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State-average calculations based on a mixture of states are increasingly being exploited across chemistry
and physics as versatile procedures for addressing excitations of quantum many-body systems. If not too
many states should need to be addressed, calculations performed on individual states are also a common
option. Here we show how the two approaches can be merged into one method, dealing with a generalized
yet single pure state. Implications in electronic structure calculations are discussed and for quantum
computations are pointed out.
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Determining properties of the excitations in quantum
many-body systems is a fundamental problem across
almost all sciences. For instance, to explain the mechanism
of photosynthesis [1,2], human vision [3], or photovoltaics
[4], one should take into account that they are mainly light-
induced excited-state processes. The fluctuation properties
of quantum spectra play also a crucial role in the charac-
terization of quantum chaos [5,6], new states of matter [7],
and more generally in the understanding of the temporal
evolution of isolated many-body quantum systems [8]. Yet,
while ground-state properties of a wide range of systems
can nowadays be determined by rather accurate and
computationally manageable methodologies [9,10], meth-
odological developments to efficiently target excited states
are highly in demand [11–17].
When interested in studying the energy gaps between

the ground and low-lying excited states (the optical gap
and multiple neutral excitations being prominent exam-
ples thereof) we may focus on the first M eigenstates
fjψ0i;…; jψM−1ig of a Hamiltonian H and work with

ρðwÞ ¼
XM−1

j¼0

wjjψ jihψ jj: ð1Þ

The real positive weights wj are nothing else but convenient
auxiliary quantities. By minimizing the average energy
EðwÞ ¼ Tr½HρðwÞ� we can determine the individual states
and compute all the relevant properties. The advantage of
such a state-average calculation lies in the fact that the
orthogonality of the individual states can be fulfilled
automatically, but the individual states are optimal only
on the average. Similarly, by mixing states with different
particle numbers, calculation of electron affinities, ioniza-
tion potentials, and fundamental gaps can be performed.
Such ensemble calculations are increasingly being used
in traditional and emerging electronic structure methods
[18–23]. They are also at the center of (time-independent)
density functional [24–32] and density matrix functional
[33–37] approaches to excited states.
Alternatively, state-specific calculations are also a valid

option [38–41]. But addressing states one by one, requires us
to satisfy extra orthogonality conditions against previously
determined states. If not particularly computationally
demanding, these extra conditions can imply a nonhomo-
geneous degradation of accuracy. When this happens,
comparisons between different states get unbalanced.
Aiming at merging the advantages of state-average and

state-specific calculations in one approach, here we show
how a state-average calculation can be transmuted into a
generalized yet single state-specific calculation. The ena-
bling idea is to map the targeted mixed state, ρðwÞ, into a
pure state

ρðwÞ → j0ðwÞi ¼
X
j

ffiffiffiffiffi
wj

p jψ ji ⊗ jψ̃ ji ð2Þ
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belonging to a “double” Hilbert space H ⊗ H̃ such that
EðwÞ ¼ h0ðwÞjHj0ðwÞi. When the statistical weights are
chosen as wj ¼ e−βEj=

P
j e

−βEj , the state in Eq. (2) is the
well-known thermofield, introduced by Matsumoto and
Umezawa [42,43]. Central to many modern developments
in quantum sciences, this purification of the thermal state
plays an important role in quantum gravity [44–47], non-
equilibrium phenomena [48–53], quantum information
[54–56], and quantum chemistry [57,58].
As the key result presented in this Letter, we construct a

w-field such that

EðwÞ ¼ min
S
h0je−SðwÞHðwÞeSðwÞj0i; ð3Þ

where j0i stands for the vacuum (in the double Hilbert
space), SðwÞ is an anti-Hermitian “matrix,” and HðwÞ is a
unitary transformation of the Hamiltonian H.
Crucially, we show that SðwÞ can be fully specified via

the unitary (U) coupled-cluster (CC) ansatz [59]. This CC
approach is particularly appealing because it handles the
treatment of both finite (like molecules) and extended (like
solids) systems [60–63]. Its unitary flavor can also help to
solve the challenge of treating equally well dynamical and
static correlations within a single approach [64]. Yet the
corresponding canonical transformation of the Hamiltonian
does not truncate which makes its variational implementa-
tion not efficient on conventional classical computers.
Remarkably, it was recently shown that the (Trotterized)
UCC operator can be prepared at a polynomial cost on a
quantum computer [65–68].
Once the minimization in Eq. (3) is performed, the

respective eigenstates jψni can be retrieved by projecting
j0ðwÞi on the noninteracting states to which jψni can be
connected and paired to, say, jψ̃0

ni. Thereafter, taking the
expectation values of the appropriate physical operators on
the retrieved states, any property of individual eigenstates
can be accessed. When the focus is just on energies,
furthermore, we show below that extraction of the eigen-
states can be avoided altogether.
In this Letter, after deriving the outlined key results, we

validate the resulting approach on a model system, and
conclude touching on main perspectives.
Setting up the framework.—Let us restrict ourselves to

spinless fermions with nondegenerate spectrum, for sim-
plicity. Bosonic systems may be dealt with analogously. We
also assume that noninteracting states can be connected to
interacting states [69]. Inspired by the seminal idea of
thermofields [43], we invoke an auxiliary “tilde” space
H̃, i.e., a copy of the original Hilbert space H, such that
for every state jφi ∈ H there is a copy jφ̃i ∈ H̃. For any
density matrix ρðwÞ ¼ P

j wjjφjihφjj, with fixed weights
w¼ðw1;w2;…Þ, jφji ∈ H and hφijφji ¼ δij, there is a pure
state j0ðwÞi ¼ P

j
ffiffiffiffiffiwj

p jφji ⊗ jφ̃ji. Thus, the expectation
value of any physical operatorA∶H → H can be obtained as

h0ðwÞjAj0ðwÞi¼P
jk

ffiffiffiffiffiffiffiffiffiffiwjwk
p hφjjAjφkiδjk¼Tr½AρðwÞ�, and

one recovers the original ensemble density by tracing out all
the fictitious states: ρðwÞ ¼ TrH̃½j0ðwÞih0ðwÞj� [70]. The
field operators acting on the tilde space, i.e., the tilde
fermionic operators c̃m, c̃

†
m, obey the same anticommutation

rules as their untilde counterparts [43] and satisfy the
anticommutation rules fcm; c̃mg ¼ fcm; c̃†mg ¼ 0. By def-
inition, operators acting on the physical spaceH do not act
on states in the tilde space H̃, and viceversa.
The weighted sum of the spectrum of a Hamiltonian

H ¼ hþW, with h and W being the free (noninteracting)
and the interacting Hamiltonians, respectively, can be com-
puted by resorting to the exponential parametrization of the
configuration space [71]. To perform such a parametrization
let us express the corresponding eigensystems as Hjψ ji ¼
Ejjψ ji and hjψ0

ji ¼ E0
j jψ0

ji. It is well known that one may
generate the states fjψ jig by a unitary transformation of the
set fjψ0

jig, as they constitute another orthonormal basis of
the same Hilbert space [72]. Indeed, one can write
jψ ji ¼

P
k jψ0

kiUkj, where the coefficients are the elements
of a unitary matrixU. As a consequence, the eigenstates can
be represented in terms of an operator transformation:
jψ ji ¼ eSjψ0

ji, where S ¼ P
jk Sjkjψ0

jihψ0
kj and Sjk is an

anti-Hermitian matrix. Using the freedom for the definition
of the replica states in Eq. (2) we fix jψ̃ ji≡ jψ̃0

ji, and obtain

j0ðwÞi ¼ eSj00ðwÞi; ð4Þ

where j0ðwÞi ¼ P
j

ffiffiffiffiffiwj
p jψ ji ⊗ jψ̃0

ji is the interacting and

j00ðwÞi ¼
X
j

ffiffiffiffiffi
wj

p jψ0
ji ⊗ jψ̃0

ji ð5Þ

is the free w-field double states. Wewill write this latter state
in terms of the single-particle states, as follows:

j00ðwÞi ¼ ⨂
L

m¼1

ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ws;m

p þ ffiffiffiffiffiffiffiffiffi
ws;m

p
c†mc̃

†
mÞj0i; ð6Þ

where 1
2
≥ ws;m > 0 is theweight assigned to the singlemode

m, j0i is the vacuum of the double space, and w denotes the
many-mode weights wn1;…;nL ¼ Q

L
m¼1 w

nm
s;mð1 − ws;mÞ1−nm ,

with nm ∈ f0; 1g. A few comments are in order here. First,
the state j00ðwÞi resembles in form the superconducting state
of Bardeen-Cooper-Schrieffer theory [73]—but here the
“double” occupation is introduced for implementing the
purification of mixed states rather than for describing a new
phase of matter. Second, the distinctive state (6) can
efficiently be prepared on a quantum computer [74], which
highlights the potential and broad scope of our proposed
method.
Further information on the noninteracting case is pro-

vided in Sec. I of the Supplemental Material (SM) [75]
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where, through the operator G ¼ P
m θmðc†mc̃†m − c̃mcmÞ,

with cosðθmÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ws;m

p
, we get j00ðwÞi ¼ eGj0i (the

dependence of G on the weights being understood).
Going back to the interacting case, by multiplying (4) on

the left by eGe−G we get

j0ðwÞi ¼ eGe−GeSeGj0i ¼ eGeSðwÞj0i: ð7Þ

Here, the short-hand notation OðwÞ≡ e−GOeG applies.
Thus, the state-average energy of the interacting system can
be expressed as a pure state expectation value

EðwÞ ¼ h0ðwÞjHj0ðwÞi ¼ h0je−SðwÞHðwÞeSðwÞj0i:
As such, this formula resembles a single-reference calcu-
lation (in the double space) in which CC theories naturally
arise [76]. This is the direction we take below.
Because the weights can be chosen in such a way that a

Ritz-like variational principle for the underlying mixed
states holds true [77–79], the state-average energy may thus
be found by optimizing the anti-Hermitian matrix Sjk that
minimizes h0je−SðwÞHðwÞeSðwÞj0i, as anticipated in Eq. (3).
Below, we give and validate an explicit form for S—please
bear with us till then.
Thereafter, eigenstates can be obtained via straightfor-

ward projections: jψ ji ∼ hψ̃0
j j0ðwÞi. Unlike in approaches

that use penalty terms to optimize the projection on
previously determined states, in our approach eigenstates
can be obtained individually or, in parallel, all at once.
Given orthonormal single-particle orbitals to start with,
formally, an optimization of a single pure (as opposed to a
mixed) state is all that is required.
Eigenenergies and gaps without eigenstates.—

Eigenenergies can be determined without having to recon-
struct individual eigenstates. For this, let us express EðwÞ as
the weighted sum of the contributions from each N-particle
sector: EðwÞ ¼ P

N ENðwÞ. Correspondingly, j0φðwÞi ¼P
N eiNφj0NðwÞi, where

j0NðwÞi ¼
1

2π

Z
2π

0

dφ e−iNφj0φðwÞi: ð8Þ

The dependence of the state j0φðwÞi on the “angle” φ is
detailed in Sec. I of the SM. As discussed in analogous
contexts [80–86], Eq. (8) thus operates a projection with
respect to a respective particle-number sector.
It is convenient to “normalize” the w-field as follows:

j0NðwÞi → j0NðwÞi=
ffiffiffiffiffiffiffiffiffiffiffi
DðwÞp

, with DðwÞ ¼ ð1 − ws;1Þ � � �
ð1 − ws;LÞ. As a result, the weighted sum of all the
eigenenergies reads ENðwÞ ¼

P
n wn1;…;nLEn1;…;nL , where

wn1;…;nL ¼ μn11 � � � μnLL , with μm ≡ ws;m=ð1 − ws;mÞ, nm ∈
f0; 1g and

P
m nm ¼ N. Next, w0

i stands for the tuple w
where only the weight ws;i → w0

s;i is changed. The energies
of the N-particle sector can be extracted by the following
rather simple prescription:

Eni1 ;…;niN
¼ Δi1 � � �ΔiNENðwÞQ

N
m¼1ðμim − μ0imÞ

; ð9Þ

where ΔiENðwÞ≡ ENðwÞ − ENðw0
iÞ [87]. In Eq. (9) only

variational energies EðwÞ should be considered whose
weight vectors ws, w0

s give rise to the same ordering of
“collective” many-body indexes jðnÞ, as explained in
Sec. II of the SM.
In the calculation of electron affinities gþ, ionization

energies g−, and fundamental gaps g, the original ground
state is considered relative to the ground sates of the system
with one more and one less particle. For which, we get

g� ¼
X1
p¼0

ð−1ÞpΔi1 � � �ΔiN�p
EN�pðwÞQN�p

m¼1 ðμim − μ0imÞ
; ð10Þ

and, thus, g ¼ g− − gþ.
Harnessing the framework.—Finally we exploit the above

formalism by specifying SðwÞ in terms of the UCC ansatz:
S ¼ T − T†, where T is the excitation operator defined
according to T ¼ T1 þ T2 þ T3 þ � � � [59]. Namely,

T1 ¼
X
mn

tmnc
†
mcn;

T2 ¼
X
mnrs

tmnrsc
†
mc

†
ncrcs; ð11Þ

and higher-order terms follow the same structure where
m, n, r, s index occupied or unoccupied orbitals. Thus,
SðwÞ ¼ TðwÞ − T†ðwÞ.
Because of its high accuracy for ground-state calcula-

tions, the CC ansatz is sometimes referred to as the “gold
standard of quantumchemistry” [71]. Although its “unitary”
flavor is impractical on classical computers, it recently
became clear that the UCC wave function can efficiently
be handled on hybrid quantum-classical hardware like the
variational eigensolvers [65,66]. One of the key ingredients
of such an implementation is the exact identity for each of
the different UCC factors appearing in the usual Trotter
formula, i.e., exp ½ϑa1���ani1���in ðA

a1���an
i1���in − ðAa1���an

i1���in Þ†Þ�, where
ϑa1���ani1���in are variational parameters and Aa1���an

i1���in are the exci-

tation operators c†a1 � � � c†anci1 � � � cin [67,88–90]. We just
need to operate the replacements Aa1���an

i1���in → Aa1���an
i1���in ðwÞ.

Validation.—Let us consider a 1D lattice model of
spinless interacting fermions with Hamiltonian [91–93]

H ¼ −
XL
m¼1

ðc†mcmþ1 þ c†mþ1cm −Unmnmþ1Þ: ð12Þ

Here the operator c†m (cm) creates (annihilates) a fermion on
lattice site m, and U is the strength of the nearest-neighbor
repulsion. For L sites, the Fock space can be decomposed
in Lþ 1 sectors: F ¼ H0 ⊕ � � � ⊕ HL. Only L weights
ws;m are needed in our prescription (one for each mode).
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We implemented the factorized form of the UCC with
singles and doubles (UCCSD). For the minimization of
EðwÞ we have used the Nelder-Mead method with toler-
ance 10−5 [94]. Increasing the number of Trotter steps
beyond 4 does not substantially improve our results
presented below. Further details are reported in Sec. IV
of the SM.
Let us compute the individual energies by extracting the

states via the projection jψ ji ∼ hψ̃0
j j0ðwÞi and compare

them with the exact diagonalization results. In Fig. 1 we
report the energies for L ∈ f5; 8g. For L ¼ 5 our approach
is near to be exact, due to reduced dimensionality of the
corresponding Hilbert space. For L ¼ 8, in the weakly
correlation regime, the predicted energies are also in
excellent agreement with the exact ones. Discrepancies
become noticeable for U ≳ 6. The source of which are
mainly: (a) UCCSD cannot handle strongly interacting
states, most of all; (b) the increasing number of variational
parameters for large L in the UCCSD ansatz (i.e., ϑa1a2i1i2

)
that must be determined in the minimization; and (c) the
need of tighter tolerances in the minimization algorithm as
a consequence of the increase of the Hilbert space’s
dimension. Moreover, because the weights are not varia-
tional, but fixed, auxiliary parameters, the results within a
given approximations may be thus conditional on those
values. Analytically, we find that EðwÞ can be written as
ð1 − ws;mÞAmðwÞ þ ws;mBmðwÞ, where AmðwÞ and BmðwÞ
do not depend on ws;m. This linearity, however, is observed
as long as the ordering of the vector of many-body weights
does not change. Interestingly, deviation from (exact)
linearity may thus provide us with a way to sense the
quality and stability of the results.

Finally, through Eq. (9)—i.e., without using any of the
previously extracted eigenstates—we determine the energy
gaps between the ground state and the lowest excited state
of our model system for the same sectors of Fig. 1. The
results shown in Fig. 2 with the exact result are, again,
impressive.
Conclusions.—We have proposed a variational frame-

work for determining the eigensystem of quantum many-
body systems via the optimization of a single pure state.
Such a pure state has the form of a generalized auxiliary
thermofield, encoding excitations rather than thermody-
namics. Which, we have shown, can be determined via the
unitary couple cluster (UCC) approach. Because the UCC
is suitable for an efficient implementation on quantum
computers, our proposal may soon enable unprecedented
calculations of excitations. But the framework we have
built is general and, thus, it may be exploited to gain not
only formal but also analytical and numerical advantages—
in any type of variational methodology for excited states
based on ensemble—yet to be explored.
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[34] F. Castillo, J.-P. Labbé, J. Liebert, A. Padrol, E. Philippe,
and C. Schilling, An effective solution to convex 1-body
N-representability, arXiv:2105.06459.

PHYSICAL REVIEW LETTERS 129, 066401 (2022)

066401-5

https://doi.org/10.1126/science.1074685
https://doi.org/10.1038/nchem.2398
https://doi.org/10.1038/nchem.2398
https://doi.org/10.1038/nphoton.2014.134
https://doi.org/10.1103/PhysRevLett.52.1
https://doi.org/10.1103/PhysRevE.105.014109
https://doi.org/10.1103/PhysRevResearch.3.013143
https://doi.org/10.1103/PhysRevResearch.3.013143
https://doi.org/10.1038/nature06838
https://doi.org/10.1038/nature06838
https://doi.org/10.1103/PhysRevX.5.041041
https://doi.org/10.1103/PhysRevX.5.041041
https://doi.org/10.1103/PhysRevX.10.031058
https://doi.org/10.1103/PhysRevX.10.031058
https://doi.org/10.1103/RevModPhys.74.601
https://doi.org/10.1016/j.theochem.2005.03.020
https://doi.org/10.1016/j.theochem.2005.03.020
https://doi.org/10.1021/acs.chemrev.8b00244
https://doi.org/10.1021/acs.jctc.9b00476
https://doi.org/10.1021/acs.jctc.9b00476
https://doi.org/10.1007/JHEP09(2017)140
https://doi.org/10.1103/PhysRevLett.126.150601
https://doi.org/10.1021/acs.jctc.1c00984
https://doi.org/10.1021/acs.jctc.1c00984
https://doi.org/10.1021/acs.chemrev.8b00436
https://doi.org/10.1021/acs.chemrev.8b00436
https://doi.org/10.1088/2632-2153/aba183
https://doi.org/10.1088/2632-2153/aba183
https://doi.org/10.1103/PhysRevResearch.1.033062
https://doi.org/10.1103/PhysRevResearch.1.033062
https://doi.org/10.1088/2058-9565/abd334
https://doi.org/10.1088/2058-9565/abd334
https://doi.org/10.1021/acs.jctc.1c00995
https://doi.org/10.1021/acs.jctc.1c00995
https://doi.org/10.1103/PhysRevA.37.2809
https://doi.org/10.1103/PhysRevA.98.022513
https://doi.org/10.1002/wcms.1209
https://doi.org/10.1002/wcms.1209
https://doi.org/10.1103/PhysRevLett.110.126403
https://doi.org/10.1103/PhysRevLett.125.233001
https://doi.org/10.1021/acs.jpclett.0c02894
https://doi.org/10.1007/s41061-021-00359-1
https://doi.org/10.1088/2632-2153/ac3149
https://doi.org/10.1103/PhysRevLett.124.243001
https://doi.org/10.1103/PhysRevLett.124.243001
https://doi.org/10.1103/PhysRevLett.127.023001
https://doi.org/10.1103/PhysRevLett.127.023001
https://arXiv.org/abs/2105.06459


[35] J. Liebert, F. Castillo, J.-P. Labbé, and C. Schilling,
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