|

Colmsigéio MNazionale delleRicezche

ISTITUTO DI ELABORAZIONE
DELLA INFORMAZIONE

PISA

~ Principles for a
Temporal Semantics of LOTOS

Alessandro Fantechi, Stefania Gnesi, Cosimo Laneve

Nota Interna B4)%6 27
Agosto 1988




PRINCIPLES FOR A TEMPORAL SEMANTICS OF LOTOS

ok o 3 N ok
A.Fantechi ,S. Gnesi, C. Laneve

* Istituto di Elaborazione dell'Informazione - CN.R. - Pisa - Italy

** Dipartimento di Matematica - Universitd di Siena - Italy

Abstract. A temporal semantics for a subset of LOTOS, a language developed for the
formal description of communication protocols, is presented. The semantics is given
using a compositional approach by which it is possible to associate temporal logic
formulas to each language construct. The considered subset covers the main
characteristics of LOTOS for what concerns the concurrent aspects; the extension to
full LOTOS is discussed.

1. Introduction

The temporal semantics of a language associates a temporal logic formula to each language
construct and therefore gives the meaning of a program as a temporal logic formula. This can be used
to verify that programs written in a concurrent programming language satisfy properties defined by
temporal logic formulas.

The same principle can be applied to a language for the specification of concurrent systems; this
paper studies in particular the application to LOTOS [DP 8807], a language based on process algebraic
methods and derived from Milner's Calculus of Communicating Systems [Mil 80]. This will allow us
to define a proof system for the verification that LOTOS specifications satisfy properties expressed by
temporal logic formulas.

However, LOTOS has been given an operational semantics, and a formal notion of (observational)
equivalence between LOTOS processes has been defined precisely. It is necessary therefore to show
the relationships (possibly the consistency) of the given temporal semantics and the "official” LOTOS
operational semantics.

As a first step in the direction of giving a temporal semantics for LOTOS, we have defined a subset
of this language, which contains most of the interesting features; moreover, we will start following the
easier-approach to the problem by adopting the compositional approach method presented in [Bar 84,
Bar 85, Bar 86], which use a classical linear time temporal logic and which allows a definition of the
senwntics in a denotational style.

This paper starts by an overview of the linear temporal logic used (Section 2); in Section 3 we
present the subset of LOTOS which we will give a temporal semantics and which we consider enough
‘powerful to capture all the main characteristics of this language. The compositional approach to
temporal semantics for the subset of LOTOS processes is presented in Section 4. Section 5 discusses
the relationships between the temporal semantics and the operational semantics of the language (the
simple abstractness of the given temporal semantics with respect to the operational semantics modulo
string equivalence is proved in [Fan 88]). Section 6 briefly discusses the introduction of justice




requirements in the proposed temporal semantics. Finally, the possibility of extending our semantics
to full LOTOS is discussed (Section 7).

2. Temporal logic

A concurrent program can be identified by a set of execution traces (behaviours) ¢ which can be
represented as:

. _.a _ .a
C: S5~ 5 —"2—s, -3 ¢))

in which s; are states of the program and a; are transitions, i.e. executions of actions, which modify
the state. In the interleaving model for concurrent programs it is assumed that a transition is exactly
one atomic action of the program. This model, which is isomorphic to the natural numbers (i.e.
discrete, ordered lineafly and with a definite starting point), is used because linear execution traces and
discrete time models are natural (operational) models of program execution behaviour.

Temporal logic is that branch of modal logic dealing with the evolution of situations over time, and
therefore also on concurrent programs seen as transition systems.

I particular we will use a version of temporal logic which is capable of expressing properties of
the sequence models seen above. This is a linear time temporal logic in which predicates specify
events, i.e.transitions, and formulae contain universal and existential quantifiers (first order temporal
logic). A transition predicate is true in the state where the event it represents happens. We will denote
by the notation plg the truth of predicate p in state s and, if ¢ is like defined in (1), with the notation
o' the model :
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The operators that we will use are the usual first order logic connectives and quantifiers:
true, false, —, v, A, =, &, V, 3
together with temporal operators:
O (next), [] (always), < (eventually), W (unless), U (until), [/] (relabelling)

and a fixed point constructor:

vE. % (§)

denoting the maximal solution to & =y (&). This last schema indicates that & is bound to the v
quantifier and the formula y, contains the free temporal variable & .

Using the model ¢ defined in (1), the interpretation of a formula ¢ is a function on the set of
temporal formulae which yields a value in {t,f}. We will define this interpretation by induction on the




structure of ¢:
o kE true =t o k false =T

If a is a transition predicate, likewise, we define:
t if aj=a

c kFa ={
f if a,#a

As far as non atomic formulae are concerned their interpretation, assuming that in the metalanguage
not, or, and, implies, exists, for all are defined, is:

o ) iff not (¢ k ¢)
SRR iff (c Edor(c kW)

c EoAy iff (¢ F ¢)and(c F V)
N E iff o E—=dvy

c Foevy iff c EFO=2WA=9)
o E IxHx) iff exists t @ (o E ¢(1)
o E Vx.4H() iff ~ forall t: (G k @)

The variables bounded in the quantified formula range on a domain (different from that of the same
formulae): for ours aims we may assume that this domain is the set Nat. Informally, we may
summarize the above interpretations saying that the evaluation of boolean connectives is obtained by
applying the same connectives to the evaluated subformulae. Temporal connectives deserve more
attention:

c EO0d iff ok ¢ i=2

A formula ¢ in the scope of the next operator evaluates true in a state iff ¢ is true in the following
state.
c E 19 iff forall i: (o' E ¢)

The unary operator always guarantees the truth of a formula in every state of the computation. In
section 2 we have pointed out the need to specify safety properties for concurrent programs. These
properties, which say that something bad never happens, can well be expressed using the always
operator.

G E ¢ iff exists i: (o' F ¢)




The unary operator eventually guarantees that a formula (something good) will become true. In this
way it is possible to express liveness properties.

c EoUy iff exists k : (6% Ey) and
forall i: 0<i<kand (st E ¢)

Informally ¢ U v is true in a state if y will eventually hold in the future and in every moment up to
then ¢ will hold (it is not necessary that ¢ is true when y holds).

g E oWy iff c E[l) or 6 EOU v

This operator, also called weak until, is different from the preceding one as it does not require the
eventual holding of the y formula.

o E ¢la/b] iff ¢ k6 and
forallk>0 o* k=a implies ¢ ka

®la/b], where a and b are transition predicates, denotes the logical operator which has the effect of
substituting every occurence of b in the model sequences of a formula ¢ with a. This operator, which
is different from a syntactic substitution of every occurrence of b with a in the formula ¢, has been
named "relabelling"[Den 88] since it is analogous to the CCS operator with the same name.

c EVvE x &) iff forall k>0 o kX (true)
where x* (true) is the temporal formula x( x(... x(true)...)) k-times. The fixed point constructor
vE. % (§) denotes the maximal solution to & = % (&) , which exists if and only if the function x () is

monotonic and continuous. The monotonicity requirement can be ensured by the appearance of the
temporal formula & in ¢ under an even number of negations [Ban 86].

Interleaving constraint

We will use the presented temporal logic to give the semantics to a language which admits only
interleaved executions, that is, in which actions are performed one at a time. Therefore we will deal
only with model sequences in which only one transition predicate is true at any time.

For example the formula ((a v b) A O[]c) is also satisfied by the model sequence which performs ‘a’
and 'b' concurrently as its first action. In order to adhere to the interleaving model, we must rule out
this possibility. This can be achieved by requiring that every model considered satisfies the
following predicate:

(1 A-&AY)
x,y€ Action
Xty

where Action = {f<v> / fe Gates A ve Nat.}uie,i}.



We will implicitly assume in the following that every formula is conjucted with the interleaving
predicate.
Note that relaxing the interleaving constraint does not immediately produce a concurrent (e.g.

"multiset") semantics; this would require a more careful defintion of some of the logic operators.
3. The Mini-LOTOS language

The subset of LOTOS, called Mini-LOTOS, that we consider in this paper mantains the main
concurrent features of the original language; in particular, those features are maintained which still
make: this subset different from Milner's CCS: the form of interaction and the definition of parallel
composition.

More precisely, the following restrictions with respect to LOTOS are operated:

1. Since our focus is on concurrency aspects, we ignore features related to the
definition of abstract data types by means of algebraic specifications. In particular our attention
is restricted to types which are only natural numbers (Nat, in the following).

2. Moreover, we do not consider the static structure of LOTOS programs; Mini-LOTOS programs
have the following syntax:

Program := process declaration list ; behaviour expression
process declaration list := process declaration ; process declaration list
process declaration = process process identifier[gate*][value*]

":="behaviour expression endproc

where gate* and value* are, respectively, a possibly empty list of gates and values (of type
Nat).

3. The main semantic restriction is that no functionality is assigned to Mini-LOTOS processes,
and exit and enabling operators are not considered: Mini-LOTOS processes terminate without
returning any value. See Section 7 for a further discussion on this restriction.

4. We have not considered the disabling operator.

5. A minor semantic restriction is that we only allow a simple form of interaction: interactions in
which both multiple value offer and simple value offer are present are not considered in order

to simplify the definition of the synchronization rules.

Moreover we only allow one form of parallelism (that syntactically expressed by the operator [set
of gatesl). This parallelism is in any case the most general and includes the other two (syntactically

expressed through Il and lll) as degenerate cases (lI=lall gates! and llI=l@1).

In Table 1 we present the actions, operators and related their operational semantics of the
Mini-LOTOS language. From the operational semantics we can observe that transitions of LOTOS
programs are the observable actions (marked as 0) and the unobservable i actions, and they only move
the control point along the behaviour expression, without any other state change. We have not

considered the "d" actions of LOTQOS, due to the absence of exit and enabling operators.




operator syntax operational semantics informal meaning
Inaction stop denotes a process which cannot perform .
any action.
Unobservable action ;B ;B -i->B models an event internal to the
process.
Observable action
with multiple value offer: g 7x;B g 7BX)-g<v>->B(v) models a process which can perform
Jor any value v of sort Nat any transition g<v> with ve Nat.
with single value offer: g IE;B g 1E;B-g<val(E)>->B denotes a process which can
transit only with transition
g<val(E)>.The val opcrator simply
evaluates its argument.
Choice B10B2 Bl-0i->B1' implies the actions of the process are the
B10B2 -0i->B1" set of possible actions of B1 and B2.
B2-0i->B2 implies
B1lB2 -0i->B2'
Boolean guarding [E]—» B B-0i->B' and val(E)=t implies the process behaves like B if val(E)=t.
[E]— B -oi-> B’
Parallel composition B1ISIB2 B1-0i->B1' and gates(oi)e S the parallel composition forces the

Hiding

Process
instantiation

plgy--g

implies B1ISIB2-0i-> B11SIB2
B2-0i->B2' and gates(oi)e S
implies B1ISIB2-0i-> B1ISIB2'
B1-0->B1'and B2-0->B2'
and gates(o)e Simplies
B1iSIB2-0-> B1'ISIB2'
hide Sin B B-0i->B' and gates(oi)e S
implies
hide S in B-oi-> hide S in B'
B-0->B' and gate(o) €S implies
hide S in B-i-> hide S in B’
n][E],...E Bp[val(El),...va](Em)][gI/h],...gn/hn]
-0i->B’  implies
p[gl,...gn][El,.‘.Em] -0i->RB'

l’ﬂ]

subprocesses to interact at every gate in
the set S.

this operator allows the transitions
at gates in S to be internalized.

the transitions of a process instantiation
arc those of the body of the process
declaration (Bp) substituting formal
parameters (hi) with actual ones.

Tab.1

Note that this semantics does not distinguish between a process which is terminated and one which

is deadlocked: i.e. their observational behaviour is the same.

4. The compositional approach

An approach, which can be used to associate to every process of a concurrent system a logical

formula which axiomatically defines it, has been developed by Barringer, Kuiper and Pnueli [Bar 84,

Bar 85]. The formula is very close to a behavioural specification of the system. In fact, these formulae




are given on the observable(!) sequence of actions performed by the system, using propositions
which are considered true if the system is able to perform the corresponding action, and composing
them with temporal operators to obtain formulae that can have an obvious interpretation in models
which are sequences of actions. The idea is to characterize all behaviours prescribed by a program
through one temporal logic formula. Consequently a behaviour will be a program execution if and
only if it satisfies the formula. For example, the simple formula consisting of the proposition 'a’ will
be true for the processes which can perform immediately an 'a’ action, while the formula (a v b) A
o[lc will be true for the processes which can perform an action 'a' followed by an infinite sequence
of 'c' actions or an action 'b' followed by an infinite sequence of 'c' actions. Recall that the
interleaving constraint prevents this formula to have as a model a sequence which can perform
concurrently 'a’ and 'b'.

In order to obviate the problem of compositionality the semantics is given open, i.e. it describes the
process immersed in all possible (parallel) environments. For this purpose, a special proposition ‘e’,
denoting an unknown environment action, is introduced (in [Bar §6] the same proposition is named
"y we choose 'e' to avoid confusion with the LOTOS 'i' (internal) action).

More precisely, the semantics is always given for closed systems consisting of the process in
question and all possible environments. The semantics of a process in such closed systems is seen as a
sequence of its own actions possibly interleaved with environment actions. When a process is
composed with another one, its semantics is partially closed because part of the external environment
of the first process becomes known, i.e. some of the environment actions of the first process will be
the actions performed by the other.

Due to the compositionality of the approach, a temporal semantics can be given for a concurrent
language by associating a temporal formula to each construct of the language with a set of
syntax-directed clauses as it is usual when giving denotational semantics. In [Bar 86] the
compositional approach has been used to give the semantics of several example concurrent languages;
in the following section we will show how this method can be applied to Mini-LOTOS.

5. A compositional temporal semantics for Mini-LOTOS

The kernel of the temporal semantics is the function M which associates a meaning to every
language construct, in a denotational style.

The language constructs are in LOTOS behaviour expressions, and their meaning is taken to be a
predicate on possible execution sequences spawning from that behaviour expression. The meaning is
however dependent on the context in which the construct is inserted, i.e. an environment which
associates a process denotation to every declared identifier is considered as a parameter of the function

. We adopt the notation M ¢ to indicate the environment parameter.

(1) In this conlext we intend by obscrvable all that can be scen of the behaviour of the system at the chosen abstraction
level. In particular, in the following, this notion of obscrvable wiil include the "unobscrvable” actions 1’ of LOTOS,

since we will be at a level of abstraction in which we can also observe the internal actions of a system.




"The type of the semantic function is hence:
M:S >E —=TL

where S is the space of Mini-LOTOS behaviour expressionss, 7L is the space of temporal formulae
and E is the space of environments, i.e. of mappings from process identifiers to temporal logic
formulae: E:P — TL . Notice that in the following the word "environment” is overloaded with two
meanings: the first denotes an element of E, the second distinguishes the "e” action as an environment
actinn, in the typical sense of the compositional approach. The meaning is, however, obvious from the
context each time.

The following are the clauses defining by structural induction the function 71, each followed by a

comment,
M o (stop)=elW —O true

"The meaning of an inaction behaviour is true for any (possibly infinite) sequence of environment
_actions. '—O true' is valid for any void sequence. The use of W operator in this clause is due to the
fact that the process 'stop’ will execute transitions only if the environment is able to perform them: the

process will terminate when also the environment will terminate
Mo(iB)=eW [in0T14(B)]

The meaning of an unobservable action followed by a behaviour B is true for every finite sequence
of eavironment events followed by the unobservable action and by sequences for which the meaning

of B is true, or for the infinite sequence of e's..
ﬂe(g!V;B)zew [g<v>A 0T g (B)]
Mo(g?xBx))=elW [ JaeNat:g<a> A0 M o (B(2)) ]

The meaning of an observable action followed by a behaviour B is true for every sequence of
environment events followed by the observable action and by sequences for which the meaning of B is
true. In this case it is possible that an interaction never occurs, since its occurrence is dependent by the
environment avilability to perform the same action. Note that after an input interaction the behaviour

can be dependent on the value exchanged in the interaction.

b —»  Mg®)

Mo ([b]oB) = {
—b — e W —0 true

The boolean guarded behaviour has the same meaning as B if the boolean condition is true, as

stop if it is false.




M o (B10By) =11 o (B]) VT g (By)

The meaning of the choice operator is true if the meaning of one of the component behaviours is

frue.

In the following formula we should have used two functions: 1 and 2 defined on the set of gates T’
and wich give values, respectively, in the sets I'x{1} and I'x{2}, such that 1(x) =<x,1>, and
2(x) == <x,2>. However, for notation simplicity, we will use subscripts to the names of the gates (that

is, ;. X,) to mean the application of these functions.

Mg (BlgBy) =
( MoBplleviyv \/ fxv> )/e, i, /1, Vg g f<v>ea(By): fi<v>/f<v>] A
fe g.f<v>e (x(Bz)

AT g (By) [leviyv \/ fi<v> )/ e, i, /1, Vig g,f<v>e UBy): f,<v> [ f<v>] )
fegf<v>ea(By)

[Vig g f<v>/fi<v>, Vg g f<v>/f<v>, 10,0/, ]

The logic relabelling operator is here liberally extended to express a set of substitutions. The last
substitution applies to the result of the conjunction. Function o, defined on behaviour expressions,
gives the set of transitions that a behaviour expression may perform during its execution (this set of
transitions can be produced by a static analysis of the behaviour expression - actually, the static
analysis produces a larger set of that strictly needed, but due to the use of subscripts, all unnecessary
f<v>, that is those which are not present in the matching sequence, will be dropped by the conjunction
operation).

Parallel composition partially closes the open semantics of the component processes. In order to
explain the formula we should consider carefully the exact meaning of the LOTOS parallel
composition: actions of the composed processes are interleaved, except for those actions occurring at
gates belonging to the set 'g": these actions are performed simultaneously by both processes. Hence,
given the various actions that the component processes can perform, we can distinguish the following
cases:

1. If B, performs an { action, this is considered an environment action for B,, thus an { in B, must

be paired with an ¢ in B, (and viceversa).

[\

. If B, performs a f<v> action, with fe g, this is again considered an environment action for B.;
thus it must be paired with an e in B, (and viceversa).

3. If B, performs a f<v> action, with fe g, B, should also perform this action, and thus the same
actions must be paired for B, and B,.

4. Since the parallel composition should continue to have an open semantics, it must be open to
environment actions which are considered as such for both B, and B,: thus an ¢ in B, should
be paired with an ¢ in B,.

This pairing is performed by the conjunction of the component meanings. Suppose the next action

performed by B, is 'x" and by B, is 'y’; this means that

M(B)=x and MBy=y
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hence
MBIATB,)=>xAy )

| Now, if x and y are different, formula (2) will have no model due to the interleaving constraints.
Hence we should restrict models to the case when x and y are the same. This is satisfactory for ¢
actions (case 4) and for actions on gates in 'g’ (case 3). In the other cases, we should substitute one of
the ¢'s in M(B;) with an i (case 1) or with a f<v> (fg g) in case 2. This substitution amounts to
partially closing the open semantics of B, with actions performed by B,.
Summarizing what has been said so far till now would produce the following simpler formula

which expresses the temporal meaning of B,1g|B,:

MoBpl(eviv \/ f<v> )/e] AT g By [(evivy/ f<v> ) /e]
fe gf<v>e ot(Bz) feg.f<v>e (x(Bl)

However this formula can confuse actions performed by B, with the same actions performed by
B, (in LOTOS we have no "ownership" on actions: any process can perform any action at any gate).
To overcome this problem we must identify (with a substitution) the owner of the (i and f<v>, f¢ g)
actions. The identity of the owner is then dropped from the formula describing the behaviour of the
composed process.

M g(hideginB)= T14[B) [ Vfe g: i/f<v>]

The meaning of hiding is true for every sequence which satisfies the meaning of its operand, in

which every occurrence of the actions is substituted by unobservable actions.
™ o (p([aliv]) ) = 8(p) [a/gates(p), v/values(p)]

The meaning of a process call is retrieved by the environment, with the obvious parameter
substitutions - here the substitution symbol is used to denote the usual parameter substitution.

It is now time to define how an environment 0 is built for a program. This is achieved by a
semantic function D which is defined on a list of process declarations. The type of D is:

D : Decl* - E
and is defined in the following way (using an auxiliary function D, : Decl* xE — E):

D (decls) = vE. Dy (decls) (§)
D, (process plgllv] := B endproc; decls) (&) = {<plgllv]l, M g(B)>}u D, (decls) &)
D] (nil) (&) =0

The definition of D, augments the mapping with a new pair for every declaration. The pairs consist
of a process heading and the meaning of the corresponding behaviour expression. Since process calls

can ke recursive, the meaning of behaviours should also be evaluated in the complete environment.
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The existence of the maximum fixed point is guaranteed by the consideration that the temporal logic
formulae present in € can appear only under an even number of negations.
Finally, the program semantics is given by a semantic function P whose type is:

P Prog -TL
with the following definition:

P (decls; B) = T’LD(dCC]S)(B)

6. Relationships between temporal and operational semantics.

In order to relate the given semantics to the operational one - given for LOTOS in an official
standard document [DP 8807] we need to study the relationship between the Mini-LOTQS temporal
semantics given in this work and its operational semantics (see Tab.1), derived from that of LOTOS.

The operational semantics of a Mini-LOTOS process is a labelled transition system (constituted by
a set of states, a set of labels - the actions - and a transition relation defined over them). This semantics
induces an obvious equivalence relation between processes: two processes are equivalent if the relative
transition systems are the same.

However, we may strenghten the above equivalence relation, considering equivalent - that is,
having the same semantics - two processes whenever no external observer can tell any difference
between their behaviours is captured by the definition of an equivalence relation between transition
system (observational equivalence [Mil 80]). Actually, this is the equivalence relation defined for the
"official" LOTOS operational semantics.

On the other hand, the temporal semantics of a Mini-LOTOS process is a temporal logic formula;
the possible executions of the process are all the ordered sequences of actions which satisfy this
formula.

The use of such semantics implies another equivalence relation: two processes have the same
meaning if the associated formulas are logically equivalent. The equivalence between processes so
obtained is that called "string equivalence” [Hoa 81].

"“’he fundamental difference between the observational and the string equivalence is that the
hequivalence classes are respectively, classes of action labelled trees (the synchronization trees of [Mil
80]) and classes of sets of sequences of actions. This is due to the basic model for the process used by
the operational semantics, that is, the labelled transition system, contrasted by the sequence model
used for linear time temporal logic. This causes their different discriminating power: the observational
equivalence has a finer discriminating power with respect to the string one.

"To acquire again the discriminating power of the observational equivalence the temporal semantics
need the use of a branching time temporal logic, in which models are trees of actions. This is a
direction of future research for the specific case of LOTOS.

All the discussion above has been made more precise for the case of Mini-LOTOS in [Fan 88], in

which the operational and the temporal semantics are formally compared. That work shows that the
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given temporal semantics is simply abstract with respect to the operational semantics modulo string
equivalence.

7. Justice requirements

The point in giving temporal semantics is not, anyway, in discussing discriminating power. The
given semantics, being fully abstract with respect to maximal trace semantics, does not give any other
advantage than being able, by working on logical formulae, to prove that a LOTOS program satisfies a
property given as a temporal logic formula.

An interesting aspect to be discussed is instead whether, in giving a temporal semantics to LOTOS,
we are able to say something more, which cannot be expressed by the operational semantics.
Something more offered by temporal logic is the possibility to express non continuous properties,
such as fairness. To impose a fairness requirement means to cancel from a set of infinite sequences
which are the models of a program those sequences which are not fair, by a conjunction with a proper
formula expressing fairness constraints. An example of formula expressing a global fairness constraint

is the following:

A (eo(Va) = Afloa)
Se P(Action) ae S ae S
which states that, if a choice among a set of actions occurs infinitely often, than all the actions in
the set must be performed infinitely often (actually, the above formula works only for "pure”" LOTOS,
without values).

Another property that can be expressed in general for LOTOS programs is justice, that is the
reqirtement that if a process is able to perform a set of actions, an action of the set will eventually be
performed.

Possible justice requirements, coherent with the basic principles of action synchronization in
LOTOS, are the following:

- if a process is able to perform an external action, since its occurrence will in general depend on
the external environment, it may be the case that the action is never performed (suppose for example
that the process is synchronised with a non-terminating process which does not perform the same
action).

- if a process is able to perform an internal action, eventually it must perform it.

The second requirement is expressible by modifying the formula expressing the semantics of

internal action:
Mo(isB)=eU [in0Tg(B)]
while the semantics of observable actions may remain unchanged due to the first requirement.

Anyway, the unobservable actions are generated also by the hiding operator. Whenever an action

is hidden, its occurrence is no more dependent from the environment and must eventually happen, for
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the second requirement above. In order to express this, the formula expressing the semantics of hiding
should be modified so that until operators instead of unless ones appear before any occurrence of a
hidden action.
Another comment: consider the process:
a!3; stop [l i; stop
i’s temporal meaning, following the given temporal semantics, is:
(el (a<3>A0 (eW —0Otrue))) v{e U (in 0 (e W —O true))) =
= eW ((a<3>Vvi)A0 (e W —0 true))
which means that either action a<3> or i may occurr, but they also may never occurr. To enforce
the second justice requirement in this case requires that the meaning of nondeterministic choice is
modified in order to "spread” justice to the possible observable actions. The desired meaning would
therefore be:
eU ((a<3>vi)A 0 (e W —O true))
It is an open question how to express the new meanings of hiding and choice by temporal
_semantics clauses and whether modifications are needed to the semantics of other LOTOS constructs.

Tt is also not clear if it is possible to write a compositional justice semantics at all.

§. Towards a temporal semantics for full LOTOS

The main semantic restriction imposed on Mini-LOTOS is that we have not assigned a functionality
to processes and we have, consequently, not introduced the exit and enabling operators. In order to
give a meaning to such constructs, we need to be able to describe the sequential composition of
sequences of actions. This can be done quite easily by adding a new operator to our temporal logic

called "chop™ or "combine” [Bar 84] and defined on execution traces G as follows:
c EdCy iff exists i: ok¢ and o Ry

(Its models are the sequences of states that are composed by a prefix which satisfies ¢ and a suffix
which satisfies y).

However problems are raised by the use of this operator because of the increased complexity of the
proofs of formulae which use it in conjunction with the fixed point operator [Bar 84].

We have neither given semantics to the LOTOS disabling operator. Actually, it seems that also this
operator needs to introduce a new logic operator, which we call "cut", defined on execution traces O as
follows:

o oDy iff o=c!-6? and exists o> such that ¢'-0® k¢ and o?=y
or ¢ By

(Its models are the sequences of states in which a prefix is the same of a prefix of a sequence
which satisfies ¢ and the suffix satisfies ).

The effect of inserting the new operators in our temporal logic is still to be studied.
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The other restrictions seem to need no conceptual novelty; multiple interaction can only make the
meaning of the parallel composition more cumbersome. We can note however that in order to describe
compositionally the semantics of many language operators we need to introduce specific logic
operators which "mimic" the behaviour of the language ones (another example in this sense is the need
to irtroduce the relabelling logic operator). )

We have observed that a simpler form could be given to express the meaning of parallel

-composition, if the language does not allow the same action to be performed by the processes. This is
in fact the classical problem of communication channels shared by more than one process; the use of
the shared channel introduces hidden forms of nondeterminism. This problem has sometimes been
solved in concurrent languages by forbidding such a facility, partly because of the increased

implementation difficulty.

0, Conclusions

By providing a subset of LOTOS with temporal semantics, we have been able to capture the main
characteristics of this language. We have however pointed out several open questions, some due to the
desire of expressing non continuous properties of infinite LOTOS processes, other due to the
extension of our work to cover full LOTOS.

We want also recall another open question, which at a first sight seems quite interesting in order to
fully understand the relationships between temporal and operationial semantics: the temporal meaning
of non "well guarded” LOTOS terms.

Furthermore the real application of the temporal semantics to the proof of properties of complex
LOTOS specifications should be evaluated.
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