Consiglio Nazionale delle Ricerche

B o e

@T E:L c:
Bisr QTL \;,& !
{ Posiz.... PL%QT { ie} §

,.nmmut»hwmua o

ISTITUTO DI ELABORAZIONE
DELLA INFORMAZIONE

PISA

Strong Bisimilarity is decidable
for LOTOS
context-free processes

A. Fantechi, S. Gnesi, R. Sacchelli

Nota Interna B4-31
Ottobre 1993

-Strong Bisimilarity is decidable for LOTOS context free processes

A. Fantechi®*#, S. Gnesi*, R Sacchelli*

«ILE.I - C.NR, via S Maria 46, I-56126 Pisa, Italy
aDip. di Ingegneria dell'Informazione, Univ. di Pisa, via Diotisalvi 2, I-56126 Italy
#Dip. di Informatica, Univ. di Pisa, corso Italia 40, I-56125 Iialy

Abstract

In this paper we show how an existing technique to decide strong bisimulation on
context free processes can be adapted to work on a subset of LOTOS describing this
class of non-finite state processes. This decision procedure, originally defined for the
Basic Process Algebra is based on the construction of semantic tableaux following the
structure of a LOTOS term.

1 Introduction

If we consider a LOTOS behaviour expression [BoB87] as the set of its computations,
different classes of processes can be identified. The maximal expressive power that a LOTOS
subset can exhibit is that of Turing Machines. The presence of values, conditional expressions
and recursion in LOTOS is enough to reach the expressive power of Turing Machines. However,
even without resorting to the use of values (that is, even when using the so called "Basic
LOTOS"), it is possible to express Turing Machines; in fact, different expressivity results can be
given for different LOTOS operators [FGM90].

The expressive power of LOTOS becomes an important issue when considering the problem of
automatic verification of specification properties. In fact several methodologies and most
automatic tool support for LOTOS can only be used if the specifications considered describe
finite-state machines [BoC89,FGMR92,MaV§89]. For example, an equivalence verifier can only
manipulate specifications in this class; an attempt to verify the equivalence of two non finite-state
processes may not terminate with an answer. More powerful verification techniques have recently
been exploited to extend the verification problem to non-finite state systems (see
[BaB90,BBK88,BS92,Del91,HiiS91])).

Among these verification techniques we wish to recall the bisimulation decision algorithms on
context free processes of Basic Process Algebra (BPA) [BeK84] due to Baeten, Bergstra and

Klop and to Hiittel and Stirling [BBK88,HiiS91]. In this paper we adapt the decision procedure
by Hiittel and Stirling to a subset of LOTOS, that describes context free processes. This decision
procedure is based on the construction of semantic tableaux following the structure of a LOTOS
term and it allow us to check the strong bisimilarity between processes of this subset.

The organization of the paper is as follows: in Section 2 we present the subset of LOTOS,
which coincides with context free languages; the algorithm to decide the strong bisimulation on
this subset is described and discussed in Section 3; an example of its application is given in
Section 4; the Appendix contains the correctness proof of the given algorithm.

2 Context free LOTOS processes

In this section we present the subset of LOTOS which can generate all context free processes
[FGM90]. This subset, called from now on LOTOS -, employs a finite alphabet of observable
actions G. Actions occur at gates; since no value communication is present, we can identify the
observable actions with the gate at which they occur. The alphabet Act of actions also includes an
unobservable (or internal) action i and a "successful termination" action d used to give semantics
to the enabling operator. Let pbe an element of Act and a an element of Actu{d}, the syntax and
the operational semantics of LOTOS g operators are given in Table 1, whereP is a process
identifier, BE; a behaviour expression and gj/h;j the syntactical substitution of parameters. In the

operational semantics of the exit operator the null process stop appears, which is not included in
the syntax of LOTOS .

OPERATOR SYNTAX SEMANTICS
successful termination exit exit -8->stop
action prefix wBE w;BE-pu->BE

choice BEl[]BEz BEl—a->BE1' implies

BE,[IBE, -a->BE;’
BE,-a->BE," implies
BE,[]BE, -a->BE,’

process instantiation Plg{.---:8p] BEpig1/h1,...gn/hn] -p->BE’
implies
Plg1....en] -u->BE'

enabling BE;>>BE, BE, -8->BE;' implies
BE1>>BE2 -i->BE2
BE; -u->BE" implies
BE|>>BE, -u->BE'>>BE,

Table 1

When enabling is used within recursion, this subset is as expressive as context free languages.
In fact in [FGM90] it was proved that each process in LOTOSg corresponds to a context free

grammar and viceversa.
Example 2.1

The following context free LOTOS g process definition models the behaviour of a system

managing nested windows; the process Opened_window can be seen as the manager of an open
window, which accepts both its closure and the creation of a new nested window. At the closure
of a window the control is returned to its "parent” window.

process Nested_windows [openclick, draw_win, closeclick, cancel_win]: noexit :=
openclick; draw_win; Opened_window [openclick, draw_win, closeclick, cancel_win]
>> Nested_windows [openclick, draw_win, closeclick, cancel_win]
where
process Opened_window [openclick, draw_win, closeclick, cancel_win,]: exit :=
(closeclick; cancel_win; exit
a
(openclick; draw_win; Opened_window [openclick, draw_win, closeclick, cancel_win]
>> Opened_window [openclick, draw_win, closeclick, cancel_win]
)
endproc

endproc

On LOTOS terms various equivalence relations can be defined. Among them we recall the
notions of maximal trace equivalence and of strong bisimulation equivalence [Mil80].

Definition 1

oe Act* is a maximal trace of a process P, if there exist actions aj, ay, ...,an€ Act and processes
Pi, Py, ...,Py such that o=aj.aj.....an, and P —a;—P) —ar—P) ...—ap-—Py and there exist
no transition leading from Py, .

Two processes P and Q are called maximal trace equivalence if the related sets of maximal traces
are equal, and we write P~Q.

Definition 2
A relation R between processes is a strong bisimulation if whenever PRQ then for each
ae Actu{6}we have:

1. P—a—P'= 3 Q" Q—a—Q' and P'RQ’

2. Q—a—>Q' = I P: P—a—P' and P'RQ".

Two processes P and Q are said to be strongly bisimilar, written P<=>Q, if there is a strong
bisimulation % such that PRQ.

On LOTOScr the problem to decide the maximal trace equivalence between two processes is
unsolvable, since it corresponds to the decision of language equivalence that is unsolvable for

context free languages [HoUG69]. In any case, the undecidability result for maximal trace
equivalence does not extend in LOTOS g to bisimulation equivalence between processes; in fact

bisimulation equivalence is decidable on processes expressing context free languages
[BBK88,HiiS91,CHS92]. The proof of this statement is based on the regularity properties of the

computation trees, starting from the system of recursive equations defining such processes.
LOTOS g processes can be expressed as a system of recursive equations [FGM90], and therefore

for these classes we can apply the bisimulation decision algorithm of [BBK88] or the more
efficient algorithm, based on the construction of semantic tableaux, presented by Hiittel and
Stirling [HiS91].

In the following section we will present this algorithm. For its definition some extensions to
the original algorithm have been necessary; also some conditions on LOTOS g processes have

been introduced.

3 The Tableau Decision Method

We consider the class of guarded normed recursive LOTOS g processes, which are expressed

as a set of recursive equations, each having at the left hand side the process identifier and at the
right hand side the behaviour expression. A process is therefore defined as (X;IB), where X; is the

recursion variable and B={X;=T(Xy,...,X}): i:1...n} is a set of recursive equations.
T(Xy,...,X}y) are terms defined in (Act,Var,>>,[],;), and Var is a set of variables. In this formal
system the recursion is guarded , i.e. all variables appearing within T(Xy,...,X,) in B must be
preceded by an atomic action.

A normal form, similar to the Greibach Normal Form of context free grammar, can be given
for recursive LOTOScF processes:

Definition 3
A (X;IB) system is in Greibach Normal Form if the recursive equations in B are defined as:

Xi=[lk a; 0y , where ape Act and oy, is a sequence of process variables.
If Ith (0y)<2 then we say that (X;IB) is in 3-GNF, where the function /th (o) gives the number of
symbols of the string o

Proposition 1
Every recursive system in Greibach Normal Form can be written as a 3-GNF system, by
introducing new process identifiers.

Definition 4
For each variable X;e Var , we define the norm of X, IX;l, as the length of the minimum w, i.e.
IX;l=min{ lth (w)l X—w—stop}.

We assume that for all X there exists a sequence of actions 'w' such that X;—w—>stop

We can easily compute the norm of a process, starting from the expression which defines it,
using inductively these rules:
la;pl=1+lpl Vpe P Vae Act
Ip[]gl= min(lpl,!ql) Vp,qe P
Ip>>ql=Ip+iq! Vp,qe P
lexitl=1

3.1 The algorithm

The bisimulation decision algorithm on LOTOS terms applies for each transition the
definition of strong bisimulation equivalence itself: for each action performed by a process it
checks if the other process is able to perform the same action, and then it checks the bisimilarity of
the processes resulting from the execution of this action. The algorithm goes on in this way until

an unsuccessful or successful termination is reached.
We give now a more formal description of the algorithm. Let (XIBy) and (YIBy) be two

LOTOS - systems of recursive equations, normed and 3-GNF. To test whether X<=>Y, we
build a tableau using a goal-directed technique as defined in [HiiS91].

The rules are built around equations of the form E>>o=F>>f, where o and B can be also
empty sequences of variables. In the case o or [are empty we consider equations having only the
left side of the corresponding enabling operator. Each rule has this form:

Bso=F>>

E1>>a1 =F1>>B1 - En>>on = Fp>>PBn

The premise of the rule represents the goal (i.e. E>>0<=>F>>f) while the consequents are the
subgoals. Each of these rules is backwards sound, insofaras the consequents are true (i.e. their
equations relate strongly bisimilar processes) then so is the antecedent.

To determine whether X>>0<=>Y>>f a tableau for the equation X>>0=Y>>p is created

using the rules in Table 2. The rules relative to the recursion, choice, and action prefix were

directly obtained by those given in [HiiS91] for the corresponding operators of BPA, as well as
the rules for the generation of new subtableaux (i.e. SUBL and SUBR). As far as concerns the
enabling and exit operators, we have had to define new rules since the operational semantics of the
sequential composition of LOTOScr is different from BPA sequential composition.

Rules within subtableaux:

X>>a = Y>>B
REC where X =def E, Y =def F
E>>0 = F>>8

" asoi)>>a = (07 bjB)>>B
CHOICE ‘ with I={1...n} , J={1...m}
Viel3jel : ajai>>0 = bj;Bj>>B

a0 = a;fB
PREFIX where ae Act
o=p
ajexit = asexit
PREFIX where ae Act
exit>>0 = exit>>P
EXIT
oa=p
o= exit>>f
SUBLEX where o = iy
Y=B or o = X, and X=def i; ¥
exit>>o = f
SUBREX where B =iy
o=y or B =X, and X=def i; ¥
Rules for new subtableaux:
o>>0 = Bi>>B
SUBL where o = v>>B is the residual.
o>> Y= Bj
0>>0 = Bi>>P
SUBR where B =v>>o is the residual.
o = Bp>>y

Table 2

3.1 How to Construct Subtableaux

A tableau for the equation X>>a=Y>>[can be seen as a finite proof tree whose root is
labelled X>>0=Y>>B, and where the equations which label the immediate successors of a node
are determined by an application of one of the rules in Table 2.

A proof tree consists of a number of subtableaux; we construct a subtableau using the rules
described in Table 2 as shown in Figure 1, where it is assumed that E = []nk___1 ak; ok,

F= []nk=1 ax;Pk, o= exit>>aj and Bj = exit>>[3j.

X>>a=Y>>f

REC

E>>o = F>>f3
CHOICE
a;a =apBr ... ajog = aiBp ... an;on = an;Pn
PREFIX PREFIX PREFIX
o1 =Bl exit>>0y= exit>>B; on = Pn
...... EXIT .-

oj = Bj

Figure 1

Figure 1 represents a basic step for X>>0=Y>>p, it involves an application of the REC rule
followed by an application of the CHOICE, PREFIX, EXIT, SUBLEX, SUBREX rules in
sequence. The basic step aims to capture the set of matching single transition steps in the
operational semantics of both sides of the equation,such as X>>0-aj->0 and Y>>pB-aj->p;.

These rules are only applied to nodes that are not terminal. Terminal nodes are either successful
or unsuccessful. A tableau node is an unsuccessful terminal if it has one of these forms:

1. a=P and lal=IBl;

2. a;o=b;0o and a#b.

Clearly, such nodes cannot relate bisimilar processes.

A tableau node is a successful terminal if it has one of these forms:

1. o=P and there is another node above it in either the same or another subtableau also

labelled o=p;
2. o=o.

With reference to Figure 1, an important observation is that /th (0j)</th (X>>), since X can
only introduce a sequence of at most two variables via the REC rule; similarly lth (B{)<Ith
(Y>>B).

Assume that k=min(IX1,Y1), a subtableau for X>>a=Y>>p iterates the construction of basic
steps until reaching a depth of k steps.

If IXI<IY, each leaf of a subtableau for X>>a=Y>>p is either labelled o=y>>f, which is
called residual of the subtableau, since X is eliminated, or o;i>>0=Bi>>f where ¢ and Bj need

not be empty. On the other hand if IYI<IXI, similar remarks would apply, except that the residual is
then P>>0=.

After constructing a subtableau, we have to identify a residual node and we apply one of the
SUB rules defined in Table 2 to every leaf of the subtableau which is neither the residual nor a
terminal.

If each consequent of the SUB rule and the residual aren't terminals we build a new
subtableau, as described above, starting from the expressions which characterize them.

The proof goes on as a succesion of subtableaux; if at any point in the construction of the
subtableau we reach an unsuccessful terminal, we terminate and consider the resulting tableau as
being unsuccessful. On the other hand, a successful tableau is a finite depth proof tree, all of
whose leaves are successful terminals.

The proof of the correctness of this algorithm is reported in the Appendix.

4 An Example

Let Xg and Y be two LOTOScF processes so defined:

process Xpla,b,c,d]:exit:= a;exit[]b;exit>>Xp>>X1 endproc
where
process X1[a,b,c,d]:exit:= c;exit[]d;exit>>X>>X endproc

endproc

process Yola,b,c,d):exit:= a;exit[]b;exit>>Yy
where
process Yi[a,b,c,d]:exit:= c;exit[]d;exit>>Y3>>Yg
where
process Yo[a,b,c,d]:exit:= c;exit[]d;exit>>Y3
where
process Y3[a,b,c,d):exit:= a;exit>>Y2[]bjexit>>Y1>>Y, endproc
endproc
endproc

endproc

We want to apply the algorithm, described in Section 3, to prove the bisimilarity of Xg and Y.
To do this we need to define the systems of recursive equations in Greibach Normal Form,
corresponding to the definitions of X and Y.

(X BX)=(Xgl Xo=a;exit[]b;X'o>>Xy, X'g=exit>>X1,
Xi=csexit[]d; X' 1>>X1, X'1=exit>>Xg)

(YoIBY)=(Y¢l Yog=asexit[]b;exit>>Y1, Y1=c;exit>>Yo[1d; Y4>>Y,
Yo=c;exit[]d;exit>>Y3, Yi=a;exit>>Y[]b; Y5>>Y),
Y4=exit>>Y3, Yq=exit>>Y1).

We construct then a tableau whose root is an equation between the recursion variables Xq and Y.
This tableau consists of six subtableaux, called A, B, C, D1, D2, E, and its structure is:

>o—-co—u>

D1 D2
I
E
(A)
Xo=Yo
REC
asexit [] b; X'g>> X = asexit [] bexit>> Y
CHOICE
ajexit=a;exit b;X'0>>X(= biexit>>Y
PREFIX PREFIX
T X'0>> X0 =exit>> Y1
REC
exit>X1>>X(= exit>>Y)

EXIT

X1>>Xo=Y1

(B)
X1>>Xp=Y1
REC

(ciexit [1d;X'o>> X1)>> X = ciexi>Yg [1 d;Y4>>Y

CHOICE
ciexit>>Xp = ciexit>>Yg d;X'0>>X1>>Xo=d; Y4>>Y

PREFIX PREFIX

exit>>Xg = exit>>Y Xp>Xp>>Xg= YooYy
EXIT REC

X0 =Yo

exit>>X0>>X1>>X0 =exit>Y3>>Y0
EXIT

Xoe>X1>>Xo=Y3>Y

X=X 1>>Yo=Y3>>Y)

SUBL

(©)
Xo>>X1>>Y=Y3>>Y)
REC

(a;exit[Ib; X'o>>Xp)>>X 1>>Yp=(a;exit>>Yo[Ib; Y5>>Y2)>>Y(
CHOICE
a;exit>>X 1>>Yp=a;exit>>Y2>>Yg b X'p>>Xp>X1>>Yo=b Y5> Y>> Y

PREFIX PREFIX
exi>X1>>Y(= exit>>Y>>Y) Xo>Xeo>X1>>Yo = Y55>Y25>Y)
EXIT REC
X1>>Yo=Y2>>Y exit>X1>>Xpo>X1>> Y =exit>Y 12> Y>> Y

EXIT

XXX 1> Yo=Y 12> Y>> Y
SUBL

X1>>Xop>Yo=Y1>>Y2

(D1)

X1>>Yo= Y>> Yy
REC
(ciexit [] 4;X'1>>X1) >>Yo = (cexit [] dsexit >> Y3) >> Yo
CHOICE
ciexit>>Yo= ciexit>>Y(&:X'1>>X1>>Y o= diexit>>Y3>>Y
PREFIX PREFIX

Yo =Yo X'1>>X1>>Y0=exit>>Y3>>Y0

REC
exi>>Xp>>X1>>Yo=exit>>Y3>>Y)
EXIT

Xo>>X1>>Y0 = Y3>>Y0

10

(D2)

X1>>Xpe>Yo = Yi>>Yo

: REC
(ciexit [] d;X"1>>X1) >>Xp>>Y7 = (ciexit>>Yg [1 d; Y>> Yo)>>Y2
CHOICE
cexit>Xg>>Y7 = ciexit>Y>>Y) 4;X'1>>X1>>Xp>Yo= ;Y>> Yo>Yo
PREFIX PREFIX
exit>>X>>Yo=exit>>Y>>Y2
EXIT
Xo>>Yo=Yo>>Y2 X'1>>X1>>X>>Y=Y4>>Yo>>Y2
SUBL REC

X0>>X1>>Y0 = Y3>>Y0 exi>>X0>>X1>>X0>>Y2=exit>> Y3>>YO>>Y2

EXIT
XX > Xpo>Yo=Y3> Yo Yo
(E)
Xo>>Y2 =Y0>>Y?2
REC
(asexit [] b;X'g>>Xp) >>Y 7 = (asexit [] bjexit>>Y 1)>>Yo

CHOICE

a;exit>>Y9 = ajexit>>Ys b X'0>>Xp>>Yo=bsexit>>Y1>>Y9

PREFIX PREFIX
Y2 =Y2-l X'0>>X0>>Y2=exit>>Y1>>Y2
REC
exi>X1>>Xp>>Yr=exit>Y1>>Y)
EXIT

X1>> Xe>Y2=Y1>>Y2

In the subtableau E two leaves are successful terminal nodes; they are enclosed in boxes to

make them more evident. Also the other terminal leaves in the whole tableau are successful. We

can hence conclude that X and Y are strongly bisimilar.

5 Conclusions

The algorithm, presented in this paper, allows us to verify the strong bisimulation equivalence

between LOTOScr processes. The worst case time complexity of the algorithm, considered as the

maximal depth of the proof tree in terms of the number of basic steps, is O(m#n3(M+1)) where n

is the number of the variables and m the maximal norm of a variable [HiiS91].

11

An implementation of this algorithm is planned inside the verification environment LITE,
developed inside the project LOTOSPHERE [Eij91], to extend the verification functionality of this
environment to cover a class of non finite state systems, in order to experiment on "real"
specifications whether the worst case exponential complexity is really problematic in practice.

We wish also to extend, if possible, the class of application of the algorithm presented in this
paper to context free processes defined outside LOTOScg. In fact other subset of LOTOS can
describe context free processes, for example when the disabling operator is used together with
recursion, action prefix and choice operators [FGM90].

Another topic under study is the applicability to LOTOScF of a similar algorithm to decide
branching bisimilarity on context free BPA processes. It is an open question instead as to whether
weak bisimulation equivalence (or observational equivalence) is decidable on this class of
processes [Hiit91].

References

[BaB90] Barbeau, M., Bochmann, G. V.: Extension of the Karp and Miller Procedure to LOTOS
Specifications, Proc. 2nd Workshop on Computer-Aided Verification, Vol. 1, 1990.

[BBKSS] Baeten, J. C. M,, Bergstra, J. A., Klop, J. W.: Decidability of Bisimulation Equivalence for Processes
generating Context-Free Languages, REX School/Workshop on Linear Time, Branching Time and
Partial Order in Logics and Model for Concurrency, Noordwijkerhout, 1988.

[BeK84] Bergstra, J. A.,. Klop, J. W: The Algebra of Recursively Defined Processes and the Algebra of
Regular Processes, ICALP '84, LNCS vol. 172, pp. 82-94, 1984,

[BoB87] Bolognesi, T., Brinskma, E.: Introduction to the ISO Specification Language LOTOS, Computer
Networks & ISDN Systems, 14, 1, 25-29 (1987).

[BoC89] Bolognesi, T., Caneve, M.: Equivalence Verification: Theory, Algorithms and a Tool, in van Eijk,
P.H.J., Vissers C.A., Diaz M., eds., The Formal Description Technique LOTOS, pp. 303-326,
North-Holland, 1989.

[BS92] Burkart, O., Steffen, B.: Model Checking for Context-Free Processes, Proc. CONCUR'92, LNCS
vol. 630, pp. 123-137, 1992.

[CHS92] Christensen, S., Hiittel, H., Stirling, C.: Bisimulation Equivalence is Decidable for All Context-Free
Processes, Proc. CONCUR'92, LNCS vol. 630, pp. 138-147, 1992.

[Delo1] De Francesco, N., Inverardi, P.: A Semantics Driven Method to Check the Finiteness of CCS
Processes, Proc. 3rd Workshop on Computer-Aided Verification, pp.342-354, 1991.

[Eijo1] van Eijk, P.: The Lotosphere Integrated Tool Environment LITE, in Proceedings 4th International
Conference on Formal Description Techniques (FORTE '91), Sidney, November 1991, North-Holland,
pp. 473-476.

[FGMS0] Fantechi, A., Gnesi, S., Mazzarini, G., "How Much Expressive are LOTOS Behaviour Expressions?”
Formal Description Techniques - III, pp. 17-32, North-Holland, 1990.

[FGMR92] Fernandez, J.C., Garavel, H., Mounier, L., Rasse, A., Rodriguez, C., Sifakis, J.: A Toolbox for the
Verification of LOTOS Programs. 14th ICSE, Melbourne, 1992, pp. 246-261.

[HoU69] Hopcroft, J. E., Ullman, J. D.: Formal Languages and their Relation to Automata, Addison-Wensley,
1969.

12

[HiiS91] Hiittel, H., Stirling, C.: Actions Speak Louder than Words: Proving Bisimilarity for Context-Free
Processes, Proc. LICS 91, Computer Society Press, pp. 376-386, 1991.

[Hiit91] Hiittel, H., Silence is Golden: Branching Bisimilarity is Decidable for Context-Free Processes, Proc.
3rd Workshop on Computer-Aided Verification, LNCS vol. 575, pp. 2-12, 1991.

[MaV_g9] Madeleine, E., Vergamini, D.: AUTO: A Verification Tool for Distributed Systems Using Reduction
of Finite Automata Networks, Formal Description Techniques - II, pp. 61-66, North-Holland, 1989.

[Mi180] Milner, R.: A Calculus of Communicating Systems, LNCS vol. 92, 1980.

Appendix

In the following we prove the soundness and completeness of the presented algorithm. The
proof closely resembles the one given for context free processes expressed in the BPA [HiiS91].

Proposition 1
Let (XIB1) and (YIB5) be two DeLOTOS+>> systems of recursive equations, normed and 3-

GNF. Let Var; and Vary be the sets of variables respectively in By and B,; if m=max(IZI:
ZeVar{\UVar,) then:

1) lal<IX>>al and ly>>BI<IY>>PI for each SUBL rule application;

2) IBI<IY>>Bl and ly>>al<IX>>0l for each SUBR rule application;

3) lth (o) +ith (Y)+ith (Bi)SB(m+1) for each SUB rules application.

Proof

1) Obviously lal<IX>>ol=IX]+lcl.

Since X>>a=Y>>P and a=y>>p aren't unsuccessful terminals then IX>>ol=IY>>Bl| and
lod=h>>Bl, and consequently Iyv>>Pl=lol<IX>>al=IY>>p.

2) This is analogous to the previous proof except that now we have ly>>al<IBl.

3) Let X>>a=Y>>p be the root of a subtable, and k=min(1Xl,IY1); we build such subtableau

iterating a basic step k times. Every time we apply the REC rule every variable is substituted with 4
a sequence of at most two variables. Then after k steps we have [th (o),lth (Y), lth (Bi)Sk+1.

Since k<m then Ith (04)+lth (Y)+Ith (Bi)SB(k+1)s3(m+1). °

Theorem 1

(i) Every tableau for X>>0=Y>> is finite.

(ii) There is a finite succession of subtableaux for X>>0=Y>>f.

Proof

(i) If a tableau for X>>0=Y>>f were infinite then there would be an infinite path in the tree.
This path would contain neither successful terminals nor unsuccessful terminal nodes.

13

From point 3) of Proposition 1 this path can not pass through infinitely many nodes which are
consequents of a SUB rule, otherwise in this path there would have to be a successful terminal
node which is reached infinitely many times.

Then this path must pass through a residual, but from points 1) and 2) of Proposition 1 this
path cannot be infinite; we can therefore conclude that this path must be finite.

(ii) follows from (i) and from the fact that there is an upper bound on the number of basic steps

along any path, namely O (m4n3(m+1)), where n is the number of the variables and m the
maximal norm of a variable. *

To prove the next theorem we need this definition:
Definition 4
The sequence of bisimulation approximations {<=>n}mn=1 is defined inductively as follows:
e p<=>pq V p,geP
e p<=>,41q iff for each ae Act:
- p-a->p' = 3 q": g-a->q' and p'<=>,q'
- q-a->q' = 3 p" p-a->p' and p'<=>,q".

It is a standard result (see [M80] for instance) that any image-finite labelled transition (i.e.
where for each pe P and ae Act the set {gl p-a->q} is finite):

®
<=>= M <=>g
=0
Theorem 2
X>>o<=>Y>>P iff there exists a successful tableau for X>>0=Y>>p.
Proof
(=)

Suppose X>>a<=>Y>>f; we build a tableau for X>>0=Y>>f which preserves the property
that for each node o'=B' we have o'<=>p'".
Clearly, in the case of the PREFIX and REC rule if the antecedent is true then so is the

consequent. In SUB rules, if the residual is true and the antecedent is true, the consequent is also
true .

This is not immediate when we consider the CHOICE rule. However, from the definition of
strong bisimulation it follows that if ([]ni=1ai;oq)>>oc<=>([]mj=lbj;ﬁj)>>[3 then for each i there
is a j such that ai;oci>>oc<=>bj;Bj>>B, and for each j there is an i with the same feature.

From these observations and from Theorem 1 this tableau construction must terminate with
success.

(&)

Suppose we had a successful tableau for X>>a=Y>>p but X>>0<#>Y>>p.

14

Since the transition systems for X>>o and Y>>f are image-finite, there exists an m such
that X>>0<#>, Y>>B and V n<m X>>o0<=>,Y>>p.

The rules for the basic steps are backwards sound with respect to each <=>_, then within a
subtableau for X>>a=Y>>f a leaf must exist «'=p' such that o'<#>, B’ with n<m, because the
PREFIX rule must have been applied at least once.

After the application of the SUB rule there is at least one new root ot"=" of the subsequent
subtableau with o"<=>,B".

From these equations we choose X{>>0=Y 1>>B, and we choose the minimum n such that
X>>a<#>,Y 1>>P.

Proceeding in this way we find a contradiction because we must find a successful terminal
node. It cannot be a=a since o<=>0 then Vm20 a<=> o, however it cannot be o;=B; with

oc<¢>niB (where n; is the minimum number such that 0c<=>ni[3 Vi), since the node above it
labelled o;=[p; must have the property that oj<=>, iBi' We therefore conclude that
X>>o<=>Y>>0.. ®

15

