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Abstract

This paper deals with an initial and boundary value problem for a system cou-
pling equation and boundary condition both of Cahn–Hilliard type; an additional
convective term with a forced velocity field, which could act as a control on the
system, is also present in the equation. Either regular or singular potentials are ad-
mitted in the bulk and on the boundary. Both the viscous and pure Cahn–Hilliard
cases are investigated, and a number of results is proven about existence of solutions,
uniqueness, regularity, continuous dependence, uniform boundedness of solutions,
strict separation property. A complete approximation of the problem, based on
the regularization of maximal monotone graphs and the use of a Faedo–Galerkin
scheme, is introduced and rigorously discussed.
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1 Introduction

This paper is concerned with the following Cahn-Hilliard system with convection:

∂tρ+∇ρ · u−∆µ = 0 and τΩ∂tρ−∆ρ+ f ′(ρ) = µ in Q := Ω× (0, T ), (1.1)

where Ω denotes a bounded three-dimensional domain and T > 0 is a fixed final time.
The unknowns are ρ, the order parameter, and µ, the chemical potential; f ′ stands for the
derivative of a double-well potential f , u is a given velocity field and τΩ is a nonnegative
constant. According to whether τΩ is positive or zero, we speak of viscous Cahn–Hilliard
or pure Cahn–Hilliard system, respectively.

The equations in (1.1) provide a description of the evolution phenomena related to
solid-solid phase separations with convection leaded by the term ∇ρ · u, for some fixed
velocity vector u. Let us refer to [1,5,21,22,35] for some pioneering contributions on the
class of Cahn–Hilliard problems. In general, an evolution process goes on with diffusion;
however, for the process of phase separation there is a structural difference since each
phase concentrates and the so-called spinodal decomposition occurs. A discussion on the
modeling approach for phase separation, spinodal decomposition and mobility of atoms
between cells can be found in [8, 16, 23, 29, 36]).

Typical and important examples of f are the so–called classical regular potential and
the logarithmic double-well potential . They are given by

freg(r) :=
1

4
(r2 − 1)2 , r ∈ R, (1.2)

flog(r) := ((1 + r) ln(1 + r) + (1− r) ln(1− r))− cr2 , r ∈ (−1, 1), (1.3)

where c > 1 is such that flog is nonconvex. Another example is the following double

obstacle potential :

f2obs(r) := −cr2 if |r| ≤ 1 and f2obs(r) := +∞ if |r| > 1, (1.4)

where c > 0. In cases like (1.4), one has to split f into a non-differentiable convex part
(the indicator function of [−1, 1] in the present example) and a smooth perturbation.
Accordingly, one has to replace the derivative of the convex part by the subdifferential
and interpret the second identity in (1.1) as a differential inclusion. In order to incorporate
cases like (1.4) in our analysis, we allow f ′ to be expressed by the sum β + π, where β is

the subdifferential of a convex and lower semicontinuous function β̂ : R → [0,+∞] such

that β̂(0) = 0, and π is the Lipschitz continuous derivative of the concave perturbation

π̂ : R → R. Thus, we have that f = β̂ + π̂ represents a possibly non-smooth double-well
potential.

In order to set an initial-boundary value problem for (1.1), we have to specify initial
and boundary conditions. As far as the latter are concerned, the classical ones are the
homogeneous Neumann boundary conditions, namely

∂νµ = 0, ∂νρ = 0 on Σ := Γ× (0, T ), (1.5)

where Γ stands for the smooth boundary of Ω and ∂ν denotes the outward normal deriva-
tive. In the present work, on the contrary we tackle two dynamic boundary conditions
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for µ and ρ so to obtain a system of Cahn–Hilliard type also on the boundary. Namely,
we complement (1.1) with

∂tρΓ + ∂νµ−∆ΓµΓ = 0 and τΓ∂tρΓ + ∂νρ−∆ΓρΓ + f ′
Γ(ρΓ) = µΓ on Σ, (1.6)

where µΓ and ρΓ are the traces of µ and ρ, respectively, ∆Γ is the Laplace-Beltrami
operator on the boundary, τΓ is a nonnegative constant, and f ′

Γ = βΓ+πΓ comes out from

another potential fΓ = β̂Γ+ π̂Γ with the same behavior as f , the two potentials being not
completely independent but related by a suitable growth condition. Then, it turns out
that initial conditions should be prescribed both in the bulk and on the boundary.

Therefore, by considering everything, the resulting initial and boundary value prob-
lem reads

∂tρ+∇ρ · u−∆µ = 0 in Q, (1.7)

τΩ∂tρ−∆ρ+ β(ρ) + π(ρ) ∋ µ in Q, (1.8)

ρΓ = ρ|Σ , µΓ = µ|Σ and ∂tρΓ + ∂νµ−∆ΓµΓ = 0 on Σ, (1.9)

τΓ∂tρΓ + ∂νρ−∆ΓρΓ + βΓ(ρΓ) + πΓ(ρΓ) ∋ µΓ on Σ, (1.10)

ρ(0) = ρ0 in Ω and ρΓ(0) = ρ0|Γ on Γ. (1.11)

Up to our knowledge, in the case of a pure Cahn–Hilliard system, that is, with τΩ = τΓ = 0,
and without convective term (u = 0), the problem (1.7)–(1.11) has been firstly formulated
by Goldstein, Miranville and Schimperna [27] and analyzed from various viewpoints in
other contributions (see [7–9,28]); moreover, in the case of general potentials, the problem
has been deeply investigated in [15] from the point of view of existence, uniqueness and
regularity of the weak solution (see also [24] for an optimal control problem) by using an
abstract approach. Here, instead, we face with the full system (1.7)–(1.11) by a complete
approximation procedure, which involves not only a regularization of graphs but the
setting of a precise Faedo–Galerkin scheme. Moreover, in the viscous case with both τΩ
and τΓ positive, we can prove the uniform boundedness of both the chemical potential
and the order parameter, up to the boundary, and we are even able to show the strict
separation property in the case of logarithmic potentials like flog in (1.3). In addition to
this, we did our best to try to keep minimal assumptions on the velocity field u, concerning
summability and time derivation (see the later (2.21) and (2.47)). So, we think that our
contribution could be a useful tool for studying other problems, which possibly involve
other equations with coupled terms, and in particular for investigating optimal control
problems.

Let us now review some related literature. It turns out that some class of Cahn–Hilliard
system, possibly including dynamic boundary conditions, has collected a noteworthy in-
terest in recent years: we can quote [10, 32, 34, 37, 38, 43] among other contributions. In
case of no convective term in (1.7), and assuming the homogeneous boundary condition
∂νµ = 0 (i.e., the first condition in (1.5)) and the condition (1.10) with τΓ > 0 and µΓ as
a given datum, the problem has been first addressed in [25]: the well-posedness and the
large time behavior of solutions have been studied for regular potentials f and fΓ, as well
as for various singular potentials like the ones in (1.3) and (1.4). One can see [25, 26]: in
these two papers the authors were able to overcome the difficulties due to singularities
using a set of assumptions for β, π and βΓ, πΓ that gives the role of the dominating po-
tential to f and entails some technical difficulties. The subsequent papers [17–19] follow
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a different approach (firstly considered in [6] to investigate the Allen–Cahn equation with
dynamic boundary conditions), which consists in letting fΓ be the leading potential with
respect to f : by this the analysis turns out to be simpler. The paper [17] contains many
results about existence, uniqueness and regularity of solutions for general potentials that
include (1.2)–(1.3), and are valid for both the viscous and pure cases, i.e., by assuming
just τΩ ≥ 0. Moreover, the optimal boundary control problems for the viscous and pure
Cahn–Hilliard equation are discussed in [19] and [18], respectively, in analogy with the cor-
responding contributions [13,20] for the Allen–Cahn equation. The paper [14] deals with
the well-posedness of the same system, but in which also an additional mass constraint on
the boundary is imposed. In addition, we aim to emphasize that Cahn–Hilliard systems
have been rather investigated from the viewpoint of optimal control. In this connection,
we point out the contributions [44, 45] dealing with the convective Cahn–Hilliard equa-
tion; the case with a nonlocal potential is studied in [39]. We also refer to [11, 30, 42, 46]
and quote the paper [12] investigating the second-order optimality conditions for the state
system considered in [19]. There also exist articles addressing some discretized versions
of general Cahn–Hilliard systems, cf. [31, 41].

The present paper is organized as follows. In the next two sections, we list our as-
sumptions and notations, state our results and give the relations between weak solutions
and the above boundary value problem. Sections 4 is devoted to continuous dependence
and uniqueness, while the existence of a solution is shown in Section 6 by taking the limit
of suitable approximating problems studied in Section 5. Finally, Section 7 is devoted to
our regularity results.

2 Statement of the problem and results

In this section, we state precise assumptions and notations and present our results. First
of all, the set Ω ⊂ R

3 is assumed to be bounded, connected and smooth. As in the
Introduction, ν is the outward unit normal vector field on Γ := ∂Ω, and ∂ν and ∆Γ stand
for the corresponding normal derivative and the Laplace-Beltrami operator, respectively.
Furthermore, we denote by ∇Γ the surface gradient and write |Ω| and |Γ| for the volume
of Ω and the area of Γ, respectively.

If X is a Banach space, ‖ · ‖X denotes both its norm and the norm of X3. Moreover,
X∗ is the dual space of X , and 〈 · , · 〉X is the dual pairing between X∗ and X . The only
exception from the convention for the norms is given by the spaces Lp constructed on Ω,
Γ, Q, and Σ, for 1 ≤ p ≤ ∞, whose norms are denoted by ‖ · ‖p. Furthermore, we put

H := L2(Ω) , V := H1(Ω) and W := H2(Ω), (2.1)

HΓ := L2(Γ) , VΓ := H1(Γ) and WΓ := H2(Γ), (2.2)

H := H ×HΓ , V := {(v, vΓ) ∈ V × VΓ : vΓ = v|Γ}

and W :=
(
W ×WΓ

)
∩ V . (2.3)

In the sequel, we work in the framework of the Hilbert triplet (V,H,V ∗). Thus, we have
〈(g, gΓ), (v, vΓ)〉V =

∫
Ω
gv +

∫
Γ
gΓvΓ for every (g, gΓ) ∈ H and (v, vΓ) ∈ V. Next, we

introduce the generalized mean value, the related spaces and the operator N we widely
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use throughout the paper. The former is defined by

mean g∗ :=
〈g∗, (1, 1)〉V
|Ω|+ |Γ|

for g∗ ∈ V ∗ (2.4)

and reduces to

mean g∗ =

∫
Ω
v +

∫
Γ
vΓ

|Ω|+ |Γ|
if g∗ = (v, vΓ) ∈ H . (2.5)

Of course, the components of the pair (1, 1) in (2.4) are the constant functions 1 on Ω
and Γ, respectively. We stress that the function

V ∋ (v, vΓ) 7→ ‖∇v‖2H + ‖∇ΓvΓ‖
2
HΓ

+ |mean(v, vΓ)|
2

yields the square of a Hilbert norm on V that is equivalent to the natural one. In particular,
we have, for every (v, vΓ) ∈ V,

‖(v, vΓ)‖V ≤ CΩ

(
‖∇v‖H + ‖∇ΓvΓ‖HΓ

+ |mean(v, vΓ)|
)
, (2.6)

where CΩ depends only on Ω. Now, we set

V∗0 := {g∗ ∈ V ∗ : mean g∗ = 0}, H0 := H ∩ V∗0 and V0 := V ∩ V∗0. (2.7)

Notice the difference between V∗0 and the dual space V ∗
0 = (V0)

∗. At this point, it is clear
that the function

V0 ∋ (v, vΓ) 7→ ‖(v, vΓ)‖V0
:=

(
‖∇v‖2H + ‖∇ΓvΓ‖

2
HΓ

)1/2
(2.8)

is a Hilbert norm on V0 which is equivalent to the usual one. This has the following
consequence: for every g∗ ∈ V∗0, there exists a unique pair (ξ, ξΓ) ∈ V0 such that

∫

Ω

∇ξ · ∇v +

∫

Γ

∇ΓξΓ · ∇ΓvΓ = 〈g∗, (v, vΓ)〉V for every (v, vΓ) ∈ V. (2.9)

Indeed, the right-hand side of (2.9), restricted to the pairs (v, vΓ) ∈ V0, defines a contin-
uous linear functional on V0 with respect to its natural norm (V0 is a subspace of V ⊂
V × VΓ), and thus also with respect to the norm (2.8). Therefore, by the Riesz represen-
tation theorem, there exists a unique pair (ξ, ξΓ) ∈ V0 such that

∫

Ω

∇ξ · ∇v +

∫

Γ

∇ΓξΓ · ∇ΓvΓ = 〈g∗, (v, vΓ)〉V for every (v, vΓ) ∈ V0.

On the other hand, the same relation holds true for (v, vΓ) = (1, 1), since mean g∗ = 0.
As V = V0 ⊕ span{(1, 1)}, we obtain (2.9). This allows us to define N : V∗0 → V0 by
setting:

for g∗ ∈ V∗0, Ng∗ is the unique pair (ξ, ξΓ) ∈ V0 satisfying (2.9). (2.10)

We notice that N is linear, symmetric, and bijective. Therefore, if we set

‖g∗‖∗ := ‖Ng∗‖V0
, for g∗ ∈ V∗0, (2.11)
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then we obtain a Hilbert norm on V∗0, which turns out to be equivalent to the norm
induced by the norm of V ∗. For a future use, we collect some properties of N. By just
applying the definition, we have that

〈g∗,Ng∗〉V = ‖g∗‖2∗ if g∗ ∈ V∗0, (2.12)
∫

Ω

∇w · ∇ξ +

∫

Γ

∇ΓwΓ · ∇ΓξΓ = ‖(w,wΓ)‖
2
H

if (w,wΓ) ∈ V0 and (ξ, ξΓ) = N(w,wΓ) . (2.13)

By accounting for the symmetry of N, we also have (where, here and in the sequel, N is
applied to V∗0-valued functions as well)

〈∂tg
∗,Ng∗〉V =

1

2

d

dt
‖g∗‖2∗ if g∗ ∈ H1(0, T ;V∗0), (2.14)

∫

Ω

∇w · ∇ξ +

∫

Γ

∇ΓwΓ · ∇ΓξΓ =
1

2

d

dt
‖(w,wΓ)‖

2
H

if (w,wΓ) ∈ L2(0, T ;V), ∂t(w,wΓ) ∈ L2(0, T ;V∗0), (ξ, ξΓ) = N(∂t(w,wΓ)) . (2.15)

Now, we list our assumptions. For the structure of our system, we postulate:

τΩ and τΓ are nonnegative real numbers ; (2.16)

β̂, β̂Γ : R → [0,+∞] are convex, proper and l.s.c. with β̂(0) = β̂Γ(0) = 0 ;
(2.17)

π̂, π̂Γ : R → R are of class C2 with Lipschitz continuous first derivatives. (2.18)

We set, for convenience,

β := ∂β̂ , βΓ := ∂β̂Γ , π := π̂′ and πΓ := π̂′
Γ, (2.19)

and assume that, with some positive constants C and η,

D(βΓ) ⊆ D(β) and |β◦(r)| ≤ η|β◦
Γ(r)|+ C for every r ∈ D(βΓ). (2.20)

In (2.20), the symbols D(β) and D(βΓ) denote the domains of β and βΓ, respectively.
More generally, we use the notation D(G) for every maximal monotone graph G in R×R,
as well as for the maximal monotone operators induced on L2 spaces. Moreover, for
r ∈ D(G), G◦(r) stands for the element of G(r) having minimum modulus.

For the data, we make the following assumptions:

u ∈ L2(0, T ;L3(Ω))3, div u = 0 in Q and u · ν = 0 on Σ ; (2.21)

(ρ0 , ρ0|Γ) ∈ V , β̂(ρ0) ∈ L1(Ω) and β̂Γ(ρ0|Γ) ∈ L1(Γ) ; (2.22)

m0 := mean(ρ0, ρ0|Γ) ∈ intD(βΓ). (2.23)

Let us come to our notion of solution. It is a triple of pairs, ((µ, µΓ), (ρ, ρΓ), (ζ, ζΓ)),
that satisfies a rather low level of regularity, in principle. Indeed, we just require that

(µ, µΓ) ∈ L2(0, T ;V), (2.24)

(ρ, ρΓ) ∈ H1(0, T ;V ∗) ∩ L∞(0, T ;V), (2.25)

(ζ, ζΓ) ∈ L2(0, T ;H), (2.26)

τΩ∂tρ ∈ L2(0, T ;H) and τΓ∂tρΓ ∈ L2(0, T ;HΓ) . (2.27)
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We have written, e.g., τΩ∂tρ in (2.27) instead of ∂t(τΩρ). We similarly behave throughout
the paper, in particular in the forthcoming (2.29), in order to avoid a heavy notation.
The problem to be solved is stated in a weak form, owing to the assumptions (2.21) on u.
Namely, we require that

〈∂t(ρ, ρΓ), (v, vΓ)〉V −

∫

Ω

ρu · ∇v +

∫

Ω

∇µ · ∇v +

∫

Γ

∇ΓµΓ · ∇ΓvΓ = 0

a.e. in (0, T ) and for every (v, vΓ) ∈ V, (2.28)

τΩ

∫

Ω

∂tρ v + τΓ

∫

Γ

∂tρΓ vΓ +

∫

Ω

∇ρ · ∇v +

∫

Γ

∇ΓρΓ · ∇ΓvΓ

+

∫

Ω

(
ζ + π(ρ)

)
v +

∫

Γ

(
ζΓ + πΓ(ρΓ)

)
vΓ =

∫

Ω

µv +

∫

Γ

µΓvΓ

a.e. in (0, T ) and for every (v, vΓ) ∈ V, (2.29)

ζ ∈ β(ρ) a.e. in Q and ζΓ ∈ βΓ(ρΓ) a.e. on Σ, (2.30)

ρ(0) = ρ0 a.e. in Ω and ρΓ(0) = ρ0|Γ a.e. on Γ. (2.31)

We observe that any weak solution to problem (2.28)–(2.31) satisfies

∂t mean(ρ, ρΓ) = 0, whence mean(ρ, ρΓ)(t) = m0 for every t ∈ [0, T ]. (2.32)

Indeed, it suffices to take (v, vΓ) = (|Ω|+ |Γ|)−1(1, 1) in (2.28).

However, one can wonder whether the solution enjoys the better regularity

∂t(ρ, ρΓ) = (∂tρ, ∂tρΓ) ∈ L2(0, T ;H) and (µ, µΓ) ∈ L2(0, T ;W), (2.33)

(ρ, ρΓ) ∈ L2(0, T ;W), (2.34)

and actually satisfies the boundary value problems presented in the Introduction, i.e.,

∂tρ+∇ρ · u−∆µ = 0 a.e. in Q, (2.35)

∂tρΓ + ∂νµ−∆ΓµΓ = 0 a.e. on Σ, (2.36)

τΩ∂tρ−∆ρ+ ζ + π(ρ) = µ a.e. in Q, (2.37)

τΓ∂tρΓ + ∂νρ−∆ΓρΓ + ζΓ + πΓ(ρΓ) = µΓ a.e. on Σ. (2.38)

This is not obvious. For instance, it is not clear whether the derivative ∂t(ρ, ρΓ) can be
replaced by (∂tρ, ∂tρΓ), since the components of the test functions (v, vΓ) ∈ V used in
(2.28) are not independent. In the first result we present, we answer the above questions.
However, for future use, it is convenient to prepare a more general tool.

Theorem 2.1. Assume (2.16)–(2.20) for the structure, (2.21) for the velocity field and

((µ, µΓ), (ρ, ρΓ), (ζ, ζΓ)) ∈ L2(0, T ;V× V×H) with (τΩ∂tρ, τΓ∂tρΓ) ∈ L2(0, T ;H) .

Then, we have the following statements:

i) if ρ ∈ L2(0, T ;W ), ∂t(ρ, ρΓ) ∈ L2(0, T ;H) and (2.28) is fulfilled, then

(µ, µΓ) ∈ L1(0, T ;W) with

‖(µ, µΓ)‖L1(0,T ;W) ≤ C1

(
‖(µ, µΓ)‖L2(0,T ;V) + ‖∂t(ρ, ρΓ)‖L2(0,T ;H)

+ ‖ρ‖L2(0,T ;W )‖u‖L2(0,T ;H)

)
, (2.39)
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where C1 depends only on Ω, and (2.35)–(2.36) hold true as well;

ii) if (2.29) is satisfied, then

(ρ, ρΓ) ∈ L2(0, T ;W) with

‖(ρ, ρΓ)‖L2(0,T ;W) ≤ C2

(
‖(ρ, ρΓ)‖L2(0,T ;V)

+ ‖((µ, µΓ), (ζ, ζΓ), (τΩ∂tρ, τΓ∂tρΓ))‖L2(0,T ;H×H×H)

)
, (2.40)

where C2 depends only on Ω, and (2.37)–(2.38) hold as well;

iii) if γ : R → R is monotone and Lipschitz continuous, and if (2.29) holds true with

ζΓ ∈ γ(ρΓ) a.e. on Σ, then

‖ζΓ‖L2(0,T ;HΓ) ≤ C3

(
‖(ρ, ρΓ)‖L2(0,T ;V)

+ ‖((µ, µΓ), ζ, (τΩ∂tρ, τΓ∂tρΓ))‖L2(0,T ;H×H×H)

)
, (2.41)

where C3 depends only on Ω.

Assume, in addition, that u belongs to L∞(0, T ;L3(Ω)) and that

((µ, µΓ), (ρ, ρΓ), (ζ, ζΓ)) ∈ L∞(0, T ;V× V×H) and (τΩ∂tρ, τΓ∂tρΓ) ∈ L∞(0, T ;H) .

Then, we have the following statements:

iv) if ρ ∈ L∞(0, T ;W ), ∂t(ρ, ρΓ) ∈ L∞(0, T ;H) and (2.28) is fulfilled, then

(µ, µΓ) ∈ L∞(0, T ;W) with

‖(µ, µΓ)‖L∞(0,T ;W) ≤ C4

(
‖(µ, µΓ)‖L∞(0,T ;V) + ‖∂t(ρ, ρΓ)‖L∞(0,T ;H)

+ ‖ρ‖L∞(0,T ;W )‖u‖L∞(0,T ;H)

)
, (2.42)

where C4 depends only on Ω;
v) if (2.29) is satisfied, then

(ρ, ρΓ) ∈ L∞(0, T ;W) with

‖(ρ, ρΓ)‖L∞(0,T ;W) ≤ C5

(
‖(ρ, ρΓ)‖L∞(0,T ;V)

+ ‖((µ, µΓ), (ζ, ζΓ), (τΩ∂tρ, τΓ∂tρΓ))‖L∞(0,T ;H×H×H)

)
, (2.43)

where C5 depends only on Ω;
vi) if γ : R → R is monotone and Lipschitz continuous, and if (2.29) holds true with

ζΓ ∈ γ(ρΓ) a.e. on Σ, then

‖ζΓ‖L∞(0,T ;HΓ) ≤ C6

(
‖(ρ, ρΓ)‖L∞(0,T ;V)

+ ‖((µ, µΓ), ζ, (τΩ∂tρ, τΓ∂tρΓ))‖L∞(0,T ;H×H×H)

)
, (2.44)

where C6 depends only on Ω.
As a particular case of i) and ii), every solution to problem (2.28)–(2.31) satisfying (2.24)–
(2.27) also fulfills (2.34) and (2.37)–(2.38), and, if τΩ and τΓ are strictly positive, (2.33)
and (2.35)–(2.36) hold true as well.

Remark 2.2. We stress that all of the constants appearing in the estimates (2.39)–(2.44)
depend only on Ω. In particular, the constants C3 and C6 do not depend on γ.
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Our next results regard the well-posedness and the continuous dependence of the
solution on the velocity field. They are as follows:

Theorem 2.3. Assume (2.16)–(2.20) for the structure and (2.21)–(2.23) for the data.

Then, problem (2.28)–(2.31) has a at least one solution ((µ, µΓ), (ρ, ρΓ), (ζ, ζΓ)) satisfying
the regularity properties (2.24)–(2.27), (2.34) and the inequality

‖(µ, µΓ)‖L2(0,T ;V) + ‖(ρ, ρΓ)‖H1(0,T ;V ∗)∩L∞(0,T ;V)∩L2(0,T ;W)

+ ‖(ζ, ζΓ)‖L2(0,T ;H) + τ
1/2
Ω ‖∂tρ‖L2(0,T ;H) + τ

1/2
Γ ‖∂tρΓ‖L2(0,T ;HΓ) ≤ K1, (2.45)

for some constant K1 that depends only on the structure of the system, Ω, T , the initial

data, and the norm of u in L2(0, T ;L3(Ω))3. Furthermore, the components ρ and ρΓ of

any solution are uniquely determined, and the whole solution is unique if at least one of

the operators β and βΓ is single-valued.

Remark 2.4. By combining the statements of Theorems 2.1 and 2.3, it is clear that
estimates also hold for the norms of (µ, µΓ) and (ρ, ρΓ) in L

2(0, T ;W) with a constant K ′
1

similar to K1.

Theorem 2.5. Under the assumptions (2.16)–(2.20) on the structure and (2.21)–(2.23)
on the data, let ui, i = 1, 2, be two choices of u, and let ((µ, µΓ), (ρ, ρΓ), (ζ, ζΓ)) be the

difference of two corresponding solutions. Then the inequality

‖(ρ, ρΓ)‖L∞(0,T ;V ∗
0
)∩L2(0,T ;V) + τ

1/2
Ω ‖∂tρ‖L∞(0,T ;H) + τ

1/2
Γ ‖∂tρΓ‖L∞(0,T ;HΓ)

≤ K2‖u1 − u2‖L2(0,T ;L3(Ω)) (2.46)

holds true for some constant K2 that depends only on the structure of the system, Ω, T ,
the initial data, and the norms of ui, i = 1, 2, in L2(0, T ;L3(Ω))3.

Under additional assumptions on the initial data and on the velocity u, we can ensure
further regularity for the solution. Namely, we have the following result:

Theorem 2.6. In addition to the assumptions (2.16)–(2.20) for the structure and (2.21)–
(2.23) for the data, suppose that τΩ and τΓ are strictly positive and that

u ∈ H1(0, T ;L3/2(Ω)) ∩ L∞(0, T ;L3(Ω)), (2.47)

ρ0 ∈ H2(Ω) , ρ0|Γ ∈ H2(Γ) , β◦(ρ0) ∈ L2(Ω) and β◦
Γ(ρ0|Γ) ∈ L2(Γ) . (2.48)

Then, problem (2.28)–(2.31) has a at least one solution ((µ, µΓ), (ρ, ρΓ), (ζ, ζΓ)) that also
satisfies

(µ, µΓ) ∈ L∞(0, T ;W) , (ρ, ρΓ) ∈ W 1,∞(0, T ;H) ∩H1(0, T ;V) ∩ L∞(0, T ;W)

and (ζ, ζΓ) ∈ L∞(0, T ;H), (2.49)

‖(µ, µΓ)‖L∞(0,T ;W) + ‖(ρ, ρΓ)‖W 1,∞(0,T ;H)∩H1(0,T ;V)∩L∞(0,T ;W)

+ ‖(ζ, ζΓ)‖L∞(0,T ;H) ≤ K3, (2.50)

with a constant K3 that depends only on the structure of the system, Ω, T , the initial data,
and the norm of u in H1(0, T ;L3/2(Ω)) ∩ L∞(0, T ;L3(Ω)). In particular, the components

(µ, µΓ) and (ρ, ρΓ) are bounded.
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Remark 2.7. As Ω ⊂ R
3 and W ⊂ C0(Ω)×C0(Γ) due to the Sobolev inequalities, from

standard embedding results (cf., e.g., [40, Sect. 8, Cor. 4]) and (2.49) it follows that even
ρ ∈ C0(Q) and ρΓ ∈ C0(Σ). Moreover, a part of the result of Theorem 2.6 still holds
true without assuming that τΩ and τΓ are strictly positive, provided that the initial data
satisfy the additional condition

(
−∆ρ0 + (βε + π)(ρ0),−∆Γρ0|Γ + ∂νρ0 + (βΓ, ε + πΓ)(ρ0|Γ)

)

belongs to a bounded subset of V for every ε ∈ (0, 1). (2.51)

With respect to the previous statement, we miss the conditions ∂t(ρ, ρΓ) ∈ L∞(0, T ;H)
and (µ, µΓ) ∈ L∞(0, T ;W) (see the forthcoming Remark 7.1 for details). If the double-well
potentials in the bulk and on the boundary are the same potential of logarithmic type as
in the next (2.52)–(2.53), then it is easy to find sufficient conditions on ρ0 for (2.51) to
hold. Indeed, one can assume that ‖ρ0‖∞ < 1 and (∆ρ0,∆Γρ0|Γ − ∂νρ0) ∈ V.

Our last result requires potentials of logarithmic type (see (1.3)) with the same domain.
Namely, we require that

β, βΓ : (−1, 1) → R are C2 functions with (2.52)

lim
rց−1

β(r) = lim
rց−1

βΓ(r) = −∞ and lim
rր1

β(r) = lim
rր1

βΓ(r) = +∞ . (2.53)

Theorem 2.8. In addition to the assumptions (2.16)–(2.20) on the structure, assume

that τΩ and τΓ are strictly positive and that β and βΓ satisfy (2.52)–(2.53). Moreover,

assume that u and ρ0 satisfy (2.21), (2.47) and

ρ0 ∈ W, ρ0|Γ ∈ WΓ, inf ρ0 > −1 and sup ρ0 < 1 . (2.54)

Then the unique solution ((µ, µΓ), (ρ, ρΓ), (ζ, ζΓ)) satisfies

ρ∗ ≤ ρ(x, t) ≤ ρ∗ for all (x, t) ∈ Q, (2.55)

for some constants ρ∗, ρ
∗ ∈ (−1, 1) that depend only on the structure of the system, Ω, T ,

the initial data, and the norm of u in H1(0, T ;L3/2(Ω)) ∩ L∞(0, T ;L3(Ω)).

Theorem 2.9. In addition to (2.16)–(2.20), assume that τΩ and τΓ are strictly positive,

that β and βΓ satisfy (2.52)–(2.53), and that β, π, βΓ and πΓ are of class C2. Moreover,

assume that ρ0 satisfies (2.54). Finally, let ui ∈ H1(0, T ;L3(Ω)), i = 1, 2, be two choices

of u satisfying (2.21), and let ((µ, µΓ), (ρ, ρΓ), (ζ, ζΓ)) be the difference of the corresponding
solutions. Then the inequality

‖(µ, µΓ)‖L∞(0,T ;W) + ‖(ρ, ρΓ)‖W 1,∞(0,T ;H)∩H1(0,T ;V)∩L∞(0,T ;W)

≤ K4‖u1 − u2‖H1(0,T ;L3(Ω)) (2.56)

holds true for some constant K4 that depends only on the structure of the system, Ω, T ,
the initial data, and the norms of ui, i = 1, 2, in H1(0, T ;L3(Ω)).

Throughout the paper, we will repeatedly use Young’s inequality

a b ≤ δ a2 +
1

4δ
b2 for all a, b ∈ R and δ > 0, (2.57)
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Hölder’s inequality, and the Sobolev inequality related to the continuous embedding V ⊂
Lp(Ω) with p ∈ [1, 6] (since Ω is three-dimensional, bounded and smooth). Besides, this
embedding is compact for p < 6, and the same holds for the analogous spaces on the
boundary. It follows that the embeddings V ⊂ H and H ⊂ V ∗ are compact as well. In
particular, we have the compactness inequality

‖(v, vΓ)‖H ≤ δ
(
‖∇v‖H + ‖∇ΓvΓ‖HΓ

)
+ Cδ ‖(v, vΓ)‖V ∗

for every (v, vΓ) ∈ V and δ > 0, (2.58)

where Cδ depends only on Ω and δ. Finally, we set, for brevity,

Qt := Ω× (0, t) and Σt := Γ× (0, t) for 0 < t ≤ T , (2.59)

and simply write Q and Σ if t = T .

We conclude this section by stating a general rule concerning the constants that appear
in the estimates to be performed in the sequel. The small-case symbol c stands for a generic
constant whose values might change from line to line (and even within the same line) and
depend only on Ω, on the shape of the nonlinearities, and on the constants and the norms
of the functions involved in the assumptions of our statements. In particular, the values
of c do not depend on ε if this parameter is considered. A small-case symbol with a
subscript like cδ (in particular, with δ = ε) indicates that the constant might depend on
the parameter δ, in addition. On the contrary, we mark precise constants that we can
refer to by using different symbols, like in (2.20) and in (2.45).

3 Strong solutions

This section is devoted to the proof of Theorem 2.1. Our argument relies on a result on
an elliptic problem. Thus, we prove the following lemma:

Lemma 3.1. Let γ : R → R be monotone and Lipschitz continuous, and assume that

(w,wΓ) ∈ V and (g, gΓ) ∈ H satisfy

∫

Ω

∇w·∇v+

∫

Γ

∇ΓwΓ·∇ΓvΓ+

∫

Γ

γ(wΓ)vΓ =

∫

Ω

gv+

∫

Γ

gΓvΓ for every (v, vΓ) ∈ V. (3.1)

Then we have that

(w,wΓ) ∈ W and ‖(w,wΓ)‖W + ‖γ(wΓ)‖HΓ
≤ CΩ

(
‖(w,wΓ)‖V + ‖(g, gΓ)‖H

)
, (3.2)

where CΩ depends only on Ω. Moreover, (w,wΓ) solves the boundary value problem

−∆w = g a.e. in Ω, and ∂νw −∆ΓwΓ + γ(wΓ) = gΓ a.e. on Γ . (3.3)

Proof. We use well-known estimates from the theory of traces and elliptic equations. The
values of c will depend only on Ω. We set, for brevity, M := ‖(w,wΓ)‖V + ‖(g, gΓ)‖H. By
taking any v ∈ H1

0 (Ω) and testing (3.1) by (v, 0), we obtain the first identity in (3.3) in
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the sense of distributions. In particular, we have ∆w = −g ∈ H . By combining this with
w|Γ = wΓ ∈ VΓ, we deduce that

w ∈ H3/2(Ω) and ‖w‖H3/2(Ω) ≤ c
(
‖∆w‖H + ‖wΓ‖VΓ

)
≤ cM.

It follows that

∂νw ∈ HΓ and ‖∂νw‖HΓ
≤ c

(
‖w‖H3/2(Ω) + ‖∆w‖H

)
≤ cM,

as well as the validity of the formula
∫

Ω

∇w · ∇v = −

∫

Ω

∆w v +

∫

Γ

∂νw v|Γ for every v ∈ V .

By replacing −∆w by g, comparing with (3.1), and noticing that for every vΓ ∈ VΓ there
exists some v ∈ V such that (v, vΓ) ∈ V, we deduce that

∫

Γ

∇ΓwΓ · ∇ΓvΓ +

∫

Γ

γ(wΓ)vΓ =

∫

Γ

(gΓ − ∂νw)vΓ for every vΓ ∈ VΓ . (3.4)

In particular, by choosing vΓ = γ(wΓ), we obtain that

∫

Γ

γ′(wΓ)|∇ΓwΓ|
2 +

∫

Γ

|γ(wΓ)|
2 =

∫

Γ

(gΓ − ∂νw)γ(wΓ),

whence immediately
‖γ(wΓ)‖HΓ

≤ ‖gΓ − ∂νw‖HΓ
≤ cM,

which is a part of (3.2). Then, we can rewrite (3.4) in the form

∫

Γ

∇ΓwΓ · ∇ΓvΓ =

∫

Γ

(gΓ − ∂νw − γ(wΓ))vΓ for every vΓ ∈ VΓ .

This implies the second identity in (3.3) (at least in a generalized sense), as well as

∆ΓwΓ ∈ HΓ and ‖∆ΓwΓ‖HΓ
≤ ‖gΓ − ∂νw − γ(wΓ)‖HΓ

≤ cM .

Therefore, we also have that

wΓ ∈ WΓ and ‖wΓ‖WΓ
≤ c

(
‖wΓ‖VΓ

+ ‖∆ΓwΓ‖HΓ

)
≤ cM .

We conclude that

w ∈ W and ‖w‖W ≤ c
(
‖∆w‖H + ‖wΓ‖WΓ

)
≤ cM .

Therefore, both the regularity and the estimate of (3.2) are completely proved, and the
equations (3.3) hold almost everywhere. �

Proof of Theorem 2.1. In order to prove i) and iv), we account for (2.21), which
implies that −

∫
Ω
ρ u · ∇v =

∫
Ω
∇ρ · u v a.e. in (0, T ) for every v ∈ V , and rewrite (2.28)

a.e. in (0, T ) with this substitution. Then, for a.a. t ∈ (0, T ), we apply Lemma 3.1 with

γ = 0, (w,wΓ) = (µ, µΓ)(t), g = −(∂tρ+∇ρ · u)(t) and gΓ = −∂tρΓ(t),
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by observing that ‖∇ρ(t) ·u(t)‖2 ≤ ‖∇ρ(t)‖6‖u(t)‖3 ≤ c‖ρ(t)‖W‖u(t)‖3 , where c depends
only on Ω. Then, we take the norms of both sides of (3.2) in L1(0, T ) or in L∞(0, T ) to
deduce (2.39) and (2.42), respectively, and notice that (3.3) coincides with (2.35)–(2.36).
To prove ii) and v), we apply Lemma 3.1 for a.a. t ∈ (0, T ) with

γ = 0, (w,wΓ) = (ρ, ρΓ)(t), g =
(
µ− τΩ∂tρ− ζ − π(ρ)

)
(t)

and gΓ =
(
µΓ − τΓ∂tρΓ − ζΓ − πΓ(ρΓ)

)
(t),

and argue as before. Finally, to prove iii) and vi), we apply Lemma 3.1 for a.a. t ∈ (0, T )
with γ as in the statement, (w,wΓ) and g as in the previous step, and

gΓ =
(
µΓ − τΓ∂tρΓ − πΓ(ρΓ)

)
(t).

Then, we write the estimate for ζΓ of (3.1) and take the norms of both sides in L2(0, T )
or in L∞(0, T ). �

4 Continuous dependence and uniqueness

In this section, we give the proof of Theorem 2.5 concerning continuous dependence on
the velocity field u and derive the uniqueness part of Theorem 2.3.

Proof of Theorem 2.5. We take two choices ui, i = 1, 2, of u and consider two
corresponding solutions ((µi, µiΓ), (ρi, ρiΓ), (ζi, ζiΓ)). We set ρ := ρ1 − ρ2 and similarly
define the other differences, according to the notation of the statement. We observe that
mean(ρ, ρΓ) = 0 by the conservation property (2.32), applied to (ρi, ρiΓ) for i = 1, 2,
whence (ξ, ξΓ)(s) := N((ρ, ρΓ)(s)) is well defined for every s ∈ [0, T ]. Thus, we write
equation (2.28) at the time s for both solutions, test the difference by (ξ, ξΓ)(s) and
integrate with respect to s over (0, t), where t ∈ (0, T ). Owing to (2.14), we obtain the
identity

1

2
‖(ρ, ρΓ)(t)‖

2
∗ +

∫

Qt

∇µ · ∇ξ +

∫

Σt

∇ΓµΓ · ∇ΓξΓ =

∫

Qt

(ρ1u1 − ρ2u2) · ∇ξ . (4.1)

At the same time, we write equation (2.29) at the time s for both solutions, test the
difference by (ρ, ρΓ)(s), integrate over (0, t), and add the same term

∫ t

0
‖(ρ, ρΓ)(s)‖

2
H ds to

both sides, for convenience. We obtain that

τΩ
2

∫

Ω

|ρ(t)|2 +
τΓ
2

∫

Γ

|ρΓ(t)|
2 +

∫ t

0

‖ρ(s)‖2V ds+

∫ t

0

‖ρΓ(s)‖
2
VΓ
ds+

∫

Qt

ζρ+

∫

Σt

ζΓρΓ

=

∫

Qt

{
ρ2 −

(
π(ρ1)− π(ρ2)

)
ρ
}
+

∫

Σt

{
ρ2Γ −

(
πΓ(ρ1Γ)− πΓ(ρ2Γ)

)
ρΓ
}

+

∫

Qt

µρ+

∫

Σt

µΓρΓ . (4.2)

At this point, we add these equalities to each other. By the definition of N, the last two
integrals of (4.2) and the ones on the left-hand side of (4.1) cancel each other. Moreover,
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the terms involving ζ and ζΓ are nonnegative by monotonicity. Thus, by owing to the
Lipschitz continuity of π and πΓ, we deduce that

1

2
‖(ρ, ρΓ)(t)‖

2
∗ +

τΩ
2

∫

Ω

|ρ(t)|2 +
τΓ
2

∫

Γ

|ρΓ(t)|
2 +

∫ t

0

‖(ρ, ρΓ)(s)‖
2
V ds

≤

∫

Qt

|ρu1 + ρ2u| |∇ξ|+ c

∫ t

0

‖(ρ, ρΓ)(s)‖
2
H ds =: I1 + I2,

and we now treat the contributions I1 and I2 on the right-hand side separately. We
account for the Hölder, Sobolev and Young inequalities, and use the definitions (2.8)
and (2.11). We have that

I1 ≤

∫ t

0

(
‖ρ(s)‖6 ‖u1(s)‖3 + ‖ρ2(s)‖6 ‖u(s)‖3

)
‖∇ξ(s)‖2 ds

≤
1

4

∫ t

0

‖(ρ, ρΓ)(s)‖
2
V ds+ c

∫ t

0

‖u1(s)‖
2
3 ‖(ρ, ρΓ)(s)‖

2
∗ ds

+ c ‖ρ2‖
2
L∞(0,T ;V )

∫ t

0

‖u(s)‖23 ds+

∫ t

0

‖(ρ, ρΓ)(s)‖
2
∗ ds .

We deal with I2 as follows, invoking the compactness inequality (2.58):

I2 ≤
1

4

∫ t

0

‖(ρ, ρΓ)(s)‖
2
V ds+ c

∫ t

0

‖(ρ, ρΓ)(s)‖
2
∗ ds .

At this point, we collect all of these inequalities, observe that the function s 7→ ‖u1(s)‖
2
3

belongs to L1(0, T ) by (2.21), and apply the Gronwall lemma. We immediately de-
duce (2.46) with a constant whose dependence agrees with that asserted in the statement
of Theorem 2.5. With this, the proof is complete.

Partial uniqueness and uniqueness. Next, we derive the uniqueness part of The-
orem 2.3. Uniqueness for (ρ, ρΓ) clearly follows by taking u1 = u2 in (2.46). Assume
now that β is single-valued. This implies that ζ = β(ρ) is uniquely determined as well.
Next, by Theorem 2.1, (2.37)–(2.38) hold true. From (2.37), we deduce uniqueness for
the component µ of the solution. This also implies uniqueness for µΓ = µ|Σ, and (2.38)
yields uniqueness for ζΓ. Assume now that βΓ is single-valued. In this case, we first derive
uniqueness for ζΓ = βΓ(ρΓ), then for µΓ by owing to (2.38). On the other hand, the first
equation (2.28) with (ρ, ρΓ) completely known implies that the difference of the compo-
nents (µ, µΓ) of two solutions is space independent, whence it has the form t 7→ ϕ(t)(1, 1)
for some ϕ ∈ L2(0, T ), since the second component is the trace of the first one. But ϕ
must vanish since µΓ is unique. This implies that µ is unique as well. Finally, (2.37)
yields uniqueness for ζ . �

5 Approximation

In this section, we construct and solve an approximating problem depending on the small
parameter ε ∈ (0, 1), which is understood to be fixed throughout the whole section. This
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problem is simply obtained by modifying (2.28)–(2.31) as follows: instead of τΩ and τΓ,
we take the strictly positive constants

τ εΩ := max{τΩ, ε} and τ εΓ := max{τΓ, ε}, (5.1)

and replace the functionals β̂ and β̂Γ and the operators β and βΓ by the following Moreau
and Yosida regularizations β̂ε, β̂Γ, ε, βε, βΓ, ε (see, e.g., [4, pp. 28 and 39]):

β̂ε(r) := inf
s∈R

{
1

2ε
|r − s|2 + β̂(s)

}
=

∫ r

0

βε(s)ds,

β̂Γ,ε(r) := inf
s∈R

{
1

2εη
|r − s|2 + β̂Γ(s)

}
=

∫ r

0

βΓ,ε(s)ds,

βε(r) :=
1

ε

(
r − (I + εβ)−1(r)

)
,

βΓ,ε(r) :=
1

εη

(
r − (I + εηβΓ)

−1(r)
)

for all r ∈ R, where η > 0 is the same constant as in the assumption (2.20). We point
out that (2.17) and (2.19) hold also for the approximations. Moreover, we have that

0 ≤ β̂ε(r) ≤ β̂(r), 0 ≤ β̂Γ,ε(r) ≤ β̂Γ(r) for every r ∈ R, (5.2)

|βε(r)| ≤ |β◦(r)|,
∣∣βΓ,ε(r)

∣∣ ≤
∣∣β◦

Γ(r)
∣∣ for every r ∈ D(β). (5.3)

Furthermore, (2.20) also holds true for βε and βΓ, ε with the same constants (see [6,
Lemma 4.4]). We thus write

|βε(r)| ≤ η|βΓ, ε(r)|+ C for every r ∈ R. (5.4)

Since βε and βΓ, ε have the same sign, we see that (5.4) and the Young inequality yield

βΓ, ε(r)βε(r) ≥
1

2η
|βε(r)|

2 − Cη for every r ∈ R, (5.5)

with a similar constant Cη. We also notice that the inclusion D(βΓ) ⊆ D(β) (see (2.20))
and (2.23) imply that

βε(r)(r −m0) ≥ δ0|βε(r)| − C0 and βΓ, ε(r)(r −m0) ≥ δ0|βΓ, ε(r)| − C0 (5.6)

for every r ∈ R and every ε ∈ (0, 1), where δ0 and C0 are some positive constants that
depend only on β, βΓ and on the position of m0 in the interior of D(βΓ) and of D(β) (see,
e.g. [25, p. 908]).

The sought solution is a quadruple (µε, µε
Γ, ρ

ε, ρεΓ) having the regularity properties

(µε, µε
Γ) ∈ L2(0, T ;V) ∩ L1(0, T ;W), (5.7)

(ρε, ρεΓ) ∈ H1(0, T ;H) ∩ L∞(0, T ;V) ∩ L2(0, T ;W) (5.8)

and such that the 6-tuple (µε, µε
Γ, ρ

ε, ρεΓ, ζ
ε, ζεΓ) obtained by setting

ζε := βε(ρ
ε) and ζεΓ := βΓ, ε(ρ

ε
Γ) (5.9)
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solves the following problem:
∫

Ω

∂tρ
ε v +

∫

Γ

∂tρ
ε
Γ vΓ −

∫

Ω

ρεu · ∇v +

∫

Ω

∇µε · ∇v +

∫

Γ

∇µε
Γ · ∇vΓ = 0

a.e. in (0, T ) and for every (v, vΓ) ∈ V, (5.10)

τ εΩ

∫

Ω

∂tρ
ε v + τ εΓ

∫

Γ

∂tρ
ε
Γ vΓ +

∫

Ω

∇ρε · ∇v +

∫

Γ

∇Γρ
ε
Γ · ∇ΓvΓ

+

∫

Ω

(
ζε + π(ρε)

)
v +

∫

Γ

(
ζεΓ + πΓ(ρ

ε
Γ)
)
vΓ =

∫

Ω

µεv +

∫

Γ

µε
ΓvΓ

a.e. in (0, T ) and for every (v, vΓ) ∈ V, (5.11)

ρε(0) = ρ0 a.e. in Ω and ρεΓ(0) = ρ0|Γ a.e. on Γ. (5.12)

We have written the sum of two integrals instead of a duality in (5.10), in accordance
with the requirement (5.8) on (ρ, ρΓ).

The aim of this section is to solve the approximating problem (5.9)–(5.12). In this
respect, we have the following result.

Theorem 5.1. Assume (2.16)–(2.20) and (5.1) for the structure and (2.21)–(2.23) for

the data. Then the problem (5.9)–(5.12) has a unique solution (µε, µε
Γ, ρ

ε, ρεΓ) with the

regularity properties (5.7)–(5.8).

The rest of the section is devoted to the proof of Theorem 5.1. Since the approximating
problem (5.9)–(5.12) is a particular case of problem (2.28)–(2.31) and the operators βε
and βΓ, ε are single-valued, uniqueness has been already established in the previous section.
As for existence, we use a slightly modified Faedo–Galerkin scheme with a proper choice
of the Hilbert basis. We introduce the operator A ∈ L(V;V ∗) by setting

〈A(w,wΓ), (v, vΓ)〉V :=

∫

Ω

∇w · ∇v +

∫

Γ

∇ΓwΓ · ∇ΓvΓ for (w,wΓ), (v, vΓ) ∈ V, (5.13)

and notice that A is nonnegative and weakly coercive. Indeed, we have that

〈A(v, vΓ), (v, vΓ)〉V + ‖(v, vΓ)‖
2
H = ‖(v, vΓ)‖

2
V for every (v, vΓ) ∈ V. (5.14)

Moreover, as the embedding V ⊂ H is compact, the resolvent of A is compact as well,
and the spectrum of A reduces to a discrete set of eigenvalues, the eigenvalue problem
being

(e, eΓ) ∈ V \ {(0, 0)} and A(e, eΓ) = λ(e, eΓ) . (5.15)

More precisely, we can rearrange the eigenvalues and choose the eigenvectors in order that

0 = λ1 < λ2 ≤ λ3 ≤ . . . and lim
j→∞

λj = +∞, (5.16)

A(ej , ejΓ) = λj(e
j, ejΓ) and

∫

Ω

eiej +

∫

Γ

eiΓe
j
Γ = δij for i, j = 1, 2, . . . , (5.17)

and {(ej, ejΓ)} generates a dense subspace of both V and H. We notice that

∫

Ω

∇ei · ∇ej +

∫

Γ

∇Γe
i
Γ · ∇Γe

j
Γ = λi

(∫

Ω

eiej +

∫

Γ

eiΓe
j
Γ

)
= λiδij for i, j = 1, 2, . . . .
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We also observe that every element (w,wΓ) ∈ H can be written as

(w,wΓ) =

∞∑

j=1

wj(e
j , ejΓ) with

∞∑

j=1

|wj|
2 = ‖(w,wΓ)‖

2
H < +∞,

and that (on account of (5.14))

(w,wΓ) ∈ V if and only if

∞∑

j=1

(1 + λj)|wj|
2 < +∞ .

Namely, the last sum yields the square of a norm on V that is equivalent to ‖ · ‖V. In
particular, we have the following property (the finite sum is the H-projection on the
subspace Vn defined below):

‖(wn, wn
Γ)‖V ≤ CΩ‖(w,wΓ)‖V if (wn, wn

Γ) =
n∑

j=1

wj(e
j , ejΓ), (5.18)

where CΩ depends only on Ω. At this point, we set

Vn := span{(ej, ejΓ) : 1 ≤ j ≤ n} and V∞ :=
∞⋃

j=1

Vn = span{(ej , ejΓ) : j ≥ 1}, (5.19)

and, for every n ≥ 1, we look for a quadruple (µn, µn
Γ, ρ

n, ρnΓ) satisfying

(µn, µn
Γ) ∈ L2(0, T ;Vn) and (ρn, ρnΓ) ∈ H1(0, T ;Vn), (5.20)

∫

Ω

∂tρ
n v +

∫

Γ

∂tρ
n
Γ vΓ −

∫

Ω

ρnu · ∇v +

∫

Ω

∇µn · ∇v +

∫

Γ

∇Γµ
n
Γ · ∇ΓvΓ

+
1

n

∫

Ω

µnv +
1

n

∫

Γ

µn
ΓvΓ = 0

a.e. in (0, T ) and for every (v, vΓ) ∈ Vn, (5.21)

τ εΩ

∫

Ω

∂tρ
n v + τ εΓ

∫

Γ

∂tρ
n
Γ vΓ +

∫

Ω

∇ρn · ∇v +

∫

Γ

∇Γρ
n
Γ · ∇ΓvΓ

+

∫

Ω

(
βε(ρ

n) + π(ρn)
)
v +

∫

Γ

(
βΓ, ε(ρ

n
Γ) + πΓ(ρ

n
Γ)
)
vΓ =

∫

Ω

µnv +

∫

Γ

µn
ΓvΓ

a.e. in (0, T ) and for every (v, vΓ) ∈ Vn, (5.22)

ρn(0) = ρn0 a.e. in Ω, (5.23)

where ρn0 is defined by the conditions (ρn0 , ρ
n
0 |Γ) ∈ Vn and

∫

Ω

ρn0v +

∫

Γ

ρn0 |ΓvΓ =

∫

Ω

ρ0v +

∫

Γ

ρ0|ΓvΓ for every (v, vΓ) ∈ Vn. (5.24)

Thus, ρn0 is the first component of the orthogonal projection of (ρ0, ρ0|Γ) on Vn. We have

‖ρn0‖H ≤ ‖(ρn0 , ρ
n
0 |Γ)‖H ≤ ‖(ρ0, ρ0|Γ)‖H and ‖(ρn0 , ρ

n
0 |Γ)‖V ≤ CΩ‖(ρ0, ρ0|Γ)‖V, (5.25)

the second one on account of (5.18).
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The discrete problem. By (5.20), we have to look for (µn, µn
Γ) and (ρn, ρnΓ) given by

(µn, µn
Γ)(t) =

n∑

j=1

µj(t)(e
j, ejΓ) and (ρn, ρnΓ)(t) =

n∑

j=1

ρj(t)(e
j , ejΓ)

for some µj ∈ L2(0, T ) and ρj ∈ H1(0, T ). Let us introduce the n-vectors µ := (µj) and
ρ := (ρj). Then, by rewriting the system (5.21)–(5.22) just with (v, vΓ) = (ei, eiΓ) for
i = 1, . . . , n, we see that it takes the form

ρ ′(t)− U(t) ρ(t) +Dn µ(t) = 0 and B ρ ′(t) +Dρ(t) + F (ρ(t)) = µ(t), (5.26)

where Dn := diag(λ1 +
1
n
, . . . , λn + 1

n
), D := diag(λ1, . . . , λn), F : Rn → R

n is Lipschitz
continuous, and the matrices U = (uij) ∈ L2(0, T ;Rn×n) and B = (bij) ∈ R

n×n are
given by

uij(t) :=

∫

Ω

eju(t) · ∇ei for a.a. t ∈ (0, T ) and bij := τ εΩ

∫

Ω

ejei + τ εΓ

∫

Γ

ejΓe
i
Γ,

for i, j = 1, . . . , n. By adding the second identity in (5.26) to the first one multiplied
by D−1

n , we obtain the equivalent system

(D−1
n +B) ρ ′(t) + V (t) ρ(t) + F (ρ(t)) = 0 and µ(t) = B ρ ′(t) +D ρ(t) + F (ρ(t)),

where V := D−D−1
n U belongs to L2(0, T ;Rn×n) andD−1

n +B is invertible, as we verify. To
this end, we show that B is positive definite. Indeed, for any vector y = (y1, . . . , yn) ∈ R

n,
by setting (v, vΓ) :=

∑n
j=1 yj(e

j, ejΓ), we have that

(By) · y =

n∑

i,j=1

bijyjyi = τ εΩ

∫

Ω

n∑

i=1

yie
i

n∑

j=1

yje
j + τ εΓ

∫

Ω

n∑

i=1

yie
i
Γ

n∑

j=1

yje
j
Γ

= τ εΩ

∫

Ω

|v|2 + τ εΓ

∫

Γ

|vΓ|
2 ≥ ε‖(v, vΓ)‖

2
H = ε‖y‖2

Rn .

Hence, D−1
n + B is positive definite as well, thus invertible. On the other hand, (5.23) is

equivalent to an initial condition for ρ. Therefore, the discrete problem (5.20)–(5.23) has
a unique solution.

At this point, our aim is to show that the solutions to the discete problem converge to
a solution to the approximating problem (5.9)–(5.12) as n tends to infinity, at least for a
subsequence. To this end, we start estimating and find bounds that do not depend on n.
On the contrary, they can depend on ε.

An a priori estimate. We test (5.21), written at the time s, by (µn, µn
Γ)(s) and inte-

grate over (0, t) with respect to s to find that

∫

Qt

∂tρ
n µn +

∫

Σt

∂tρ
n
Γ µ

n
Γ +

∫

Qt

|∇µn|2 +

∫

Σt

|∇Γµ
n
Γ|

2

+
1

n

∫

Qt

|µn|2 +
1

n

∫

Σt

|µn
Γ|

2 =

∫

Qt

ρnu · ∇µn .
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Next, we test (5.22) by ∂t(ρ
n, ρnΓ)(s), integrate over (0, t) with respect to s, and add the

same terms
∫
Qt
ρn∂tρ

n and
∫
Σt
ρnΓ∂tρ

n
Γ to both sides for convenience. We obtain that

τ εΩ

∫

Qt

|∂tρ
n|2 + τ εΓ

∫

Σt

|∂tρ
n
Γ|

2 +
1

2
‖(ρn, ρnΓ)(t)‖

2
V +

∫

Ω

β̂ε(ρ
n(t)) +

∫

Γ

β̂Γ, ε(ρ
n
Γ(t))

=
1

2
‖(ρn, ρnΓ)(0)‖

2
V +

∫

Ω

β̂ε(ρ
n(0)) +

∫

Γ

β̂Γ, ε(ρ
n
Γ(0)) +

∫

Qt

µn∂tρ
n +

∫

Σt

µn
Γ∂tρ

n
Γ

+

∫

Qt

(
ρn − π(ρn)

)
∂tρ

n +

∫

Σt

(
ρnΓ − πΓ(ρ

n
Γ)
)
∂tρ

n
Γ .

At this point, we add these equalities and notice that four terms cancel. Then, the
remaining terms on the left-hand side are nonnegative, so that we can forget about four
of them. Moreover, we use (5.1) and start estimating the right-hand side (also accounting
for (5.18), (5.2) and (2.22)). We then arrive at the estimate
∫

Qt

|∇µn|2 +

∫

Σt

|∇Γµ
n
Γ|

2 + ε

∫

Qt

|∂tρ
n|2 + ε

∫

Σt

|∂tρ
n
Γ|

2 +
1

2
‖(ρn, ρnΓ)(t)‖

2
V

≤

∫

Qt

|ρn| |u| |∇µn|+ c +
ε

2

∫

Qt

|∂tρ
n|2 +

ε

2

∫

Σt

|∂tρ
n
Γ|

2 + cε

∫

Qt

|ρn|2 + cε

∫

Σt

|ρnΓ|
2 + cε .

On the other hand, the Hölder, Sobolev and Young inequalities yield that

∫

Qt

|ρn| |u| |∇µn| ≤

∫ t

0

‖ρn(s)‖6 ‖u(s)‖3 ‖∇µ
n(s)‖2 ds

≤
1

2

∫

Qt

|∇µn|2 + c

∫ t

0

‖u(s)‖23 ‖ρ
n(s)‖2V ds ,

and we notice that the function s 7→ ‖u(s)‖23 belongs to L1(0, T ), by (2.21). Therefore,
by rearranging and applying the Gronwall lemma, we can infer that

‖∇µn‖L2(0,T ;H) + ‖∇Γµ
n
Γ‖L2(0,T ;HΓ) + ‖(ρn, ρnΓ)‖H1(0,T ;H)∩L∞(0,T ;V) ≤ cε . (5.27)

Consequence. Just by Lipschitz continuity, we also have that

‖(βε + π)(ρn)‖L∞(0,T ;H) + ‖(βΓ, ε + πΓ)(ρ
n
Γ)‖L∞(0,T ;HΓ) ≤ cε .

On the other hand, if we test (5.22) by (|Ω|+|Γ|)−1(1, 1), then we obtain, for a.a. t ∈ (0, T ),

|mean(µn, µn
Γ)(t)|

≤ c
{
‖∂tρ

n(t)‖H + ‖∂tρ
n
Γ(t)‖HΓ

+ ‖(βε + π)(ρn(t))‖H + ‖(βΓ, ε + πΓ)(ρ
n
Γ(t))‖HΓ

}
.

Therefore, we have shown that mean(µn, µn
Γ) is bounded in L2(0, T ), so that (5.27) and

(2.6) allow us to conclude that

‖(µn, µn
Γ)‖L2(0,T ;V) ≤ cε . (5.28)

Conclusion. We account for (5.27)–(5.28) and use standard weak and weak star com-
pactness results, as well as the Aubin-Lions lemma (see, e.g., [33, Thm. 5.1, p. 58]). It
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follows that

(µn, µn
Γ) → (µε, µε

Γ) weakly in L2(0, T ;V), (5.29)

(ρn, ρnΓ) → (ρε, ρεΓ) weakly star in H1(0, T ;H) ∩ L∞(0, T ;V)

and strongly in L2(0, T ;H), (5.30)

as n tends to infinity, at least for a subsequence. By Lipschitz continuity, we also deduce
that (βε+π)(ρ

n) and (βΓ, ε+πΓ)(ρ
n
Γ) converge to (βε+π)(ρ

ε) and (βΓ, ε+πΓ)(ρ
ε
Γ) strongly

in L2(0, T ;H) and in L2(0, T ;HΓ), respectively. Moreover, ρnu converges to ρεu weakly
in L2(0, T ;L2(Ω)), since u ∈ L2(0, T ;L3(Ω)) and ρn is bounded in L∞(0, T ;L6(Ω)), by
the Sobolev inequality. Finally, (ρn, ρnΓ)(0) converges to (ρε, ρεΓ)(0) at least weakly in H,
so that (5.12) is satisfied.

Now, we recall (5.19) for the definition of V∞, and take an arbitrary V∞-valued step
function (v, vΓ). Since the range of (v, vΓ) is finite-dimensional, there exists some m such
that (v, vΓ)(t) ∈ Vm for a.a. t ∈ (0, T ). It follows that (v, vΓ)(t) ∈ Vn for a.a. t ∈ (0, T ) and
every n ≥ m, so that we can test (5.21) and (5.22), written at the time t, by (v, vΓ)(t) and
integrate over (0, T ). At this point, it is straightforward to deduce that (µε, µε

Γ), (ρ
ε, ρεΓ)

and the functions ζε and ζεΓ given by (5.9) satisfy the integrated version of (5.10)–(5.11)
for every such step functions, namely, we have that

∫

Q

∂tρ
ε v +

∫

Σ

∂tρ
ε
Γ vΓ −

∫

Q

ρεu · ∇v +

∫

Q

∇µε · ∇v +

∫

Σ

∇µε
Γ · ∇vΓ = 0 ,

τ εΩ

∫

Q

∂tρ
ε v + τ εΓ

∫

Σ

∂tρ
ε
Γ vΓ +

∫

Q

∇ρε · ∇v +

∫

Σ

∇Γρ
ε
Γ · ∇ΓvΓ

+

∫

Q

(
ζε + π(ρε)

)
v +

∫

Σ

(
ζεΓ + πΓ(ρ

ε
Γ)
)
vΓ =

∫

Q

µεv +

∫

Σ

µε
ΓvΓ .

By density, the same equations hold true for every (v, vΓ) ∈ L2(0, T ;V). This implies
that (5.10)–(5.11) hold a.e. in (0, T ) and for every (v, vΓ) ∈ V, as desired. We notice
that (5.10) and (5.11) are formally equal to (2.28) and (2.29), respectively. Moreover, by
accounting for (2.21), we can replace the term −

∫
Ω
ρεu ·∇v by the expression

∫
Ω
∇ρε ·u v

in (5.10) and notice that ∇ρε · u belongs to L2(0, T ;H), since ρε ∈ L∞(0, T ;L6(Ω)) and
u ∈ L2(0, T ;L3(Ω)). This, and what we already know for the other terms, allow us to
apply i) and ii) of Theorem 2.1. We then deduce the full regularity (5.7)–(5.8), by starting
from the lower regularity already established. �

6 Existence

This section is devoted to the conclusion of the proof of Theorem 2.3. Namely, we show
that the solutions to the approximating problems converge to a solution to problem (2.28)–
(2.31) satisfying (2.45). We recall that the constant mean value property (2.32) is also
satisfied by the solutions to the ε-approximating problems. In performing our estimates,
we avoid the superscript ε in the notation of the solution, for simplicity, writing it only
at the end of each step.

First a priori estimate. We test (5.10) and (5.11), written at the time s, by (µ, µΓ)(s)
and ∂t(ρ, ρΓ)(s), respectively. Then, we integrate over (0, t) and sum up. Moreover, we
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add the same terms
∫
Qt
ρ∂tρ and

∫
Σt
ρΓ∂tρΓ to both sides. Since some terms cancel each

other, we obtain the identity
∫

Qt

|∇µ|2 +

∫

Σt

|∇ΓµΓ|
2 + τ εΩ

∫

Qt

|∂tρ|
2 + τ εΓ

∫

Σt

|∂tρΓ|
2

+
1

2
‖(ρ, ρΓ)(t)‖

2
V +

∫

Ω

β̂ε(ρ(t)) +

∫

Γ

β̂Γ, ε(ρΓ(t))

=
1

2
‖(ρ0, ρ0|Γ)‖

2
V +

∫

Ω

β̂ε(ρ0) +

∫

Γ

β̂Γ, ε(ρ0|Γ)

+

∫

Qt

(
ρ− π(ρ)

)
∂tρ+

∫

Σt

(
ρΓ − πΓ(ρΓ)

)
∂tρΓ +

∫

Qt

ρu · ∇µ .

Now, we observe that

∫

Qt

ρu · ∇µ ≤

∫ t

0

‖ρ(s)‖6 ‖u(s)‖3 ‖∇µ(s)‖2 ds ≤
1

2

∫

Qt

|∇µ|2 + c

∫ t

0

‖u(s)‖23 ‖ρ(s)‖
2
V ds ,

and that the function s 7→ ‖u(s)‖23 belongs to L1(0, T ), by (2.21). Therefore, also on
account of (5.2) and (2.22), we easily conclude from Gronwall’s lemma that

‖∇µε‖L2(0,T ;H) + ‖∇Γµ
ε
Γ‖L2(0,T ;HΓ) + ‖(ρε, ρεΓ)‖L∞(0,T ;V)

+ ‖β̂ε(ρ
ε)‖L∞(0,T ;L1(Ω)) + ‖β̂Γ, ε(ρ

ε
Γ)‖L∞(0,T ;L1(Γ))

+ (τ εΩ)
1/2‖∂tρ

ε‖L2(0,T ;H) + (τ εΓ)
1/2‖∂tρ

ε
Γ‖L2(0,T ;HΓ) ≤ c . (6.1)

Consequence. By testing (5.10) with an arbitrary (v, vΓ) ∈ L2(0, T ;V), and owing to
the assumptions (2.21) on u, we have that

〈∂t(ρ, ρΓ), (v, vΓ)〉V

≤ ‖∇µ‖L2(0,T ;H)‖v‖L2(0,T ;V ) + ‖∇ΓµΓ‖L2(0,T ;HΓ)‖vΓ‖L2(0,T ;VΓ)

+ ‖ρ‖L∞(0,T ;L6(Ω)) ‖u‖L2(0,T ;L3(Ω)) ‖∇v‖L2(0,T ;L2(Ω)) .

Then, the continuous embedding V ⊂ L6(Ω) and (6.1) imply that

‖∂t(ρ
ε, ρεΓ)‖L2(0,T ;V ∗) ≤ c . (6.2)

Second a priori estimate. We account for (2.23) and test (5.11) by the V0-valued
function (ρ−m0, ρΓ−m0) a.e. in (0, T ) without integrating with respect to time. Setting
α := mean(µ, µΓ) a.e. in (0, T ) for a while, we obtain

∫

Ω

βε(ρ)(ρ−m0) +

∫

Γ

βΓ, ε(ρΓ)(ρΓ −m0)

= − τ εΩ

∫

Ω

∂tρ(ρ−m0)− τ εΓ

∫

Γ

∂tρΓ(ρΓ −m0)−

∫

Ω

|∇ρ|2 −

∫

Γ

|∇ΓρΓ|
2

−

∫

Ω

π(ρ)(ρ−m0)−

∫

Γ

πΓ(ρΓ)(ρΓ −m0)

+

∫

Ω

(µ− α)(ρ−m0) +

∫

Γ

(µΓ − α)(ρΓ −m0) (6.3)
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a.e. in (0, T ). Observe that, in the right-hand side of (6.3) the integrals involving the
gradients are bounded in L∞(0, T ), due to (6.1). Then, by using the inner product in H,
the corresponding Schwarz inequality, and the Lipschitz continuity of π and πΓ, we deduce
that

∫

Ω

βε(ρ)(ρ−m0) +

∫

Γ

βΓ, ε(ρΓ)(ρΓ −m0)

≤
∣∣((τ εΩ∂tρ, τ εΓ∂tρΓ), (ρ−m0, ρΓ −m0)

)
H

∣∣ + c

+
∣∣((π(ρ), πΓ(ρΓ)), (ρ−m0, ρΓ −m0)

)
H

∣∣
+
∣∣((µ− α, µΓ − α), (ρ−m0, ρΓ −m0)H

)∣∣
≤

{
‖(τ εΩ∂tρ, τ

ε
Γ∂tρΓ)‖H + c ‖(ρ, ρΓ)‖H + c+ ‖(µ− α, µΓ − α)‖H

}
×

× ‖(ρ−m0, ρΓ −m0)‖H + c .

Hence, in view of (6.1) and (5.6), we deduce that

∫

Ω

|βε(ρ)|+

∫

Γ

|βΓ, ε(ρΓ)| ≤ c‖(µ− α, µΓ − α)‖H + ψε (6.4)

where ψε is bounded in L2(0, T ) uniformly with respect to ε. On the other hand, owing
to the definition (2.8) and recalling that ‖ · ‖V0

is a norm on V0 that is equivalent to the
standard one, we have that

‖(µ− α, µΓ − α)‖H ≤ c ‖(µ− α, µΓ − α)‖V0
= c ‖(∇µ,∇ΓµΓ)‖H .

Since the last term is bounded in L2(0, T ) by (6.1), the inequality (6.4) implies that

‖βε(ρ)‖L2(0,T ;L1(Ω)) + ‖βΓ, ε(ρΓ)‖L2(0,T ;L1(Γ)) ≤ c .

At this point, we can test (5.11) by (1, 1) and find a bound for mean(µ, µΓ) in L
2(0, T ).

Combining it with (6.1), we conclude that

‖(µε, µε
Γ)‖L2(0,T ;V) ≤ c . (6.5)

Third a priori estimate. We test (5.11), written at the time s, with (βε(ρ), βε(ρΓ))(s)
and integrate over (0, t) with respect to s, obtaining the identity

τ εΩ

∫

Ω

β̂ε(ρ(t)) + τ εΓ

∫

Γ

β̂ε(ρΓ(t)) +

∫

Qt

β ′
ε(ρ)|∇ρ|

2 +

∫

Σ

β ′
Γ, ε(ρΓ)|∇ΓρΓ|

2

+

∫

Qt

|βε(ρ)|
2 +

∫

Σt

βΓ, ε(ρΓ) βε(ρΓ)

= τ εΩ

∫

Ω

β̂ε(ρ0) + τ εΓ

∫

Γ

β̂ε(ρ0|Γ) +

∫

Qt

(
µ− π(ρ)

)
βε(ρ) +

∫

Σt

(
µΓ − πΓ(ρΓ)

)
βε(ρΓ) .

All of the terms on the left-hand side are nonnegative but the last one, for which we have,
thanks to (5.5), ∫

Σt

βΓ, ε(ρΓ) βε(ρΓ) ≥
1

2η

∫

Σt

|βε(ρΓ)|
2 − c .
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Since the right-hand side can be easily handled by using the Young inequality, (5.2),
(2.22), and the estimates (6.1) and (6.5), we conclude that

‖ζε‖L2(0,T ;H) + ‖βε(ρ
ε
Γ)‖L2(0,T ;HΓ) ≤ c . (6.6)

Fourth a priori estimate. We apply the part iii) of Theorem 2.1 to the solution to
the approximating problem with the choice γ = βΓ, ε. As the constant C3 does not depend
on ε, inequality (2.41) yields a bound for ζΓ in terms of quantities that have already been
estimated. Hence, we conclude that

‖ζεΓ‖L2(0,T ;HΓ) ≤ c . (6.7)

At this point, we can apply the part ii) of Theorem 2.1. We thus have

‖(ρε, ρεΓ)‖L2(0,T ;W) ≤ c . (6.8)

Conclusion. We account for (6.1)–(6.8) and use standard weak and weak star com-
pactness results as well as the Aubin-Lions lemma (see, e.g., [33, Thm. 5.1, p. 58]). We
have

(µε, µε
Γ) → (µ, µΓ) weakly in L2(0, T ;V),

(ρε, ρεΓ) → (ρ, ρΓ) weakly star in H1(0, T ;V ∗) ∩ L∞(0, T ;V) ∩ L2(0, T ;W)

and strongly in L2(0, T ;H),

τ εΩ∂tρ
ε → τΩ∂tρ weakly in L2(0, T ;H),

τ εΓ∂tρ
ε
Γ → τΓ∂tρΓ weakly in L2(0, T ;HΓ),

(ζε, ζεΓ) → (ζ, ζΓ) weakly in L2(0, T ;H),

as ε tends to zero, at least for a subsequence. Moreover, ρεu converges to ρu weakly in
L2(0, T ;L2(Ω)), since u ∈ L2(0, T ;L3(Ω)) and ρε converges to ρ at least weakly star in
L∞(0, T ;L6(Ω)). At this point, it is straightforward to deduce that ((µ, µΓ), (ρ, ρΓ), (ζ, ζΓ))
satisfies the integrated version of (2.28)–(2.29) with time-dependent test function (v, vΓ) ∈
L2(0, T ;V), and this is equivalent to our formulation. Furthermore, thanks to the strong
convergence of (ρε, ρεΓ) to (ρ, ρΓ) and to well-known results on maximal monotone opera-
tors (see, e.g. [2, Proposition 2.2, p. 38]), we derive (2.30), i.e., ζ ∈ β(ρ) and ζΓ ∈ βΓ(ρΓ).
Besides, (ρε, ρεΓ)(0) converges to (ρ, ρΓ)(0) at least weakly in V ∗, so that (2.31) holds true
as well. Finally, the estimate (2.45) follows from lower semicontinuity. �

7 Complements

This section is devoted to the proof of Theorems 2.6, 2.8 and 2.9. Our proofs rely on
further a priori estimates on the solutions to the ε-approximating problems. However,
in performing them, we proceed formally, for brevity. Also in this section, we write the
superscript ε in the notation for the solution only at the end of each step. From now
on, we assume that τΩ > 0, τΓ > 0 and that (2.47)–(2.48) hold true. We can also take
ε ≤ min{τΩ, τΓ}, so that τ εΩ = τΩ and τ εΓ = τΓ (see (5.1)).
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Fifth a priori estimate. We differentiate both (5.10) and (5.11) with respect to time.
By noting that mean(∂t(ρ, ρΓ)) = 0 by (2.32), we test the obtained equations by (ξ, ξΓ) :=
N(∂t(ρ, ρΓ)) and ∂t(ρ, ρΓ), respectively. We obtain the identities

∫

Qt

∂2t ρ ξ +

∫

Σt

∂2t ρΓ ξΓ +

∫

Qt

∇∂tµ · ∇ξ +

∫

Σt

∇Γ∂tµΓ · ∇ΓξΓ

=

∫

Qt

∂tρ u · ∇ξ +

∫

Qt

ρ ∂tu · ∇ξ ,

τΩ
2

∫

Ω

|∂tρ(t)|
2 +

τΓ
2

∫

Γ

|∂tρΓ(t)|
2 +

∫

Qt

|∇∂tρ|
2 +

∫

Σt

|∇Γ∂tρΓ|
2

+

∫

Qt

β ′
ε(ρ)|∂tρ|

2 +

∫

Σt

β ′
Γ, ε(ρΓ)|∂tρΓ|

2

=
τΩ
2

∫

Ω

|∂tρ(0)|
2 +

τΓ
2

∫

Γ

|∂tρΓ(0)|
2

−

∫

Qt

π′(ρ)|∂tρ|
2 −

∫

Σt

π′
Γ(ρΓ)|∂tρΓ|

2 +

∫

Qt

∂tµ∂tρ+

∫

Σt

∂tµΓ∂tρΓ .

Now, we add these equalities to each other and treat the sum of the first two integrals by
accounting for (2.14). Moreover, we can cancel four terms in the sum due to the definition
of N (see (2.9)–(2.10)). Finally, we recall that β ′

ε and β
′
Γ, ε are nonnegative, and integrate

by parts the integrals involving u by using (2.21). We then obtain that

1

2
‖∂t(ρ, ρΓ)(t)‖

2
∗ +

τΩ
2

∫

Ω

|∂tρ(t)|
2 +

τΓ
2

∫

Γ

|∂tρΓ(t)|
2 +

∫

Qt

|∇∂tρ|
2 +

∫

Σt

|∇Γ∂tρΓ|
2

≤ I0 −

∫

Qt

∇∂tρ · u ξ −

∫

Qt

∇ρ · ∂tu ξ −

∫

Qt

π′(ρ)|∂tρ|
2 −

∫

Σt

π′
Γ(ρΓ)|∂tρΓ|

2 , (7.1)

where

I0 :=
1

2
‖∂t(ρ, ρΓ)(0)‖

2
∗ +

τΩ
2

∫

Ω

|∂tρ(0)|
2 +

τΓ
2

∫

Γ

|∂tρΓ(0)|
2 . (7.2)

Now, we estimate the integrals involving u by using the Hölder inequality, the continuous
embedding V ⊂ L6(Ω), the equivalence on V0 of the norms ‖ · ‖V and ‖ · ‖V0

, and the
definition (2.11) of ‖ · ‖∗. We have

−

∫

Qt

∇∂tρ · u ξ ≤

∫ t

0

‖∇∂tρ(s)‖2 ‖u(s)‖3 ‖ξ(s)‖6 ds

≤
1

2

∫

Qt

|∇∂tρ|
2 + c

∫ t

0

‖u(s)‖23 ‖ξ(s)‖
2
V ds

≤
1

2

∫

Qt

|∇∂tρ|
2 + c

∫ t

0

‖u(s)‖23 ‖(ξ, ξΓ)(s)‖
2
V0
ds

≤
1

2

∫

Qt

|∇∂tρ|
2 + c

∫ t

0

‖u(s)‖23 ‖∂t(ρ, ρΓ)(s)‖
2
∗ ds ,

as well as

−

∫

Qt

∇ρ · ∂tu ξ ≤

∫ t

0

‖∇ρ(s)‖6 ‖∂tu(s)‖3/2 ‖ξ(s)‖6 ds

≤ c

∫ t

0

‖∇ρ(s)‖2V ds+ c

∫ t

0

‖∂tu(s)‖
2
3/2 ‖∂t(ρ, ρΓ)(s)‖

2
∗ ds ,
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and we notice that the first term on the right-hand side is already bounded due to (6.8).
In addition, the functions s 7→ ‖u(s)‖23 and s 7→ ‖∂tu(s)‖

2
3/2 belong to L1(0, T ), by (2.21)

and (2.47). The last two terms on the right-hand side of (7.1) can easily be dealt with, by
using the boundedness of π′ and π′

Γ and the compactness inequality (2.58) in the following
way:

−

∫

Qt

π′(ρ)|∂tρ|
2 −

∫

Σt

π′
Γ(ρΓ)|∂tρΓ|

2

≤
1

2

∫

Qt

|∇∂tρ|
2 +

1

2

∫

Σt

|∇Γ∂tρΓ|
2 + c

∫ t

0

‖∂t(ρ, ρΓ)(s)‖
2
∗ ds .

It remains to estimate the terms appearing in (7.2). To do that, we write (5.10)–(5.11)
at time t = 0 and account for the initial condition (5.12). We have

∫

Ω

∂tρ(0)v +

∫

Γ

∂tρΓ(0)vΓ +

∫

Ω

∇µ(0) · ∇v +

∫

Γ

∇ΓµΓ(0) · ∇ΓvΓ =

∫

Ω

ρ0 u(0) · ∇v ,

τΩ

∫

Ω

∂tρ(0) v + τΓ

∫

Γ

∂tρΓ(0) vΓ +

∫

Ω

∇ρ0 · ∇v +

∫

Γ

∇Γρ0|Γ · ∇ΓvΓ

+

∫

Ω

(βε + π)(ρ0)v +

∫

Γ

(βΓ, ε + πΓ)(ρ0|Γ)vΓ =

∫

Ω

µ(0)v +

∫

Γ

µΓ(0)vΓ ,

for every (v, vΓ) ∈ V. Now, we choose (v, vΓ) = (ξ, ξΓ) := N(∂t(ρ, ρΓ)(0)) in the first
equality, (v, vΓ) = ∂t(ρ, ρΓ)(0) in the second, and add. The terms involving µ(0) and
µΓ(0) cancel out by the definition of N (see (2.9)–(2.10)). Moreover, invoking (2.12), we
obtain that

‖∂t(ρ, ρΓ)(0)‖
2
∗ + τΩ

∫

Ω

|∂tρ(0)|
2 + τΓ

∫

Γ

|∂tρΓ(0)|
2

=

∫

Ω

ρ0 u(0) · ∇ξ −

∫

Ω

∇ρ0 · ∇∂tρ(0)−

∫

Γ

∇Γρ0|Γ · ∇Γ∂tρΓ(0)

−

∫

Ω

(βε + π)(ρ0) ∂tρ(0)−

∫

Γ

(βΓ, ε + πΓ)(ρ0|Γ) ∂tρΓ(0) ,

and we start estimating the right-hand side. For the first term, we account for the
equivalence on V0 of the norms ‖ · ‖V and ‖ · ‖V0

, and the definition (2.11) of ‖ · ‖∗ once
more. Furthermore, we use the continuous embedding W = H2(Ω) ⊂ C0(Ω) and the
interpolation property, where p, p0, p1 ∈ [1,+∞] and θ ∈ (0, 1) satisfy p0 6= p1 and
1
p
= 1−θ

p0
+ θ

p1
(see [3, p. 8 and Thm. 5.3.1 p. 113]),

(Lp0(Ω), Lp1(Ω))θ,p = (Lp0p0(Ω), Lp1p1(Ω))θ,p = Lpp(Ω) = Lp(Ω)

which gives in particular (L3(Ω), L3/2(Ω))1/2,2 = L2(Ω) and thus the inequality

‖u(0)‖2 ≤ c ‖u‖H1(0,T ;L3/2(Ω))∩L2(0,T ;L3(Ω)) ≤ c .

Hence, we can do the following computation:

−

∫

Ω

ρ0 u(0) · ∇ξ ≤ ‖ρ0‖∞ ‖u(0)‖2 ‖∇ξ‖2

≤ c‖ρ0‖W ‖(ξ, ξΓ)‖V0
≤ c ‖∂t(ρ, ρΓ)(0)‖∗ ≤

1

2
‖∂t(ρ, ρΓ)(0)‖

2
∗ + c .
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We deal with the next two integrals by integrating by parts and using some of the as-
sumptions (2.48):

−

∫

Ω

∇ρ0 · ∇∂tρ(0)−

∫

Γ

∇Γρ0|Γ · ∇Γ∂tρΓ(0)

=

∫

Ω

∆ρ0 ∂tρ(0) +

∫

Γ

(∆Γρ0|Γ − ∂νρ0)∂tρΓ(0) ≤ δ

∫

Ω

|∂tρ(0)|
2 + δ

∫

Γ

|∂tρΓ(0)|
2 + cδ,

where δ > 0 is arbitrary. By invoking (5.3) for βε and βΓ, ε, and the assumptions (2.48),
which also imply boundedness for ρ0 and ρ0|Γ, we find that

−

∫

Ω

(βε + π)(ρ0) ∂tρ(0)−

∫

Γ

(βΓ, ε + πΓ)(ρ0|Γ) ∂tρΓ(0)

≤
(
‖β◦(ρ0)‖2 + c

)
‖∂tρ(0)‖2 +

(
‖β◦

Γ(ρ0|Γ)‖2 + c
)
‖∂tρΓ(0)‖2

≤ δ‖∂tρ(0)‖
2
2 + δ‖∂tρΓ(0)‖

2
2 + cδ .

Recalling all of the above estimates, and choosing δ > 0 small enough, we see that I0 ≤ c.
At this point, we come back to (7.1) and apply the Gronwall lemma. We then conclude
that

‖∂t(ρ
ε, ρεΓ)‖L∞(0,T ;H)∩L2(0,T ;V) ≤ c , whence ‖(ρε, ρεΓ)‖W 1,∞(0,T ;H)∩H1(0,T ;V) ≤ c . (7.3)

Remark 7.1. In connection with Remark 2.7, if τΩ and τΓ are not supposed to be positive
and (2.51) holds, one modifies the last estimates on the initial values as follows: we have

−

∫

Ω

∇ρ0 · ∇∂tρ(0)−

∫

Γ

∇Γρ0|Γ · ∇Γ∂tρΓ(0)

−

∫

Ω

(βε + π)(ρ0) ∂tρ(0)−

∫

Γ

(βΓ, ε + πΓ)(ρ0|Γ) ∂tρΓ(0)

= −

∫

Ω

(
−∆ρ0 + (βε + π)(ρ0)

)
∂tρ(0)−

∫

Γ

(
∆Γρ0|Γ − ∂νρ0 + (βΓ, ε + πΓ)(ρ0|Γ)

)
∂tρΓ(0)

≤ ‖−∆ρ0 + (βε + π)(ρ0),∆Γρ0|Γ − ∂νρ0 + (βΓ, ε + πΓ)(ρ0|Γ)‖V ‖∂t(ρ, ρΓ)(0)‖V ∗

≤ δ‖∂t(ρ, ρΓ)(0)‖
2
V ∗ + cδ .

This leads to an estimate that is somewhat weaker than (7.3) and yields a weaker result
at the end of the procedure, as announced in the quoted remark.

Sixth a priori estimate. We set α := mean(µ, µΓ) for a while and test (5.10) by the
V0-valued function (µ, µΓ)− α(1, 1). We obtain, for a.e. t ∈ (0, T ),

∫

Ω

|∇µ|2 +

∫

Γ

|∇ΓµΓ|
2 = −

∫

Ω

∂tρ(µ− α)−

∫

Γ

∂tρΓ(µΓ − α) +

∫

Ω

ρ u∇µ .

Now, we recall that the norm (2.8) is equivalent on V0 to the natural norm. Thus, by also
accounting for (2.47) and for (7.3), combined with the continuous embedding V ⊂ L6(Ω),
we may estimate the right-hand side a.e. in (0, T ) as follows:

−

∫

Ω

∂tρ(µ− α)−

∫

Γ

∂tρΓ(µΓ − α) +

∫

Ω

ρ u∇µ

≤ c ‖∂t(ρ, ρΓ)‖V∗‖(µ, µΓ)− α(1, 1)‖V0
+ ‖ρ‖6 ‖u‖3 ‖∇µ‖2 ≤ c

(
‖∇µ‖2 + ‖∇ΓµΓ‖2

)
.
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At this point, the Young inequality immediately yields that

‖∇µε‖L∞(0,T ;H) + ‖∇Γµ
ε
Γ‖L∞(0,T ;HΓ) ≤ c , i.e.,

‖(µε, µε
Γ)−mean(µε, µε

Γ)‖L∞(0,T ;V) ≤ c . (7.4)

Seventh a priori estimate. We recall the estimate (6.4) already obtained, which holds
a.e. in (0, T ) and also involves α := mean(µ, µΓ). From (7.3) and (7.4), we infer that

‖βε(ρ)‖L∞(0,T ;L1(Ω)) + ‖βΓ, ε(ρΓ)‖L∞(0,T ;L1(Γ)) ≤ c.

We use this bound and (7.3) in the next estimate: we test (5.11) by (1, 1)/(|Ω|+ |Γ|) and
obtain, for a.a. t ∈ (0, T ),

|mean(µ, µΓ)(t)| ≤ c ‖∂t(ρ, ρΓ)‖L∞(0,T ;V∗)

+ c‖(βε + π)(ρ)‖L∞(0,T ;L1(Ω)) + c‖(βΓ, ε + πΓ)(ρΓ)‖L∞(0,T ;L1(Γ)) ≤ c .

Combining this with (7.4), we conclude that

‖(µε, µε
Γ)‖L∞(0,T ;V) ≤ c, whence ‖(µε, µε

Γ)‖L∞(0,T ;H) ≤ c . (7.5)

Eighth estimate. At this point, we can test (5.11) by (βε(ρ), βε(ρΓ)) a.e. in (0, T ). By
taking advantage of the above estimates and of (5.5), we immediately deduce that

‖βε(ρ
ε)‖L∞(0,T ;H) + ‖βε(ρ

ε
Γ)‖L∞(0,T ;HΓ) ≤ c . (7.6)

Ninth a priori estimate. We apply the part vi) of Theorem 2.1 to the solution to the
approximating problem with the choice γ = βΓ, ε. As the constant C6 does not depend
on ε, inequality (2.44) yields a bound for ζΓ in terms of quantities that have already been
estimated. Hence, we conclude that

‖ζεΓ‖L∞(0,T ;HΓ) ≤ c . (7.7)

At this point, we can apply the part v) of Theorem 2.1. We thus have

‖(ρε, ρεΓ)‖L∞(0,T ;W) ≤ c . (7.8)

Proof of Theorem 2.6. We come back to the argument used for the existence part of
proof of Theorem 2.3, recalling that the solution to the approximating problem converges
to a solution to problem (2.28)–(2.31) in a proper topology, at least for a subsequence. In
view of the estimates (7.3)–(7.8), the limiting solution also satisfies the further regularity
specified by (2.49), and estimate (2.50) follows from semicontinuity. �

Proof of Theorem 2.8. We recall that µ and µΓ are bounded by Theorem 2.6. Thus,
accounting for (2.53) and (2.54), we may choose ρ∗, ρ

∗ ∈ (−1, 1) with ρ∗ ≤ ρ0 ≤ ρ∗ such
that

(β + π)(r) + ‖µ‖∞ ≤ 0 and (βΓ + πΓ)(r) + ‖µΓ‖∞ ≤ 0 for every r ∈ (−1, ρ∗),

(β + π)(r)− ‖µ‖∞ ≥ 0 and (βΓ + πΓ)(r)− ‖µΓ‖∞ ≥ 0 for every r ∈ (ρ∗, 1).
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Then, we test (2.29) by ((ρ− ρ∗)+, (ρΓ − ρ∗)+), where ( · )+ stands for the positive part,
and integrate with respect to time. We obtain the identity

τΩ

∫

Ω

|(ρ(t)− ρ∗)+|2 + τΓ

∫

Γ

|(ρΓ(t)− ρ∗)+|2

+

∫

Qt

|∇(ρ− ρ∗)+|2 +

∫

Σt

|∇Γ(ρΓ − ρ∗)+|2

=

∫

Qt

(
µ− (β + π)(ρ)

)
(ρ− ρ∗)+

+

∫

Σt

(
µΓ − (βΓ + πΓ)(ρΓ)

)
(ρΓ − ρ∗)+ .

Since the right-hand side is nonpositive, we conclude that (ρ− ρ∗)+ = 0, i.e., ρ ≤ ρ∗. In
the same way, one proves that (ρ∗ − ρ)+ = 0, i.e., ρ ≥ ρ∗. �

Now, we start the proof of Theorem 2.9. Also in this case, we proceed formally.
Moreover, in order to simplify the notation, we perform our estimates on the solutions to
problem (2.28)–(2.31), directly, and avoid the approximating problem. For i = 1, 2, we
denote, by µi, µiΓ, etc., the components of the solutions corresponding to ui, while µ, µΓ,
etc., are the differences, e.g., µ = µ1−µ2, according to the notation of the statement. For
brevity, we also set u := u1 − u2, as well as

f := β̂ + π̂ , fΓ := β̂Γ + π̂Γ , whence f ′ = β + π and f ′
Γ = βΓ + πΓ .

Moreover, since the result given by Theorem 2.8 holds for both solutions, we can assume
that f ′, f ′′, f ′

Γ and f ′′
Γ are bounded and Lipschitz continuous, the corresponding constants

depending only on the previous assumptions on the structure, the norms of the velocity
fields ui related to (2.47), and the assumptions (2.48) on the initial datum.

First auxiliary estimate. We write (2.28) for both solutions, take the difference and
differentiate with respect to time. Then, we test the obtained equality by (ξ, ξΓ) :=
N(∂t(ρ, ρΓ)) a.e. in (0, T ) and integrate over (0, t). With the help of (2.14) and (2.11) we
infer that

1

2
‖∂t(ρ, ρΓ)(t)‖

2
∗ +

∫

Qt

∇∂tµ · ∇ξ +

∫

Σt

∇Γ∂tµΓ · ∇ΓξΓ =

∫

Qt

∂t
(
ρ1u1 − ρ2u2

)
· ∇ξ .

At the same time, we write (2.29) for both solutions, take the difference and differentiate
it with respect to time; then, we test by ∂t(ρ, ρΓ) and integrate over (0, t). Finally, we
add the same integrals

∫
Qt
(ρ ∂tρ +∇ρ · ∇∂tρ) and

∫
Σt
(ρΓ∂tρΓ +∇ΓρΓ · ∇Γ∂tρΓ) to both

sides, for convenience. We obtain that

τΩ
2

∫

Ω

|∂tρ(t)|
2 +

τΓ
2

∫

Γ

|∂tρΓ(t)|
2 +

∫

Qt

|∇∂tρ|
2 +

∫

Σt

|∇Γ∂tρΓ|
2

+
1

2
‖ρ(t)‖2V +

1

2
‖ρΓ(t)‖

2
VΓ
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= −

∫

Qt

(
f ′′(ρ1)∂tρ1 − f ′′(ρ2)∂tρ2

)
∂tρ−

∫

Σt

(
f ′′
Γ(ρ1Γ)∂tρ1Γ − f ′′

Γ(ρ2Γ)∂tρ2Γ
)
∂tρΓ

+

∫

Qt

∂tµ ∂tρ+

∫

Σt

∂tµΓ ∂tρΓ

+

∫

Qt

(
ρ ∂tρ+∇ρ · ∇∂tρ

)
+

∫

Σt

(
ρΓ∂tρΓ +∇ΓρΓ · ∇Γ∂tρΓ

)
.

At this point, we add these equalities to each other and employ the definition of N

(see (2.9)–(2.10)) in order to cancel four terms in the sum. Moreover, we rearrange the
right-hand side, account for (2.11) and the equivalence of (2.8) to the norm in V on the
subspace V0, and use the boundedness and the Lipschitz continuity of both f ′′ and f ′′

Γ .
We then obtain that

∫

Ω

|∇ξ(t)|2 +

∫

Γ

|∇ΓξΓ(t)|
2 +

∫

Ω

|∂tρ(t)|
2 +

∫

Γ

|∂tρΓ(t)|
2

+

∫

Qt

|∇∂tρ|
2 +

∫

Σt

|∇Γ∂tρΓ|
2 + ‖ρ(t)‖2V + ‖ρΓ(t)‖

2
VΓ

≤ c

∫

Qt

|∂tρ| |u1| |∇ξ|+ c

∫

Qt

|∂tρ2| |u| |∇ξ|+ c

∫

Qt

|ρ| |∂tu1| |∇ξ|+ c

∫

Qt

|ρ2| |∂tu| |∇ξ|

+ c

∫

Qt

|ρ| |∂tρ1| |∂tρ|+ c

∫

Σt

|ρΓ| |∂tρ1Γ| |∂tρΓ|

+ c

∫

Qt

(|ρ2|+ 1) |∂tρ|
2 + c

∫

Σt

(|ρ2Γ|+ 1) |∂tρΓ|
2

+ c

∫ t

0

‖ρ(s)‖V ‖∂tρ(s)‖V ds+ c

∫ t

0

‖ρΓ(s)‖VΓ
‖∂tρΓ(s)‖VΓ

ds ≤ c
10∑

j=1

Ij ,

with obvious definitions of I1, . . . , I10. We now estimate each of these integrals by using
the Hölder, Sobolev and Young inequalities as follows. We have, for every δ > 0,

I1 ≤

∫ t

0

‖∂tρ(s)‖6 ‖u1(s)‖3 ‖∇ξ(s)‖2 ds

≤ δ

∫ t

0

‖∂tρ(s)‖
2
V ds+ cδ

∫ t

0

‖u1(s)‖
2
3 ‖∇ξ(s)‖

2
2 ds ,

I2 ≤

∫ t

0

‖∂tρ2(s)‖6 ‖u(s)‖3 ‖∇ξ(s)‖2 ds

≤ δ

∫ t

0

‖u(s)‖23 ds+ cδ

∫ t

0

‖∂tρ2(s)‖
2
V ‖∇ξ(s)‖22 ds ,

I3 ≤

∫ t

0

‖ρ(s)‖6 ‖∂tu1(s)‖3 ‖∇ξ(s)‖2 ds

≤ c

∫ t

0

‖ρ(s)‖2V ds+

∫ t

0

‖∂tu1(s)‖
2
3 ‖∇ξ(s)‖

2
2 ds ,

I4 ≤

∫

Qt

|∇ξ(s)|2 + c ‖ρ2‖
2
∞

∫

Qt

|∂tu|
2 ,
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I5 ≤

∫ t

0

‖ρ(s)‖3 ‖∂tρ1(s)‖3 ‖∂tρ(s)‖3 ds

≤ δ

∫ t

0

‖∂tρ(s)‖
2
V ds+ cδ

∫ t

0

‖∂tρ1(s)‖
2
V ‖ρ(s)‖2V ds

= δ

∫

Qt

|∇∂tρ|
2 + δ

∫

Qt

|∂tρ|
2 + cδ

∫ t

0

‖∂tρ1(s)‖
2
V ‖ρ(s)‖2V ds .

Moreover, an analogous estimate holds for I6. On the other hand, it is easy to see that

I7 ≤ c (1 + ‖ρ2‖∞)

∫

Qt

|∂tρ|
2 , I8 ≤ c (1 + ‖ρ2Γ‖∞)

∫

Σt

|∂tρΓ|
2 .

Finally, I9 and I10 can be treated just with the Young inequality. Now, we observe that
the functions

s 7→ ‖u1(s)‖
2
3 , s 7→ ‖∂tρi(s)‖

2
V , i = 1, 2 , s 7→ ‖∂tu1(s)‖

2
3 , s 7→ ‖∂tρ1Γ(s)‖

2
VΓ
,

all belong to L1(0, T ). Hence, we collect all the inequalities we have obtained, choose δ
small enough, and apply the Gronwall lemma. We conclude that

‖(∇ξ,∇ΓξΓ)‖L∞(0,T ;H) + ‖(ρ, ρΓ)‖W 1,∞(0,T ;H)∩H1(0,T ;V) ≤ c ‖u‖H1(0,T ;L3(Ω)) , (7.9)

where we recall that (ξ, ξΓ) := N(∂t(ρ, ρΓ)). Notice that (7.9) implies a part of (2.56).

Second auxiliary estimate. We write the equation (2.28) for both solutions and test
the difference a.e. in (0, T ) by (µ, µΓ). The same we do with (2.29), and test the difference
by −(µ, µΓ). Then, we sum up and have, a.e. in (0, T ),

‖µ‖2V + ‖µΓ‖
2
VΓ

= (τΩ − 1)

∫

Ω

∂tρ µ+ (τΓ − 1)

∫

Γ

∂tρΓ µΓ +

∫

Ω

(
ρ1u1 − ρ2u2

)
· ∇µ

+

∫

Ω

∇ρ · ∇µ+

∫

Γ

∇ΓρΓ · ∇ΓµΓ

+

∫

Ω

(
f ′(ρ1)− f ′(ρ2)

)
µ+

∫

Γ

(
f ′
Γ(ρ1Γ)− f ′

Γ(ρ2Γ)
)
µΓ .

Now, we rearrange the right-hand side and use the boundedness and the Lipschitz continu-
ity of f ′ and f ′

Γ, as well as the Hölder and Young inequalities. We obtain a.e. in (0, T ) that

‖µ‖2V + ‖µΓ‖
2
VΓ

≤ δ ‖µ‖2H + cδ‖∂tρ‖
2
H + δ ‖µΓ‖

2
HΓ

+ cδ‖∂tρΓ‖
2
HΓ

+
(
‖ρ‖6 ‖u1‖3 + ‖ρ2‖6 ‖u‖3

)
‖∇µ‖2

+ δ ‖∇µ‖2H + cδ‖∇ρ‖
2
H + δ ‖∇ΓµΓ‖

2
H + cδ‖∇ΓρΓ‖

2
HΓ

+ δ ‖µ‖2H + cδ‖ρ‖
2
H + δ ‖µΓ‖

2
HΓ

+ cδ‖ρΓ‖
2
HΓ
,

where δ > 0 is arbitrary. By choosing δ small enough, using the Sobolev inequality, and
recalling that u1 ∈ L∞(0, T ;L3(Ω)) and ρ2 ∈ L∞(0, T ;V ), we deduce that

‖µ‖2V + ‖µΓ‖
2
VΓ

≤ c
(
‖∂tρ‖

2
H + ‖∂tρΓ‖

2
HΓ

+ ‖ρ‖2V + ‖ρΓ‖
2
VΓ

+ ‖u‖23
)

a.e. in (0, T ).



Cahn–Hilliard system with convection and dynamic b.c. 31

At this point, by accounting for (7.9), we conclude that

‖(µ, µΓ)‖L∞(0,T ;V) ≤ c ‖u‖H1(0,T ;L3(Ω)) . (7.10)

Proof of Theorem 2.9. We recall that (2.21) holds true for both u1 and u2 and rewrite
the transport terms in (2.28) in the form

∫
Ω
∇ρi · ui v. Then we take the difference of the

equations, written for both solutions, and apply Lemma 3.1 for a.a. t ∈ (0, T ) with γ = 0
and the following choice of g and gΓ:

g =
(
−∂tρ−∇ρ1 ·u1+∇ρ2 ·u2

)
(t) =

(
−∂tρ−∇ρ1 ·u+∇ρ ·u2

)
(t) and gΓ = −∂tρΓ(t) .

We then obtain that

‖(µ, µΓ)(t)‖W ≤ c
(
‖(µ, µΓ)(t)‖V + ‖∂tρ(t)‖2 + ‖u(t)‖3 + ‖∇ρ(t)‖6 + ‖∂tρΓ(t)‖2 ,

where c depends only on Ω and the norms of ∇ρ1 and u2 in the spaces L∞(0, T ;L6(Ω))
and L∞(0, T ;L3(Ω)), respectively. By combining this with (7.9)–(7.10), we deduce that

‖(µ, µΓ)‖L∞(0,T ;W) ≤ c ‖u‖H1(0,T ;L3(Ω)) ,

which is a part of (2.56). In order to prove the remaining part of the estimate, we write
(2.29) for both solutions, take the difference, and apply Lemma 3.1 for a.a. t ∈ (0, T ) with
γ = 0 and the choice

g =
(
−τΩ∂tρ− f ′(ρ1)+ f ′(ρ2) +µ

)
(t) and gΓ =

(
−τΓ∂tρΓ − f ′

Γ(ρ1Γ) + f ′
Γ(ρ2Γ) +µΓ

)
(t).

We then obtain that

‖(ρ, ρΓ)‖L∞(0,T ;W) ≤ c
(
‖(ρ, ρΓ)‖L∞(0,T ;V) + ‖(g, gΓ)‖L∞(0,T ;H)

)
≤ c ‖u‖H1(0,T ;L3(Ω)) ,

where the last inequality follows from (7.9) and (7.10). With this, (2.56) is completely
proved. �
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