-
ers, which means that the NRMSE error tends to be smaller. 
This provides a first evidence that the cities that look similar 
based on the features studied above are also homogeneous 
in terms of rules that drive the evolution of traffic volumes, 
and therefore the prediction model is more easily transfer-
rable among them.

Discussion of results the results shown above are obvi-
ously just a first step towards the overall objective. Indeed, 
the prediction problem and the model adopted were rather 
simple, whereas in real applications, including those con-
sidered in this paper, both problem and model are expected 
to be much more complex and challenging. Moreover, the 
approach followed here, i.e. recognizing pairs of model-
compliant cities, is effective only if the data-rich cities 
available cover most of the city types (the clusters in our 
experiment) we expect to meet, since in that case each city 
can be served with a model built from a data-rich city of the 
same type. Data-poor cities of different types would be not 
associated with any model. The more general solution con-
sists in defining adaptation strategies (possibly based on the 
same city features considered here) that allow to customize 
a model to the specific city we need to apply to.

5.4  Crash prediction

Predicting the crash risk of a user is a difficult task, since it 
is in general affected not only by how the user drives, but 
also by external factors, including other drivers. As already 
discussed in Sect. 4, most works in literature focus on real-
time prediction of individual crashes, or on the identification 
of personal or contextual factors that relate to crashes. In the 
car insurance domain we are interested in creating a user’s 
risk profile related to long periods of time, such as months 
in the future.

In our this preliminary exploration of the problem, we 
focused on such long-term prediction of crash risk, and we 
measure what kind of performances we can expect to reach 
with simple users’ features. In particular, experiments con-
sist in characterizing each user by his mobility data in a 
time window of 3 months, and try to predict the presence 
of crashes in the next month. The experiments include only 
users that have a significant mobility (here defined as those 
making at least ten trips in the period under observation), 
since inactive vehicles are not interesting for our purposes 
– their crash risk is virtually zero. No data balancing or other 
particular filtering was performed, yet for practical reasons 
the experiments focused on a time period where the density 
of crashes was the highest.

The features adopted fall in the following three categories:

• Travel features: length and duration of trips, also split 
into periods of the day or of the week.

• Events features: frequency and intensity of driving 
events, i.e. accelerations and decelerations, divided by 
event type and temporal intervals.

• Car brand and model.

The prediction was performed with various methods, 
including Random Forests, Support Vector Machines and 
Neural Networks. RFs yielded the best and more stable 
results, shown in the following Fig. 6. The table also divides 
performances over different subsets of features (traj = travel 
only, evnt = events only, evnt = both, all = include also brand 
and model). The results were computed over a sample of 
data, covering vehicles in Rome and London, and the cor-
responding model parameters were selected by grid search 
optimization.

We can see that using all feature types the overall perfor-
mances (F1 score) is maximized, and therefore all features 
appear to bring some improvement. We notice that the prob-
lem is imbalanced (around one crash every five users), there-
fore a significant recall is as valuable as a high accuracy.

Discussion of results the results obtained show that the 
problem can be approached with the methods discussed 
above, although the results still call for technical improve-
ments. In particular, current ongoing work is integrating 
other, more sophisticated features that take advantage of the 
IMNs of the users and of contextual information.

6  Conclusions and future works

This paper presented a set of challenges in the car telem-
atics domain, that correspond to a pilot application of the 
Track and Know EU project, focusing in particular on tele-
matics car insurance and mobility services. The technical 
challenges to transform the raw mobility data collected by 
the telematics companies into insights and valuable services 
are numerous and require improvements of current research 
state-of-art. Preliminary results show promising signals of 
meaningful solutions for the identified problems.

The ongoing work is trying to purse several of the issues 
mentioned in the paper: developing more sophisticated 

Fig. 6  Performances of Random Forest models on various sets of fea-
tures
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individual mobility models, that might extend existing Indi-
vidual Mobility Networks; developing strategies to adapt 
one model built in a geographical area to work well on a 
different one; developing a set of sophisticated mobility 
descriptors to better identify crash risks in the long term, 
including relations with the geo-spatial context, weather 
conditions, changes in the driving habits (e.g. through the 
analysis of the user’s IMN changes), etc.; defining satisfac-
tory indicators to measure the compatibility of users with 
shared mobility or electric vehicles, as well as developing 
processes to accurately estimate them.
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