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An Iteratively Reweighted Instrumental-Variable
Estimator for Robust 3D AOA Localization

in Impulsive Noise
Ngoc Hung Nguyen, Member, IEEE, Kutluyıl Doğançay, Senior Member, IEEE,

and Ercan Engin Kuruoğlu, Senior Member, IEEE

Abstract—This paper considers the problem of robust three-
dimensional (3D) angle-of-arrival (AOA) source localization in
the presence of impulsive α-stable noise based on the lp-norm
minimization criterion. The iteratively reweighted least-squares
algorithm (IRLS) is a well-known technique for solving lp-norm
minimization with the desirable global convergence property.
Adopting the IRLS for 3D AOA localization requires nonlinear-
to-pseudolinear transformation of azimuth and elevation angle
measurement equations, thus resulting in a new variant of the
IRLS, called the iteratively reweighted pseudolinear least-squares
estimator (IRPLE). Unfortunately, there exists correlation be-
tween the measurement matrix and noise vector in the pseu-
dolinear measurement equations, which consequently makes the
IRPLE biased. To counter the bias problem of the IRPLE, a new
iteratively reweighted instrumental-variable estimator (IRIVE) is
proposed based on the exploitation of instrumental variables. The
IRIVE is analytically shown to achieve the theoretical covariance
of the general least lp-norm estimation. Extensive simulation
studies are presented to demonstrate the performance advantages
of the IRIVE over the IRPLE as well as other existing least-
squares and least lp-norm estimators. The IRIVE is observed
to produce nearly unbiased estimates with mean squared error
performance very close to the Cramér-Rao lower bound.

Index Terms—Angle of arrival, target localization, robust
estimation, least lp-norm, iteratively reweighted least-squares,
pseudolinear estimation, instrumental variables.

I. INTRODUCTION

SOURCE localization by angle-of-arrival (AOA) has re-
ceived continuous attention for several decades owing to

its applications in many diverse areas such as radar, sonar, nav-
igation, wireless communications and indoor acoustic localiza-
tion, to name but a few. In a general three-dimensional (3D)
setting, the objective of AOA localization is to estimate
the unknown position of a source using noisy azimuth and
elevation angle measurements collected by several spatially
distributed sensors.

AOA localization is essentially a nonlinear estimation prob-
lem where the main challenge arises from the highly nonlinear
relationship of the azimuth and elevation angle measurements
with the true source position. Various estimation techniques
have been proposed in the literature to tackle the nonlinearity
ranging from the direct grid search method, the iterative
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maximum likelihood estimator to the closed-form pseudolinear
estimators (see e.g., [1]–[5] and the references therein). These
methods were developed under the assumption of Gaussian
noise based on second-order statistics. The Gaussian distri-
bution has traditionally been the most widely accepted and
used noise model in the signal processing and communications
literature, mainly for the purpose of developing analytical
solutions.

In the last two decades, tremendous attention has been
devoted to non-Gaussian noise models due to the fact that var-
ious natural phenomena are more appropriately represented by
distributions with a more impulsive (heavy-tailed) nature [6]–
[23]. The α-stable distribution, a generalization of the Gaus-
sian distribution, has been known to provide a better model for
impulsive noise than the Gaussian distribution [6]–[10]. The α-
stable distribution family is comprised of a wide range of dis-
tributions with varying degrees of impulsiveness and skewness,
having the Gaussian, Cauchy and Lévy distributions as special
cases. The applications of α-stable distribution can be found in
different fields ranging from finance, econometrics, astronomy
to signal processing and communications. Specifically, for the
AOA localization problem under consideration, the α-stable
distribution has been used to model the ambient noise in
various applications including (i) underwater acoustic noise
in sonar applications [19], [20], (ii) clutter returns in radar
applications [18], [21], man-made and reverberation noise
in indoor acoustic localization [15]–[17], and burst noise in
indoor localization via wireless communications [18], [23].

This paper focuses on the problem of robust AOA local-
ization in 3D space in the presence of impulsive α-stable
noise. Under such a scenario, the aforementioned least-squares
methods like those presented in [1]–[5] exhibit unreliable
estimation performance since they are very sensitive to out-
liers [22]–[25]. This necessitates the need of developing new
AOA localization algorithms to tackle impulsive noise. The lp-
norm minimization approach (with 1 ≤ p < 2) is an attractive
alternative to the least-squares (i.e., l2-norm minimization) ap-
proach and has been widely used to achieve robust estimation
in impulsive noise [22]–[25]. The lp-norm error minimization
criterion does not admit a closed-form solution and must be
solved in an iterative manner. The iteratively reweighted least-
squares algorithm (IRLS) is one of the most widely-used
solvers for lp-norm minimization [19], [22], [25]. The main
attraction of the IRLS is that it enjoys a desirable global con-
vergence property under weak conditions [26]. In principle, the
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IRLS starts from the conventional least-squares solution and
at each iteration solves a new weighted least-squares problem
using the weights computed from the residuals in the previous
iteration. Unfortunately, the IRLS is not directly applicable to
the AOA localization problem under consideration due to the
nonlinear relationship between the angle measurements and
the unknown source position.

In this paper, we develop a new variant of the IRLS
based on the pseudolinear form of the azimuth and elevation
angle measurement equations. We call the new algorithm
the iteratively reweighted pseudolinear least-squares estimator
(IRPLE). However, it turns out from our analysis that the IR-
PLE suffers from a severe bias problem due to the correlation
between the measurement matrix and the pseudolinear noise
vector in a similar way to the pseudolinear estimator [2].
We then propose a new iteratively reweighted instrumental-
variable estimator (IRIVE) to overcome the bias problem of
the IRPLE by exploiting the use of an instrumental-variable
(IV) matrix [27], [28] that is approximately uncorrelated with
the pseudolinear noise vector. Pseudolinear estimation and
IV estimation are well-known techniques under the least-
squares framework for source localization in Gaussian noise
(see e.g., [2]–[4], [29]–[34]). However, to the best of our
knowledge, these techniques have not yet been applied to lp-
norm minimization for robust source localization in impulsive
noise. It should be emphasized that applying the pseudolinear
and IV estimation approaches to the least lp-norm estimation
problem presents a number of new challenges that are not
encountered in the conventional least-squares estimation. First,
the distinct nature of the α-stable distribution, e.g., lacking
second-order moments and having infinite variance, makes
the bias and covariance analysis of the estimators under study
much more challenging than the estimators presented in [2]–
[4] that rely on the Gaussian noise assumption. Moreover,
in contrast to the pseudolinear and IV based estimators [2]–
[4] which are closed-form under the Gaussian least-squares
framework, the incorporation of pseudolinear and IV tech-
niques into the IRLS produces new estimators that are iterative
in nature. This creates difficulties in terms of analyzing the
IRPLE bias, and makes the development and analysis of the
proposed IRIVE not only challenging but also distinct from
the existing least-squares IV estimators.

In this work, we also present a theoretical covariance anal-
ysis for the IRIVE and show that the IRIVE can achieve the
analytical covariance of the general least lp-norm estimation.
The performance advantages of the IRIVE over the IRPLE,
other existing least-squares pseudolinear and IV based estima-
tors, and the least lp-norm solver based on the Nelder-Mead
method are numerically demonstrated via extensive simulation
examples in terms of both bias and root-mean-square-error
performance. The simulation results demonstrate the poor
performance of the least-squares estimators in impulsive noise,
confirm the severe bias problem of the IRPLE, and verify
the effectiveness of the IRIVE in tackling the IRPLE bias. In
addition to producing almost no bias, the IRIVE is observed
to closely attain the derived analytical covariance and the
theoretical Cramér-Rao lower bound. We also observe that
the IRIVE converges well and finds accurate source position
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Fig. 1. 3D AOA target localization geometry.

estimates even for large noise levels at which the Nelder-Mead
based least lp-norm solver exhibits divergence.

The paper is organized as follows. Section II introduces the
problem of robust 3D AOA localization in impulsive α-stable
noise. Section III develops the IRPLE, and its bias analysis is
presented in Section IV. In Section V, the IRIVE is derived.
Section VI provides the theoretical covariance analysis for
the IRIVE. Comparative simulation studies are presented in
Section VII and concluding remarks are drawn in Section VIII.

II. ROBUST 3D AOA LOCALIZATION IN IMPULSIVE NOISE

A. Measurement Model

Fig. 1 depicts the problem of robust AOA source lo-
calization in 3D-space using azimuth and elevation angle
measurements collected from N spatially distributed sensors.
Let s = [sx, sy, sz]

T denote the unknown source position
and rn = [rx,n, ry,n, rz,n]T the position of sensor n (n ∈
{1, . . . , N}). Here, the superscript T stands for transpose
operation.

The azimuth and elevation angle measurements taken at
sensor n are given by

θ̃n = θn(s) + eθ,n, θn = tan−1
sy − ry,n
sx − rx,n

(1a)

φ̃n = φn(s) + eφ,n, φn = sin−1
sz − rz,n
‖s− rn‖

(1b)

where tan−1 stands for the 4-quadrant arctangent and
‖ · ‖ the Euclidean norm. Here, eθ,n ∼ SαS(γθ,n) and
eφ,n ∼ SαS(γφ,n) are independent zero-mean symmetric
α-stable (SαS) distributed random variables accounting for
the impulsive measurement noise at the sensors. The noise
dispersions γθ,n and γφ,n can vary with n and are assumed
to be known a priori. In practice, the parameters of α-
stable impulsive noise, including the dispersion γ and the
impulsiveness parameter α, can be effectively estimated in
real-time with high accuracy based on fractional lower order
moments, logarithmic moments, or extreme value statistics
(see e.g., [14], [35] and the references therein).
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The characteristic function, i.e., the Fourier transform of the
probability density function, of zero-mean SαS distribution is
given by [6]–[10]

ς(v) = exp(−γ|v|α) (2)

where α ∈ (0, 2] is the characteristic exponent parameter
controlling the impulsiveness of the distribution and γ > 0 is
the dispersion parameter measuring the deviation around the
mean (analogous to the variance of the Gaussian distribution).
Note that α = 2 and 1 are special cases corresponding to the
zero-mean Gaussian and Cauchy distributions, respectively.
SαS distribution only has finite moments for orders less

than α, which are commonly known as fractional lower order
moments. The fractional lower order moment of a zero-mean
SαS distributed variable v is given by [14]

E{|v|q} = Cα(q, α)γq/α, q ∈ (−1, 1) ∪ (1, α) (3)

where

Cα(q, α) =
Γ
(
q+1
2

)
Γ(− q

α )

α
√
π Γ
(
− q2
) 2(q+1). (4)

Here, ∪ stands for the union operator and Γ(υ) =∫∞
0

exp(−t)t(υ−1)dt is the gamma function. In addition, we
also have [25]

E{|v|(q−1) sign(v)} = 0. (5)

B. Localization Objective Function

As motivated in Section I, the objective of the AOA local-
ization problem under consideration is to robustly estimate
the unknown target position p from N impulsive noise-
corrupted azimuth/elevation angle measurements based on
lp-norm minimization. To formulate the lp-norm objective
function, the azimuth and elevation angle measurements in (1)
are normalized as

ψ̃θ,n = ψθ,n(s) + εθ,n (6a)

ψ̃φ,n = ψφ,n(s) + εφ,n (6b)

with

ψ̃θ,n = γ
−1/α
θ,n θ̃n, ψθ,n(s) = γ

−1/α
θ,n θn(s), εθ,n = γ

−1/α
θ,n eθ,n

ψ̃φ,n = γ
−1/α
φ,n φ̃n, ψφ,n(s) = γ

−1/α
φ,n φn(s), εφ,n = γ

−1/α
φ,n eφ,n

(7)

so that the normalized noise εθ,n and εφ,n are i.i.d. with unit
noise dispersion. Rewriting (6) in vector form gives

ψ̃ = ψ(s) + ε (8)

where

ψ̃ = [ψ̃Tθ , ψ̃
T
φ ]T , ψ = [ψTθ ,ψ

T
φ ]T , ε = [εTθ , ε

T
φ ]T (9)

with

ψ̃θ = [ψ̃θ,1, . . . , ψ̃θ,N ]T , ψ̃φ = [ψ̃φ,1, . . . , ψ̃φ,N ]T (10a)

ψθ = [ψθ,1, . . . , ψθ,N ]T , ψφ = [ψφ,1, . . . , ψφ,N ]T (10b)

εθ = [εθ,1, . . . , εθ,N ]T , εφ = [εφ,1, . . . , εφ,N ]T . (10c)

The AOA localization problem is now stated as solving the
following lp-norm minimization:

ŝ = arg min
s

J(s) with J(s) = ‖ψ̃ −ψ(s)‖pp. (11)

for p ∈ [1, 2). Here, the lp-norm of a vector v is defined as
‖v‖p = (

∑
|vi|p)1/p where vi is the ith element of v.

III. ITERATIVELY REWEIGHTED PSEUDOLINEAR
LEAST-SQUARES ESTIMATOR

In order to apply the IRLS technique, the nonlinear azimuth
and elevation angle measurement equations (1) are rewritten
in pseudolinear forms as

Aθ,ns = bθ,n + ηθ,n (12)

where

Aθ,n = [sin θ̃n,− cos θ̃n, 0] (13a)

bθ,n = [sin θ̃n,− cos θ̃n, 0] rn (13b)
ηθ,n = ‖dn‖ cosφn sin eθ,n

≈ (‖dn‖ cosφn)eθ,n (13c)

and
Aφ,ns = bφ,n + ηφ,n (14)

with

Aφ,n = [sin φ̃n cos θ̃n, sin φ̃n sin θ̃n,− cos φ̃n] (15a)

bφ,n = [sin φ̃n cos θ̃n, sin φ̃n sin θ̃n,− cos φ̃n] rn (15b)

ηφ,n = ‖dn‖(sin eφ,n − 2 sin φ̃n cosφn sin2(eθ,n/2))

≈ ‖dn‖eφ,n. (15c)

Here, dn = s − rn and the approximations of pseudolinear
noise in (13c) and (15c) are obtained for sufficiently small
noise. These pseudolinear azimuth/elevation angle equations
were derived based on the orthogonal vector method (see
e.g., [36] for details).

Stacking (12) for n = 1, . . . , N after multiplying both sides

of (12) with uθ,n =
(
γ
1/α
θ,n ‖dn‖ cosφn

)−1
yields

UθAθs ≈ Uθbθ + εθ (16)

where Uθ = diag(uθ,1, . . . , uθ,N ), Aθ = [AT
θ,1, . . . ,A

T
θ,N ]T ,

bθ = [bθ,1, . . . , bθ,N ]T and εθ = [εθ,1, . . . , εθ,N ]T . Similarly

for (14) with uφ,n =
(
γ
1/α
φ,n ‖dn‖

)−1
, we have

UφAφs ≈ Uφbφ + εφ (17)

where Uφ = diag(uφ,1, . . . , uφ,N ), Aφ = [AT
φ,1, . . . ,

AT
φ,N ]T , bφ = [bφ,1, . . . , bφ,N ]T and εφ = [εφ,1, . . . , εφ,N ]T .

By stacking (16) and (17), we obtain

UAs ≈ Ub+ ε (18)

where U = diag(Uθ,Uφ), A = [AT
θ ,A

T
φ ]T , b = [bTθ , b

T
φ ]T

and ε = [εTθ , ε
T
φ ]T .

From (8) and (18), the lp-norm objective function in (11)
is approximated as

J(s) ≈ ‖UAs−Ub‖pp (19)
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which we refer to as the pseudolinear lp-norm objective
function. Applying the IRLS technique to this pseudolinear
lp-norm objective function leads to a new IRPLE method:
• Initialization: ŝ0 = (ATA)−1AT b
• At iteration k:

1) Compute the weighting matrix W using ŝk−1 from the
previous iteration k − 1:

W (ŝk−1) = diag(Wθ,Wφ) (20)

where

Wθ = diag(wθ,1, . . . , wθ,N ) (21a)

wθ,n = γ
−p/α
θ,n (‖dn(ŝk−1)‖ cosφn(ŝk−1))−2

× |θ̃n − θn(ŝk−1)|p−2 (21b)
Wφ = diag(wφ,1, . . . , wφ,N ) (21c)

wφ,n = γ
−p/α
φ,n ‖dn(ŝk−1)‖−2|φ̃n − φn(ŝk−1)|p−2

(21d)

2) Perform least-squares estimation:

ŝk = (ATW (ŝk−1)A)−1ATW (ŝk−1)b. (22)

Note that U does not appear in (22) because it has already
been incorporated into the weighting matrix W in (21). The
IRPLE is halted when the relative change in the lp-norm
of position estimates between two consecutive iterations falls
below than a threshold or when a preset number of iterations
is reached.

IV. BIAS PROBLEM OF THE IRPLE
The IRPLE developed in the previous section suffers from

a bias problem due to the injection of noise into the pseudo-
linear measurement matrix A as a result of the nonlinear-to-
pseudolinear transformation of azimuth/elevation angle mea-
surement equations. In what follows, we present a detailed
analysis of the IRPLE bias.

Theorem 1. The IRPLE is biased. The bias of the IRPLE is
given by

δ
IRPLE

≈ − 1

p− 1
E
{
ATW oA

N

}−1
E
{
ATW oη

N

}
. (23)

for sufficiently large N . Here, W o = W (s).

Proof. On the convergence of the IRPLE, we have

ŝ∗
IRPLE

=
(
ATW (ŝ∗

IRPLE
)A
)−1

ATW (ŝ∗
IRPLE

)b. (24)

It is noted that the IRPLE is essentially the direct application
of the IRLS algorithm to the pseudolinear lp-norm objective
function (19), thus it follows the convergence of the IRLS
algorithm. A detailed proof of the IRLS convergence can be
found in [26].

Substituting b = As−U−1ε = As− η into (24) yields

∆s
IRPLE

= ŝ∗
IRPLE

− s

= −
(
ATW (ŝ∗

IRPLE
)A
)−1

ATW (ŝ∗
IRPLE

)η,
(25)

and thus(
ATW (ŝ∗

IRPLE
)A
)

∆s
IRPLE

= −ATW (ŝ∗
IRPLE

)η. (26)

The weighting matrix W (ŝ∗
IRPLE

) can be written as

W (ŝ∗
IRPLE

) = W o + ∆W (27)

where

W o = W (s) (28a)
∆W = diag(∆Wθ,∆Wφ) (28b)

∆Wθ = diag(∆wθ,1, . . . ,∆wθ,N ) (28c)
∆Wφ = diag(∆wφ,1, . . . ,∆wφ,N ) (28d)

∆wθ,n ≈ sign(u−1θ,nεθ,n)(p−2)|uθ,n|3|εθ,n|p−3Aθ,n∆sIRPLE

(28e)

∆wφ,n ≈ sign(u−1φ,nεφ,n)(p−2)|uφ,n|3|εφ,n|p−3Aφ,n∆s
IRPLE

.

(28f)

Using (28), we obtain

∆Wθηθ ≈ (p− 2)W o
θAθ∆sIRPLE

(29a)
∆Wφηφ ≈ (p− 2)W o

φAφ∆s
IRPLE

(29b)

where W o
θ = Wθ(s) and W o

φ = Wφ(s). Following (27)–
(29), the term ATW (ŝ∗

IRPLE
)η on the right-hand side of (26)

is given by

ATW (ŝ∗
IRPLE

)η

≈ ATW oη + (p− 2)
(
AT
θW

o
θAθ∆sIRPLE

)
+ (p− 2)

(
AT
φW

o
φAφ∆s

IRPLE

)
≈ ATW oη + (p− 2)

(
ATW oA

)
∆sIRPLE .

(30)

From (26) and (30), we obtain

∆s
IRPLE

≈ − 1

p− 1

(
ATW oA

)−1
ATW oη. (31)

As a result, the bias of the IRLS estimate ŝ∗
IRPLE

is

δ
IRPLE

= E{∆s
IRPLE

} (32a)

≈ − 1

p− 1
E
{(
ATW oA

)−1
ATW oη

}
(32b)

≈ − 1

p− 1
E
{
ATW oA

N

}−1
E
{
ATW oη

N

}
. (32c)

Here, the approximation in (32c) follows from Slutsky’s the-
orem [37] under the tacit assumption of sufficiently large N
for the purpose of bias analysis. The second expectation term
in (32c) is given by

E
{
ATW oη

N

}
=

1

N

N∑
n=1

E
{
AT
θ,nw

o
θ,nηθ,n

}
+

1

N

N∑
n=1

E
{
AT
φ,nw

o
φ,nηφ,n

} (33)

where woθ,n = wθ,n(s) and woφ,n = wφ,n(s). It is important to
note that Aθ,n is correlated with ηθ,n because both are func-
tions of eθ,n. Similarly, there also exists correlation between
Aφ,n and ηφ,n. As a result, the expectation (33) is nonzero,
i.e.,

E
{
ATW oη

N

}
6= 0. (34)
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Consequently, we have

δIRPLE 6= 0, (35)

thus implying the biasedness of the IRPLE.

An explicit expression for (33) is in general difficult to
derive due to the nonlinear functions in Aθ,n and Aφ,n.
For sufficiently small measurement noise, we can approxi-
mate (33) as follows. The matrix AT

θ,n can be decomposed
into AT

θ,n ≈ AoT
θ,n +Dθ,nγ

1/α
θ,n εθ,n, where Ao

θ,n is the noise-
free versions of Aθ,n by replacing θ̃n with θn in (13a), and
Dθ,n = [cos θn, sin θn, 0]T . As a result, we have

AT
θ,nw

o
θ,nηθ,n

≈
(
AoT
θ,n +Dθ,nγ

1/α
θ,n εθ,n

)
woθ,nηθ,n

≈ AoT
θ,nuθ,n sign(εθ,n)|εθ,n|p−1 +Dθ,nγ

1/α
θ,n uθ,n|εθ,n|

p.

(36)

By exploiting (3) and (5), the expectation of (36) reduces to

E
{
AT
θ,nw

o
θ,nηθ,n

}
≈Dθ,nγ

1/α
θ,n uθ,nCα(p, α). (37)

Similarly, we can decompose AT
φ,n into AT

φ,n = AoT
φ,n +

D
(1)
φ,nγ

1/α
φ,n εφ,n + D

(2)
φ,nγ

1/α
θ,n εθ,n, where Ao

φ,n is the noise-
free version of Aφ,n by replacing θ̃n and φ̃n with θn
and φn in (15a), and D

(1)
φ,n and D

(2)
φ,n are defined as

D
(1)
φ,n = [cosφn cos θn, cosφn sin θn, sinφn]T and D(2)

φ,n =

[− sinφn sin θn, sinφn cos θn, 0]T . Consequently, we obtain

AT
φ,nw

o
φ,nηφ,n

≈
(
AoT
φ,n +D

(1)
φ,nγ

1/α
φ,n εφ,n +D

(2)
φ,nγ

1/α
θ,n εθ,n

)
woφ,nηφ,n

≈ AoT
φ,nuφ,n sign(εφ,n)|εφ,n|p−1 +D

(1)
φ,nγ

1/α
φ,n uφ,n|εφ,n|

p

+D
(2)
φ,nγ

1/α
θ,n uφ,nεθ,n sign(εφ,n)|εφ,n|p−1.

(38)

Using (3) and (5), the expectation of (38) reduces to

E
{
AT
φ,nw

o
φ,nηφ,n

}
= D

(1)
φ,nγ

1/α
φ,n uφ,nCα(p, α). (39)

Finally, by substituting (37) and (39) into (33), we have

E
{
ATW oη

N

}
≈ Cα(p, α)

N

N∑
n=1

(
Dθ,nγ

1/α
θ,n uθ,n

+D
(1)
φ,nγ

1/α
φ,n uφ,n

)
.

(40)

Consequently, we obtain the following corollary.

Corollary 1. Under small noise, the expression of the IRPLE
bias is reduced to

δ
IRPLE

≈ −Cα(p, α)

p− 1
E
{
ATW oA

}−1 N∑
n=1

(
Dθ,nγ

1/α
θ,n uθ,n

+D
(1)
φ,nγ

1/α
φ,n uφ,n

)
.

(41)

Proof. A simple substitution of (40) into (23) leads to (41).

V. ITERATIVELY REWEIGHTED INSTRUMENTAL-VARIABLE
ESTIMATOR

To overcome the bias problem of the IRPLE, we now pro-
pose a new IRIVE method exploiting the use of instrumental
variables. Motivated by the fact that the main source for
the IRPLE bias problem is the correlation between the mea-
surement matrix A and the pseudolinear noise vector η, the
proposed IRIVE aims to eliminate this undesirable correlation
by replacing A with a new matrix G in (22). Thus, the IRIVE
estimate ŝIV

k at iteration k is given by

ŝIV

k = (GTWA)−1GTWb. (42)

Here, G is called the IV matrix [27], [28] which is ideally
chosen such that GTA is full-rank and E{GTη} = 0 [28].
Note that the bias propagation through W from previous
iterations is not the actual cause for the IRPLE bias and will
naturally vanish once the bias problem due to the correlation
between A and η is resolved.

Since the noise-free version A◦ of A (the optimal choice
for the IV matrix G [38]) is not available, a suboptimal
IV matrix G at iteration k (that yields E{GTη} ≈ 0) is
constructed by calculating A◦ using the estimated azimuth
and elevation angles computed from the position estimate ŝIV

k−1
available in the previous iteration k − 1:

G(ŝIV

k−1) = [GT
θ ,G

T
φ ]T (43)

where

Gθ = [GT
θ,1, . . . ,G

T
θ,N ]T (44a)

Gθ,n = [sin θ̂n,− cos θ̂n, 0] (44b)

Gφ = [GT
φ,1, . . . ,G

T
φ,N ]T (44c)

Gφ,n = [sin φ̂n cos θ̂n, sin φ̂n sin θ̂n,− cos φ̂n] (44d)

and
θ̂n = θn(ŝIV

k−1), φ̂n = φn(ŝIV

k−1). (45)

To satisfy GTA is full-rank and well-conditioned as re-
quired by the IV estimation method, the measurement ma-
trix A and the IV matrix G are required to correlate well.
To ensure this, the selective-angle-measurement (SAM) strat-
egy [4], [29], [39] is incorporated into the proposed IRIVE.
The main idea behind the SAM strategy is to force some rows
of G to be identical to the corresponding rows of A depending
on the difference between the estimated and measured angles
(i.e., if |θ̃n− θ̂n| > βθ,n or |φ̃n− φ̂n| > βφ,n) while reducing
the contribution of these rows by dividing the corresponding
weights by a large scalar κ. The SAM thresholds βθ,n and βφ,n
should generally be chosen large enough to promote the use of
instrumental variables while being not too large to maintain a
strong correlation betweenA andG. The selection of βθ,n and
βφ,n typically depends on the measurement noise level. For the
problem under consideration, the choice of these parameters
does not critically affect the performance of the IRIVE (see
Section VII-G for further discussion).

The computational steps of the proposed IRIVE algorithm
are summarized below:
• Initialization: ŝIV

0 = (ATA)−1AT b
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• At iteration k:
1) Compute θ̂n and φ̂n using ŝIV

k−1 from the previous
iteration k − 1:

θ̂n = tan−1
ŝIVy,k−1 − ry,n
ŝIVx,k−1 − rx,n

(46a)

φ̂n = sin−1
ŝIVz,k−1 − rz,n
‖ŝIV

k−1 − rn‖
(46b)

where ŝIV

k−1 = [ŝIVx,k−1, ŝ
IV

y,k−1, ŝ
IV

z,k−1]T .
2) Compute the weighting coefficients wθ,n and wφ,n

using ŝIV

k−1:

wθ,n = γ
−p/α
θ,n (‖dn(ŝIV

k−1)‖ cosφn(ŝIV

k−1))−2

× |θ̃n − θn(ŝIV

k−1)|p−2 (47a)

wφ,n = γ
−p/α
φ,n ‖dn(ŝIV

k−1)‖−2|φ̃n − φn(ŝIV

k−1)|p−2
(47b)

3) Perform the SAM:

If |θ̃n − θ̂n| < βθ,n and |φ̃n − φ̂n| < βφ,n

set θ̂n = θ̂n, φ̂n = φ̂n

wθ,n = wθ,n, wφ,n = wφ,n

otherwise
set θ̂n = θ̃n, φ̂n = φ̃n

wθ,n = wθ,n/κ, wφ,n = wφ,n/κ.

(48)

4) Compute the IV matrix G:

G(ŝIV

k−1) = [GT
θ ,G

T
φ ]T (49)

where

Gθ = [GT
θ,1, . . . ,G

T
θ,N ]T (50a)

Gθ,n = [sin θ̂n,− cos θ̂n, 0] (50b)

Gφ = [GT
φ,1, . . . ,G

T
φ,N ]T (50c)

Gφ,n = [sin φ̂n cos θ̂n, sin φ̂n sin θ̂n,− cos φ̂n] (50d)

5) Construct the weighting matrix W :

Wθ = diag(wθ,1, . . . , wθ,N ) (51a)
Wφ = diag(wφ,1, . . . , wφ,N ) (51b)
W = diag(Wθ,Wφ) (51c)

6) Perform IV estimation:

ŝIV

k = (GTWA)−1GTWb. (52)

VI. PERFORMANCE ANALYSIS

In this section, we present a theoretical performance analysis
for the proposed IRIVE algorithm and show that the IRIVE
estimate can achieve the analytical covariance of the general
least lp-norm estimation.

Theorem 2. Under the common assumption of sufficiently
small noise and large number of measurements, the analytical
covariance of the IRIVE is given by

CIRIVE ≈
Cα(2p− 2, α)

((p− 1)Cα(p− 2, α))2
(
GoTUTUGo

)−1
(53)

where Go = G(s).

Proof. Since the IRIVE is a variant of the IRLS, its conver-
gence proof follows that of the IRLS as presented in [26] and
is omitted here for brevity. On the convergence of the IRIVE,
we have

ŝ∗
IRIVE

=
(
G(ŝ∗

IRIVE
)TW (ŝ∗

IRIVE
)A
)−1

×GT (ŝ∗
IRIVE

)W (ŝ∗
IRIVE

)b.
(54)

By following similar steps to (25)–(31), we can show that

∆s
IRIVE

= ŝ∗
IRIVE

− s

≈ − 1

p− 1

(
GoTW oA

)−1
GoTW oη.

(55)

Therefore, the error covariance of ŝ∗
IRIVE

is given by

C
IRIVE

= E
{

∆s
IRIVE

∆sT
IRIVE

}
≈ 1

(p− 1)2
E
{(
GoTW oA

)−1
GoTW oηηTW oGo

×
(
ATW oGo

)−1}
.

(56)

Applying Slutsky’s theorem to (56) yields [37]

C
IRIVE

≈ 1

(p− 1)2
1

N
E
{
GoTW oA

N

}−1
× E

{
GoTW oηηTW oGo

N

}
E
{
ATW oGo

N

}−1
.

(57)

The first expectation on the right-hand side of (57) can be
approximated as

E
{
GoTW oA

N

}
≈ G

oTE{W o}Ao

N

≈ G
oTE{W o}Go

N

(58)

under the small noise assumption. Note that Ao is the noise-
free version of A and in fact Ao = Go. In addition, it is
proved in Appendix B that

E{W o} = Cα(p− 2, α)UTU . (59)

Therefore, we have

E
{
GoTW oA

N

}
≈ Cα(p− 2, α)

N
GoTUTUGo. (60)

Similarly, the third expectation of (57) is also approximated
by

E
{
ATW oGo

N

}
≈ Cα(p− 2, α)

N
GoTUTUGo. (61)

By rewriting the second expectation of (57) as

E
{
GoTW oηηTW oGo

N

}
=

1

N
GoTE

{
(W oη)(W oη)T

}
Go

(62)

and noting that (as shown in Appendix C)

E
{

(W oη)(W oη)T
}

= Cα(2p− 2, α)UTU , (63)
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Fig. 2. Bias norm and RMSE versus noise level for the PLE, WIVE, IRPLE, NM and IRIVE algorithms.

we obtain

E
{
GoTW oηηTW oGo

N

}
≈ Cα(2p− 2, α)

N
GoTUTUGo.

(64)
Substituting (60), (64) and (61) into (57), we obtain the

analytical covariance of the IRIVE:

C
IRIVE

≈ Cα(2p− 2, α)

((p− 1)Cα(p− 2, α))2
(
GoTUTUGo

)−1
. (65)

Corollary 2. The IRIVE achieves the theoretical covariance
of the general least lp-norm estimation.

Proof. The analytical covariance of estimators based on the
lp-norm minimization (11) is given by [25]

Clp- norm ≈
Cα(2p− 2, α)

((p− 1)Cα(p− 2, α))2
(∇T∇)−1 (66)

where ∇ is the Jacobian matrix of ψ in (8) with respect
to s (see (67)–(69) in Appendix A). In fact, this covariance
expression was derived in [25] assuming that the measurement
noise is small and the number of measurements is sufficiently
large.

After some algebraic manipulations, it is straightforward to
show that ∇ = −UGo. Therefore, the terms on the right-
hand side of (53) and (66) are identical. This implies that the
analytical covariance of the IRIVE is equivalent to that of the
general least lp-norm estimation.

VII. SIMULATION EXAMPLES

In this section, we present Monte Carlo simulations to
evaluate the performance of the proposed IRPLE and IRIVE
algorithms in comparison with the least lp-norm solver based
on the Nelder-Mead (NM) simplex method [40], as well as the
existing pseudolinear least-squares algorithms including the
pseudolinear estimator (PLE) and the weighted instrumental-
variable estimator (WIVE) [2], [36]. The bias norm and
root-mean-squared-error (RMSE) are used for performance

comparison, which are estimated by
∥∥∥ 1
L

∑L
l=1

(
ŝ(l)

X − s
)∥∥∥ and(

1
L

∑L
l=1

∥∥ŝ(l)
X − s

∥∥2)1/2, respectively. Here, ŝ(l)
X denotes the

source position estimate obtained by an algorithm, whose
name is given in the subscript, at the l-th Monte Carlo run. The
square root of the trace of the analytical covariance matrix of
the general least lp-norm estimation given in (66) (referred to
as RCOVAR for simplicity) and the square root of the trace of
the Cramér-Rao lower bound matrix [23], [25], [41] (referred
to as RCRLB) are also calculated and used as the theoretical
benchmark for the RMSE performance of the algorithms.
Here, ‘R’ in RCOVAR and RCRLB is short for square root.
Similar to the IRPLE and IRIVE, the NM is initialized to the
PLE for ensuring a fair comparison. The IRPLE and IRIVE
iterations are stopped after 20 iterations. The SAM parameters
are set to: βθ,n = βφ,n = 30◦ and κ = 104.

A. Performance Versus Noise Dispersion

We consider a simulated 3D AOA source localization ge-
ometry with a target located at s = [80, 80, 60]Tm and a
sensor network with N = 40 sensors arranged uniformly in a
circular configuration centered around the origin [0, 0]Tm with
the radius of 15 m. The characteristic exponent parameter of
impulsive noise is set to α = 1.5, for which p = 1.225 is
the optimum value [25] and is used in the simulations. The
AOA measurement noise is i.i.d. with constant noise dispersion
γθ,n = γφ,n = γ. A total of L = 50,000 Monte Carlo runs
are carried out.

Fig. 2 shows the bias norm and RMSE performance of
the estimators versus γ1/α, i.e., the α-order root of the
noise dispersion, for γ1/α ∈ {0.5◦, 1◦, 1.5◦, . . . , 4.5◦}. Note
that γ1/α is analogous to the standard deviation for Gaussian
noise. We observe that the least-squares estimators (the PLE
and WIVE), as expected, perform unreliably in the presence of
impulsive noise, producing much larger bias norm and RMSE
than the IRIVE. Among the least lp-norm estimators, the
IRPLE exhibits the worst performance due to its biasedness.
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Fig. 3. Bias norm and RMSE versus sensor-source distance for the PLE, WIVE, IRPLE, NM and IRIVE algorithms.

Specifically, in agreement with the bias analysis presented
in Section IV, we observe that the IRPLE yields a large
estimation bias. Such a bias problem in turn leads to a poor
RMSE performance for the IRPLE, far exceeding the RCRLB.
On the other hand, by exploiting the use of IV estimation, the
IRIVE is observed to be capable of outperforming the IRPLE
by producing nearly unbiased estimates. Moreover, it is seen
from Fig. 2 that the IRIVE closely attains the RCOVAR and
RCRLB, thus confirming the efficiency of the IRIVE. The NM
performs on par with the IRIVE for γ1/α ≤ 3◦, producing
a negligible bias and achieving the RCOVAR and RCRLB.
However, the NM exhibits divergence for γ1/α > 3◦, while
the IRIVE still appears to perform well at these large noise
levels. This observation demonstrates the stability advantage
of the IRIVE as inherited from the IRLS.

B. Performance Versus Sensor-Source Distance

We now evaluate the localization performance over the
sensor-source distance using the same simulation setup as
in Section VII-A except that the sensor noise level is kept
at γ1/α = 2◦ and the source position is given by s =
d [cos 30◦ cos 45◦, cos 30◦ sin 45◦, sin 30◦]T . Here, d is essen-
tially the distance between the source and the center of the
sensor network. Fig. 3 shows the bias norm and RMSE perfor-
mance versus the sensor-source distance d. Here, we observe a
similar relative performance comparison to Fig. 2, once again
confirming the performance superiority of the IRIVE over the
PLE, WIVE, IRPLE and NM. We also observe from Fig. 3 that
the bias and RMSE performance of the estimators degrades
as the sensor-source distance d increases. This observation is
consistent with the existing results for the dependence of the
localization performance on the sensor-source geometry (see
e.g., [42]).

C. Performance Versus Number of Sensors

Fig. 4 compares the bias norm and RMSE performance
of the estimators over the number of sensors N ranging

from 15 to 85 at γ1/α = 2◦. Other simulation parameters
remain the same as in Section VII-A. We observe that the
IRPLE exhibits a nonvanishing bias as N increases while
the biases of the IRIVE and NM tend to zero for large N .
For N ≥ 35, the RMSEs of the IRIVE and NM match the
RCOVAR (i.e., the root of the analytical covariance of least lp-
norm estimation) and closely achieve the RCRLB. However,
for a smaller number of sensors N < 35, the NM fails to
converge. In contrast to the NM, the IRIVE still maintains
a good estimation performance for N < 35, producing a
negligible bias and yielding a RMSE only slightly deviating
from the RCOVAR and RCRLB.

D. Performance Versus Noise Impulsiveness

We now examine the performance of the algorithms for
various levels of noise impulsiveness α ∈ {1.1, 1.2, . . . , 1.9}.
For these values of α, the corresponding optimum values
of p are 1.041, 1.083, 1.127, 1.174, 1.225, 1.282, 1.348, 1.430
and 1.546, respectively [25]. Here, we set γ1/α = 3◦ while
keeping other simulation parameters identical to those of
Section VII-A. Note that p < 1 is required for α < 1, and
thus making robust estimation more challenging [25]. The
extension of this work to the case of α < 1 will be considered
in future research.

Fig. 5 shows the bias norm and RMSE performance ver-
sus α. We observe that the performance of the PLE and WIVE
degrades significantly when α decreases. This can be explained
by the fact that a smaller value of α corresponds to a more
impulsive noise, thereby leading to a more severe performance
degradation for the least-squares estimators PLE and WIVE.
The level of noise impulsiveness also affects the bias problem
of the IRPLE and consequently the RMSE performance of
the IRPLE, i.e.. a smaller α resulting in a poorer IRPLE
performance. The NM only performs well for low levels of
noise impulsiveness (α ≥ 1.6), while exhibiting an instability
problem for higher levels of noise impulsiveness (α < 1.6).
The IRIVE maintains a relatively small bias while its RMSE
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Fig. 4. Bias norm and RMSE versus number of sensors for the PLE, WIVE, IRPLE, NM and IRIVE algorithms.
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Fig. 5. Bias norm and RMSE versus noise impulsiveness for the PLE, WIVE, IRPLE, NM and IRIVE algorithms.

only slightly deviates from the RCOVAR and RCRLB as
α decreases. Among the simulated estimators, the IRIVE
produces the best performance and is least influenced by the
noise impulsiveness level.

E. Performance Under Random Geometries

In this simulation, a total of M = 50 localization geometries
are randomly drawn according to the uniform distribution.
For each geometry realization, forty sensors are allocated
randomly within 20 m from the origin, while the source is
placed randomly with its distance to the origin in between
30 m and 100 m. For each geometry, the simulation is repeated
for L = 2,000 Monte Carlo runs. The bias norm and RMSE
are computed as 1

M

∑M
m=1

(∥∥∥ 1
L

∑L
l=1

(
ŝ(m,l)

X − s(m)
)∥∥∥) and(

1
ML

∑M
m=1

∑L
l=1

∥∥ŝ(m,l)

X − s(m)
∥∥2)1/2, respectively. Here,

s(m) is the true source position in the m-th geometry and ŝ(m,l)
X

is the source position estimate at the l-th Monte Carlo run in

the m-th geometry. Other simulation parameters are the same
as in Section VII-A. Fig. 6 compares the bias norm and RMSE
of the PLE, WIVE, IRPLE, NM and IRIVE for γ1/α ranging
from 0.5◦ to 4.5◦. Similar observations to Section VII-A can
be made here. Specifically, the results demonstrate again the
unreliability of the PLE and WIVE in impulsive noise, the
biasedness of the IRPLE, and the instability of the NM. On
the other hand, the IRIVE enjoys the robustness of a least lp-
norm estimator, the inherent stability of the IRLS family, while
at the same time overcoming the bias problem that plagues the
IRPLE.

F. Performance Under Non-Identical Noise

The performance of the estimators is now evaluated under
the scenario of non-identical noise. In this simulation, the
measurement noises at different sensors are independent but
having different noise dispersions. The noise dispersion at
sensor n is modeled as γθ,n = γφ,n = γ◦(‖dn‖/d◦)2 (i.e.,
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Fig. 6. Performance of the PLE, WIVE, IRPLE, NM and IRIVE algorithms under random geometries.
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Fig. 7. Performance of the PLE, WIVE, IRPLE, NM and IRIVE algorithms under non-identical noise

inversely proportional to the signal-to-noise ratio), where γ◦
is the noise dispersion value at the reference distance d◦. Other
simulation parameters are kept the same as in Section VII-A.
Fig. 7 shows the bias norm and RMSE performance versus
various values of γ1/α◦ . The results in Fig. 7 are congruent
with those observed in Figs. 2 and 6, verifying the superior
performance of the IRIVE.

G. Choice of SAM Threshold

Fig. 8 shows the RMSE performance of the IRIVE against
various values of SAM threshold βθ,n = βφ,n = β at noise
levels γ1/α = 2◦, 3◦ and 4◦ using the same simulation scenario
in Section VII-A. The RMSE are obtained via 100,000 Monte
Carlo runs. We observe that the choice of β is not critical to
the performance of the IRIVE as it accepts a wide range of
usable values for β. The selection of β is more relaxed (i.e.,
a wider range of β is allowed) for smaller noise. Although
the accepted range of β depends on the noise levels, i.e., β ∈

(20◦, 160◦) for γ1/α = 2◦, β ∈ (20◦, 120◦) for γ1/α = 3◦

and β ∈ (25◦, 100◦) for γ1/α = 4◦, the optimal range of β
stays roughly the same with β ∈ (30◦, 60◦) for all three noise
levels.

VIII. CONCLUSION

In this paper, we have introduced the concepts of pseu-
dolinear estimation and IV estimation into the framework of
lp-norm minimization for robust 3D AOA source localization
in the presence of impulsive α-stable noise. Two estimators
were developed, namely, the IRPLE and IRIVE. Being IRLS
variants, the IRPLE and IRIVE enjoy the inherent convergence
property of the IRLS. The IRPLE, which is derived from direct
application of the IRLS to the pseudolinear lp-norm objec-
tive function, unfortunately produces biased source position
estimates because of the correlation between the measurement
matrix and pseudolinear noise vector. The IRIVE resolves this
bias problem by exploiting the use of instrumental variables. A
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(b) γ1/α = 3◦
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Fig. 8. RMSE of the IRIVE versus SAM threshold β at γ1/α = 2◦, 3◦ and 4◦.

theoretical analysis and numerical simulations were presented
to corroborate the performance advantages of the proposed
IRIVE over the IRPLE, the least-squares based PLE and
WIVE, as well as the NM-based least lp-norm solver in terms
of bias, RMSE and stability.

APPENDIX A
The Jacobian matrix ∇ of ψ in (8) with respect to s is

given by

∇ = [∇T
θ ,∇T

φ ]T (67)

where

∇θ = [∇T
θ,1, . . . ,∇T

θ,N ]T (68a)

∇φ = [∇T
φ,1, . . . ,∇T

φ,N ]T (68b)

and

∇θ,n =
γ
−1/α
θ,n

‖dn‖ cosφn
[− sin θn, cos θn, 0] (69a)

∇φ,n =
γ
−1/α
φ,n

‖dn‖
[− sinφn cos θn,− sinφn sin θn, cosφn].

(69b)

APPENDIX B
The expectation of W o is given by

E{W o} = E{W (s)} = diag (E{Wθ(s)},E{Wφ(s)})
(70)

where

E{Wθ(s)} = diag(E{wθ,1(s)}, . . . ,E{wθ,N (s)}) (71a)
E{Wφ(s)} = diag(E{wφ,1(s)}, . . . ,E{wφ,N (s)}) (71b)

and

E{wθ,n(s)} = u2θ,nE{|εθ,n|p−2} = u2θ,nCα(p− 2, α) (72a)

E{wφ,n(s)} = u2φ,nE{|εφ,n|p−2} = u2φ,nCα(p− 2, α).
(72b)

From (70)–(72), we write E{W o} in a compact form as

E{W o} = Cα(p− 2, α)UTU . (73)

APPENDIX C

We have

W oη =

[
W o

θ ηθ
W o

φηφ

]
(74)

where

W o
θ ηθ =

[
uθ,1|εθ,1|p−1 sign(εθ,1), . . . ,

uθ,N |εθ,N |p−1 sign(εθ,N )
]T

(75a)

W o
φηφ =

[
uφ,1|εφ,1|p−1 sign(εφ,1), . . . ,

uφ,N |εφ,N |p−1 sign(εφ,N )
]T

(75b)

By using (3) and (5), it is straightforward to show that

E
{

(W oη)(W oη)T
}

= Cα(2p− 2, α)UTU . (76)
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