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A B S T R A C T   

Hydro-morphological processes (HMP, i.e. all processes contained within the spectrum defined between debris 
flows and flash floods) initiate in response to intense rainfall events. Efficient HMP hazard assessment over large 
regions is often hindered because of limited rainfall observations over mountainous areas. Real-time and easily 
accessible satellite rainfall products offer new opportunities to address the observational coverage problem in 
ungauged catchments. In this work, two satellite rainfall products, Global Precipitation Measurement (GPM) and 
Climate Hazards Group Infrared Precipitation with Station Data (CHIRPS), are investigated by taking the ground 
measurements as a reference. Based on a close agreement between GPM and rain gauge data, daily rainfall 
together with a series of antecedent rainfall values were calculated to investigate the spatio-temporal distribution 
of HMP occurred from 2001 to 2015 across the whole Chinese territory. Ultimately, rainfall thresholds for HMP 
initiation within different geomorphological settings in China were obtained by: (1) building antecedent rainfall 
sequences consisting of HMP and non-HMP via 100 nonparametric bootstrapped replicates; (2) testing several 
percentiles of the rainfall distribution as thresholds for HMP occurrence; (3) optimizing rainfall thresholds for six 
geomorphological macro-regions in China. This study confirmed the ability of satellite data in defining the 
rainfall conditions for the triggering of HMP, acknowledging the potential underestimation and/or bias that 
characterize any satellite rainfall products. Our findings provides new insight on rainfall conditions responsible 
for HMP initiation at the Chinese national scale.   

1. Introduction 

Intense rainfall prompts the challenges of hazard management for 
hydro-morphological processes (HMP), whose occurrence is increasing 
both in space and time under climate change (Seneviratne et al., 2012). 
A HMP is here considered as any process contained within the spectrum 
defined between flash floods and debris flows. Specific differences of the 
triggered phenomena within this spectrum depend on several factors, 

among which the hydrological, geomorphological, and lithological 
properties of the landscape under consideration, the source material and 
the presence of sediments (Borga et al., 2014). China has widely expe-
rienced severe HMP in the last decades. They are triggered by large 
amounts of rainfall that can convert an otherwise normal event into an 
extraordinary, devastating disaster (Doswell et al., 1996). 

Usually, the sparse distribution of rain gauge networks in particular 
in complicated topographic settings, which are particularly prone to 
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HMP, add further complexities in estimating the dynamics of extreme 
rainfall events (Creutin and Borga, 2003) and their cascading hazards. 
Therefore, determining the rainfall conditions responsible for HMP 
initiation - also in the form of rainfall thresholds - is challenging and yet, 
it is of paramount importance to plan preparatory/mitigation actions 
from destructive impacts, within rural settlements and urbanized areas 
(Scofield and Kuligowski, 2003). 

Traditionally, defining rainfall thresholds for HMP initiation is 
mostly performed by using physically-based models (Norbiato et al., 
2008; Miao et al., 2016). Despite the good performance these models 
offer, their operational use over large areas is limited by the required 
data (Hapuarachchi et al., 2011). Specifically, physically-based 
threshold models rely on the rainfall measurements and hydrological 
and geotechnical information that are usually not easily available in 
data-scarce catchments (Hapuarachchi et al., 2011). Similarly, these 
models rely on detailed soil properties (texture, hydraulic conductivity, 
cohesion and more; Bout et al., 2018), which can be acquired but at the 
cost of extremely expensive field surveys when the territory under ex-
amination extends over regional to national and continental scales. 

Over large areas, an alternative to physically-based models can be 
implemented by adopting empirical methods (e.g. Borga et al., 2014; 
Schlögel et al., 2020), mostly with the aim of defining empirical rainfall 
thresholds (e.g. Badoux et al., 2012; Abancó et al., 2016; Bezak et al., 
2016). Once the spatio-temporal rainfall distribution is retrieved, usu-
ally from rain gauges, it is possible to use long historical HMP records 
and derive rainfall thresholds (Miao et al., 2016), upon which alert 
levels are possibly issued from governmental agencies to inform the 
population of potential threats. In ungauged basins and data-scarce 
areas, satellite-based rainfall products are necessary (Gao et al., 2017). 
The latter are also useful to overcome several problems that hampers the 
capability of meteo-hydrological networks to catch hydrological con-
ditions able to trigger HMP (Borga et al., 2014; Nikolopoulos et al., 
2014; Nikolopoulos et al., 2015). Satellite-based rainfall products are 
also employed to build up early warning systems (Hong et al., 2007; 
Kirschbaum et al., 2015; Kirschbaum and Stanley, 2018; Chikalamo 
et al., 2020; Hartke et al., 2020). Recently, satellite-based rainfall 
products were also used to calculate rainfall thresholds for landslide and 
debris flows initiation at various spatial scales (Nikolopoulos et al., 
2017; Brunetti et al., 2018; Monsieurs et al., 2019; He et al., 2020; Jia 
et al., 2020). In particular, He et al. (2020) defined several rainfall 
thresholds for landslide triggering in China (i.e., rainfall event-duration, 
normalized, for rainy and non-rainy periods, and for short and long 
rainfall durations) using: (i) 771 landslide events occurred in the period 
1998–2017; and (ii) satellite-based rainfall products. 

Among the currently available options, several satellite rainfall 
products have already been reported to perform well in estimating 
rainfall on increasing temporal scales, such as:  

1. the Global Precipitation Climatology Project one-Degree-Daily 
(GPCP-1DD, 1996-present, 1◦/ 1d; Huffman et al., 1997; Huffman 
et al., 2001);  

2. Precipitation Estimation from Remotely Sensed Information using 
Artificial Neural Networks (PERSIANN, 1983-present, 0.25◦/ 1d; 
Sorooshian et al., 2000);  

3. Climate Prediction Center MORPHing technique (CMORPH, 1998- 
present, 0.07◦/ 30 min; Joyce et al., 2004);  

4. Global Satellite Mapping of Precipitation (GSMap, 2000-present, 
0.1◦/ 30 min; Kubota et al., 2007);  

5. Tropical Rainfall Measurement Mission (TRMM, 1998-present, 
0.25◦/ 3 h; Huffman et al., 2007) and its successor  

6. Global Precipitation Measurement (GPM, 2014-present, 0.1◦/ 30 
min; Hou et al., 2014);  

7. Climate Hazards Group Infrared Precipitation with Stations 
(CHIRPS, 1981-present, 0.05◦/ 1d; Funk et al., 2014; Funk et al., 
2015). 

Each one of these rainfall products has already been tested in hy-
drometeorological applications (Ashouri et al., 2016; Toté et al., 2015; 
Yuan et al., 2019; Tang et al., 2020). And, among the ones listed above, 
researchers highly recommended to take advantage of TRMM/GPM and 
CHIRPS datasets in hydro-morphological disaster forecasting (Fang 
et al., 2019; Shen et al., 2020; Zhou et al., 2020) because of the close 
match with ground rainfall observations. These two products (TRMM/ 
GPM and CHIRPS) not only have a high spatial and temporal resolution 
but they also span over relatively long periods (Tang et al., 2020). These 
characteristics make them suitable to be analyzed together with HMP 
records in a historical context. 

Although the available GPM products have been extended to June 
2000, the evaluations on their agreement with rain gauge observations 
are mostly conducted based on recent datasets. For instance, compari-
sons carried out in mainland China confirmed the ability of GPM 
products in detecting the precipitation in humid regions, or southern 
China (Jiang and Bauer-Gottwein, 2019; Zhou et al., 2020). Similarly, 
the assessments on the long-term CHIRPS rainfall products have also 
been verified, especially indicating a close relationship with monsoon 
patterns in China (Bai et al., 2018) and in India (Gupta et al., 2020). 
Similar comparisons and analysis were made (e.g.) in Italy (Rossi et al., 
2017) and in Brazil (Salles et al., 2019), providing satisfying results. 
Besides, the systematic negative biases of CHIRPS observed in some 
global analyses was effectively removed from 2000 onwards (Shen et al., 
2020). 

Determining rainfall thresholds for HMP is of paramount importance 
for operational prediction in hazard and risk management, and partic-
ularly in China. To address this issue, a methodology to detect pre-
liminary rainfall triggering conditions for HMP by exploiting regional 
antecedent rainfall derived from satellite rainfall products is here pro-
posed. Initially, we calculate several extreme rainfall indices and 
compare them with the rain gauge derived values. Then, on the basis of 
the satellite product which has shown the highest degree of accuracy 
with respect to ground measurements, we also compute current daily 
rainfall and a series of antecedent rainfall values (as made by e.g. Glade 
et al., 2000; Kirschbaum and Stanley, 2018) in different geomorpho-
logical settings across China. Ultimately, we derive preliminary rainfall 
thresholds for HMP initiation on the basis of statistically-based perfor-
mance metrics. 

For the first time, this work aims at taking full advantage of the 
satellite rainfall products and unique long-term historical HMP records, 
making it possible to derive preliminary rainfall thresholds for HMP 
initiation at the scale of the whole Chinese territory. 

2. Study area and data sources 

2.1. Study area 

China approximately covers an area of 9.6 million km2, and the 
mountainous area accounts for approximately 67% of its territory, with 
a marked increase in elevation from East to West. The rainfall features 
are greatly influenced by the East Asian Summer Monsoon, resulting in 
rainy seasons being concentrated between June and August across the 
Eastern and Central China. The arid to semi-arid climate affects the 
northwest China, which consist of desertic areas, suffering from 
droughts more often than other regions. Ultimately, the Tibetan Plateau 
is locally referred to as the Asian Tower, due to its prominent orographic 
features and represents one of the most complex topographic sectors of 
China. 

The vast Chinese territory is characterized by various geomorpho-
logical settings, which can be classified into six main geomorphic- 
regions (Fig. 1) encompassing eastern plains (EP), southeastern hills 
(SEM), north-central plateaus (NCP), southwestern mountains (SWM), 
northwestern basins (NWB), and Tibetan Plateau (TP) according to the 
classification proposed by Wang et al. (2020). This classification is 
related to a combination of plate tectonics, crustal features, 
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geomorphological features, and regional differences also including 
geomorphological types. To cope with the complexity of hydro-climatic 
and geomorphological settings over entire China, we proposed to adopt 
the subdivision into the six geomorphic-regions by taking full advantage 
of its generalization on the localized terrain and weather conditions. 
From South-East to North-West, the distance to sea together with 
orography and terrain characteristics contribute to forming the weather 
patterns in China, such as 200 mm, 400 mm, and 800 mm rainfall 
contours (Fig. 2). Therefore, the geomorphic-regions represent the best 
combination for reflecting the spatial similarity and difference among 
the weather conditions, terrain features, and also population 
distributions. 

2.2. Hydro-morphological processes’ inventory 

The HMP inventory analyzed in this study is part of a national-scale 
collection coordinated by the Chinese Institute of Water Resources and 
Hydropower Research (Liu et al., 2018). This project was carried out 
with the purpose of collecting long-term information on HMP disasters 
in the period from 1950 to 2015. 

To keep the information consistent with the time span of the satellite 
rainfall products, we only selected the recentmost records since 2001 
and until 2015, from the entire HMP Chinese catalogue. Each HMP re-
cord is associated with information including the precise location 

(longitude and latitude) and the date of occurrence (day, month and 
year) of the HMP. Overall, we extracted 15,636 HMP within the 15-year 
period under examination across the whole Chinese territory (Fig. 1). 

2.3. Rainfall dataset 

2.3.1. Rain gauge data 
We used daily rainfall measurements recorded by meteorological 

stations in the same period 2001–2015. The daily rainfall were accessed 
via the China Meteorological Administration website (http://data.cma. 
cn/). After filtering out missing records (due to the weather or other 
factors), out of 839 weather stations distributed over China we selected 
806 with complete records, which we then used to evaluate the rainfall 
estimates related to GPM and CHIRPS (Fig. 2). Besides, due to the dif-
ference in data sources, there is latent time gap between ground mea-
surements (Beijing time) and satellite estimates (UTC time) which we 
accounted for in a pre-processing phase. We followed the criterion 
proposed by Fang et al. (2019) and by Zhou et al. (2020) to re-align the 
exact times among rainfall estimates. 

2.3.2. GPM IMERG data 
Global Precipitation Measurement (GPM), which was launched in 

February 2014 as the successor of the Tropical Rainfall Measuring 
Mission (TRMM), offers three global precipitation products: the Early, 

Fig. 1. Distribution of HMP across the Chinese six geomorphic-regions (key: EP, eastern plains; SEM, southeastern hills; NCP, north-central plateaus; SWM, 
southwestern mountains; NWB, northwestern basins; TP, Tibetan Plateau). Colored dots in the map correspond to geomorphic characteristics of the area where the 
HMP were recorded. Inset (a) reports the number of HMP per geomorphic type. Inset (b) reports the number of HMP per region. Panel (c) reports the number of HMP 
per year. 
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Late, and Final Run (Huffman et al., 2015). The GPM products cover a 
spatial range of 60◦ S and 60◦ N, with a spatial resolution of 0.1◦× 0.1◦, 
and temporal resolution of 30 min. Among the three products, the Final 
Run product is considered to be more accurate because it features a 
monthly gauge bias calibration (Su et al., 2019; Sungmin et al., 2017). It 
has been widely used in the hydro-morphological researches showing 
satisfactory results (Wang et al., 2017). Therefore, we selected the Final 
Run data over China from 2001 to 2015, which can be obtained from 
NASA website (https://pmm.nasa.gov/data-access/downloads/gpm). 

2.3.3. CHIRPS data 
Climate Hazards Group Infrared Precipitation with Station Data 

(CHIRPS) offers the global precipitation estimations with daily, penta-
dal, and monthly products. CHIRPS is blended from multiple sources 
including rain gauge data and various satellite-based products. CHIRPS 
products are available since 1981 with two levels of spatial resolutions, 
0.05◦ and 0.25◦, respectively. We selected the 0.05◦× 0.05◦ daily 
CHIRPS dataset covering the whole Chinese territory with a time span of 
15 years, from 2001 to 2015. This can be accessed at https://www.chc. 
ucsb.edu/data/chirps. 

3. Indicators and method 

Three consecutive steps were defined and followed for the assess-
ment and use of the satellite rainfall products. Initially, we made an 
assessment on GPM and CHIRPS products by comparing them with the 
daily rainfall data obtained from the ground measurements. Then, we 
compared the extreme rainfall obtained from the two satellite datasets 
with those from the rain gauge measurement. Ultimately, in light of the 
evaluation above, we derived the rainfall triggering conditions for HMP 
with the calculation of a series of antecedent rainfall in various 
geomorphic-regions. 

3.1. Statistics metrics 

The evaluation of the consistency between daily rainfall data derived 
via satellite estimates and ground measurements is crucial in such ap-
plications (Rossi et al., 2017; Gupta et al., 2020; Schlögel et al., 2020). 
This issue was examined by calculating four statistical indicators, 
including the Pearson correlation coefficient (CC), mean absolute error 
(MAE), root-mean-square error (RMSE), and relative bias (RB). Table 1 
lists the equations of the statistics indices. 

We used the Hanssen-Kuipers (HK; Hanssen and Kuipers, 1965) skill 
score to discriminate the rainfall thresholds in this study. HK skill score 
is based on the combination of different realizations between observa-
tions and predictions defined in a common confusion matrix (including 
true positives, TP; true negatives, TN; false positives, FP; and false 
negatives, FN; Fawcett, 2006), being defined as a linear combination of 
true positive rate (TPR) and false positive rate (FPR) (Stephenson, 2000; 
Wilks, 2011), according to the following equation:. 

HK = TPR − FPR =
TP

TP + FN
−

FP
TN + FP

(1) 

It ranges from − 1 to 1, with 1 indicating a perfect performance and 

Fig. 2. Map of the mean annual rainfall in China overlaid by the rain gauge distribution and the boundaries of six geomorphic-regions (key: EP, eastern plains; SEM, 
southeastern hills; NCP, north-central plateaus; SWM, southwestern mountains; NWB, northwestern basins; TP, Tibetan Plateau). 

Table 1 
Definitions and equations of the statistics indices.  

Indicator Acronym Equation Unit 

Correlation Coefficient CC 
CC =

∑n
i (Xi − X)(Yi − Y)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i (Xi − X)2
√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑n
i (Yi − Y)2

√
– 

Mean Absolute Error MAE 
MAE =

∑n
i (Yi − Xi)
∑n

i Xi
× 100  

mm 

Root Mean Square Error RMSE 
RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i (Yi − Xi)
2

n

√ mm 

Relative Bias RB RB =
Yi − Xi

Xi
× 100  %  
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− 1 representing very poor performance. 

3.2. Extreme rainfall 

The detection and analysis of rainfall extremes are necessary for 
studying their spatial and temporal prediction (e.g. Schlather, 2002; 
Saunders et al., 2017) and vital for HMP prediction (Borga et al., 2014; 
Nikolopoulos et al., 2017). In our case, it can be estimated by comparing 
the distribution of extreme rainfall indices detected from satellite-based 
products and ground measurements. A number of suggestions have 
already been indicated by the World Meteorological Organization to 
assess extreme precipitation (Klein Tank et al., 2009). In this work, we 
selected several popular indices listed in Table 2. 

3.3. Antecedent rainfall 

To identify the rainfall conditions responsible for HMP initiation, the 
effective antecedent rainfall within a given time window (typically 
short) should be considered together with the induced variations in soil 
properties. We adopted the antecedent rainfall model proposed by 
Kohler and Linsley (1951) and obtained a series of values, corresponding 
to 1, 2, 3, 4, 5, 6, 7 days preceding any HMP record in our dataset. Below 
we report the equation we used: 

ARn = P0 + kP1 + k2P2 +⋯+ knPn (2)  

where, ARn indicates the cumulative rainfall over the n days before the 
occurrence of a HMP, Pi is the daily rainfall for the ith day before the 
HMP, and k is an empirical calibration constant with the range of 0.8 to 
0.98 proposed by Viessman et al. (1989) and later tested in several 
studies (e.g., Filho et al., 2020). By applying a decaying constant value in 
the calculation of antecedent rainfall, this equation accounts for the 
water infiltration and evapotranspiration caused by soil permeability 
(Blanchard et al., 1981). Glade et al. (2000) proposed a similar method 
to calculate rainfall thresholds for shallow landslide initiation in New 
Zealand. Here, we set k at 0.9 in the light of researches performed in 
Chinese territory (Bai et al., 2014; Ma et al., 2014; Wei et al., 2008). 

3.4. Rainfall thresholds 

Rainfall thresholds based on antecedent rainfall were calculated for 
each of the six Chinese geomorphic-regions, considering that the 
regional distribution of HMP is also controlled by local terrain attri-
butes, soil types, and climatic conditions. The partition into geomorphic- 
regions are confirmed to be associated with comprehensive interplay 
among topography, geomorphology, soil, vegetation, and climate (Wang 
et al., 2020). 

The approach for determining the rainfall threshold values was 
contextually based on antecedent rainfall values related to HMP initia-
tion and on antecedent rainfall values that are likely not related to HMP 
occurrence (non-HMP), according to the following steps.  

• The construction of the non-HMP date list was implemented on the 
basis of disaster locations. By exploiting the whole spatiotemporal 
domain our HMP database cover, we selected dates when HMP were 
recorded but in a different year, when no HMP occurred.  

• The non-HMP antecedent rainfall were calculated according to the 
aforementioned date list.  

• The whole non-HMP antecedent rainfall sequence were integrated 
together with the actual HMP counterparts. Because the number of 
non-HMP instances are much larger than the HMP occurrences, we 
randomly subsampled the non-HMP cases with an equal number to 
the HMP ones. And, we repeated this procedure 100 times to create a 
robust number of bootstrap replicates to be used in the following 
procedure.  

• We extracted the 2.5%, 25%, 50%, 75%, 97.5% percentiles of the 
rainfall distribution together with the mean value of the whole 
sequence and then tested these values as potential cutoffs to distin-
guish HMP from non-HMP.  

• The evaluation was made in light of several statistics metrics, 
including sensitivity, precision, specificity, and accuracy (Green and 
Swets, 1966; Jollifee and Stephenson, 2003). The mean values esti-
mated from the 100 iterations were used to assess the most reliable 
results and the associated uncertainty. The rainfall thresholds that 
performed the best with a highest hit rate amongst the antecedent 
rainfall series were determined to be the optimum thresholds. 

4. Results 

4.1. Daily rainfall 

The daily rainfall series were obtained from both GPM and CHIRPS 
datasets, and compared against the rain gauge measurements, which has 
been used as the benchmark dataset throughout the analyses. In doing 
so, we explored the relationship between the daily rainfall recorded by 
rain gauges and satellites to evaluate their performance in estimating 
extreme rainfall events. Table 3 shows that GPM has a higher correlation 
coefficient (R  = 0.66) than that of CHIRPS (R  = 0.50), although it 
indicates a slight underestimation of daily rainfall with the MAE of 15.5 
mm. GPM also shows a RMSE (7.03 mm) lower than CHIPRS’s (9.15 
mm). Besides, GPM outperformed CHIRPS with a slightly lower relative 
bias (RB  = 6.61%). Our findings indicated an underestimation of both 
satellite products, in agreement with most of the previous studies (Bai 
et al., 2018; Fang et al., 2019; Shen et al., 2020; Su et al., 2019; Zhou 
et al., 2020). 

Fig. 3 displays the spatial distribution of statistical metrics for daily 
rainfall across China. GPM and CHIRPS both showed to be highly 
consistent with respect to the rain gauge measurements in eastern 
sector, but GPM indicated a much higher correlation coefficient (Fig. 3a 
and Fig. 3e). The highest mean absolute error (MAE  > 50 mm) between 
GPM and rain gauge observation are more likely to be distributed in 
central China (Fig. 3b); however, the highest MAE between CHIRPS and 
rain gauge measurements appears in the southeastern sector (Fig. 3f). 
The spatial distribution of RMSE displayed a similar pattern for both 
satellite-based datasets, with the value decreasing from southeast to 
northwest in China (Fig. 3e and Fig. 3g). Ultimately, the high value of 
relative bias appears to be randomly distributed over China with the 
most evident underestimation (RB < − 80%) and overestimation (RB  >
30%) both scattered in northwest China (Fig. 3d and Fig. 3h). 

Table 2 
Definition of the rainfall indices used in this study.  

Extreme indices Acronym Definition Unit 

Heavy rainfall days R50 Count of days with rainfall ⩾50 mm  d 
Maximum daily 

rainfall 
R1d Annual maximum daily rainfall mm 

Maximum 5-days 
rainfall 

R5d Annual maximum consecutive 5-days 
rainfall amount 

mm 

Rainfall on wet 
days 

R90p Annual total rainfall of rainy days with 
rainfall exceeding the 90th percentile 

mm 

Simple daily 
intensity index 

SDII Mean rainfall when daily rainfall >
1 mm  

mm/ 
d 

Consecutive wet 
days 

CWD Maximum number of consecutive rainy 
days 

d  

Table 3 
Correlation between satellite rainfall products and ground measurements.  

Statistical indicators GPM CHIRPS 

CC 0.66 0.50 
MAE (mm) 15.53 22.00 
RMSE (mm) 7.03 9.15 
RB (%) 6.61 9.56  
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4.2. Extreme rainfall 

A thorough comparison reveals the efficiency of satellite products 
with respect to ground measurements (here used as reference) in esti-
mating extreme rainfall relevant to HMP (Fig. 4). Overall, both satellite 
products were in accordance with ground measurements, although GPM 
indicated a higher consistency with rain gauge observations. For most 
extreme indices, the GPM had the R value greater than 0.7, except for 
CWD. Besides, CHIRPS showed an obvious overestimation on R50 and 
R90p, and a relatively underestimation on SDII. Among all the extreme 
rainfall indices, GPM and CHIPRS are reported to perform best on esti-
mating the R90p, where we also note a Pearson correlation of 0.945 and 

0.927, respectively. GPM and CHIRPS showed limited correlations with 
rain gauge observations on estimating CWD, and the R values were 
found to be slightly larger than 0.5 for both of them. 

Even though results from this study show some degree of bias for 
both satellite datasets on extreme rainfall prediction, this is a technical 
issue that can only be addressed by further improving the satellite-based 
products. Nevertheless, if we prove that even a slightly biased satellite- 
based rainfall product can be of use in estimating HMP thresholds, this 
could enable analyses even in ungauged regions and at a consistent 
spatial resolution. These two elements cannot be supported by rain 
gauge data because the weather station network is always irregularly 
distributed over space. 

Fig. 3. Spatial distributions of statistical metrics for daily rainfall derived from GPM (a-d) and CHIRPS (e-h) in China. Key: CC, correlation coefficient; MAE, mean 
absolute error; RMSE, root mean square error; RB, relative bias; see Table 1 for further explanations. 
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In the follow-up of this work, we will test the aforementioned hy-
pothesis by estimating thresholds of HMPs using the GPM data, which 
provided better performance in detecting the extreme rainfall events 
compared to CHIRPS. 

4.3. Current daily rainfall for HMP 

As mentioned before, any assessment based on rain gauge observa-
tions is limited to regions equipped with densely distributed weather 

Fig. 4. Density-colored scatterplots of satellite-derived extreme rainfall indices (see Table 2) versus rain gauge observations. (For interpretation of the references to 
color in this figure legend, the reader is referred to the web version of this article.) 
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stations. This is not often the case for area where HMP occurs, because of 
the mountainous landscape and the complex terrain settings. There has 
not yet been any inspection given on the satellite-derived rainfall and 
ground measurements based on the HMP locations. This study explores a 
potentially valid alternative to rain gauge data and associated un-
certainties when deriving HMP thresholds. Specifically, to investigate 
the difference between the two datasets, we assessed satellite rainfall 
products versus the grid-interpolated rain gauge rainfall estimates. 

Given that the gauges are sparsely-distributed in mountainous area, 
we applied an IDW interpolator to the ground observations and down-
sampled it over space to match the GPM resolution. The current daily 
rainfall at the HMP location was portrayed in light of the grid- 
interpolated rain gauge rainfall estimation in Fig. 5. The results indi-
cated similar spatial pattern between rain gauge and GPM-derived daily 
rainfall, although a large difference exists in absolute value between the 
two. The high rainfall value are more likely to show up in regions be-
tween longitude of 105◦ to 120◦ E and latitude of 25◦ to 35◦ N. The 
interpolated daily rainfall, estimated via rain gauge observations, were 
much higher than the values derived from GPM product. The relative 
bias (RB) between these two datasets were portrayed with colored points 
to highlight that the majority of RB values were less than 100%. The 
higher RB is homogeneously distributed in central and southern China. 
This figure shows that for the vast majority of China, the differences 
between ground measurements and satellite-based rainfall estimates are 
approximated to a constant shift, thus making the two products almost 
linearly related one another. 

4.4. Antecedent rainfall 

The rainfall distribution patterns showed a large spatial 

differentiation in China due to the complex terrain and the various cli-
matic regions. To better understand the localized causative factors for 
HMP occurrence, the antecedent rainfall with duration of 1, 2, 3, 4, 5, 6, 
and 7 days were calculated within six geomorphic-regions as well as six 
geomorphic types, respectively, and the probability density plots of 
antecedent rainfall are displayed in Fig. 6. For comparison, the daily 
rainfall for the current day of HMP is labeled as 0 days in the figure (the 
same for the following figures). Fig. 6a displays the current daily rainfall 
and antecedent rainfall related to HMP occurrences within each 
geomorphic-region. In doing so, we tested whether we could recognize 
the rainfall metric responsible for HMP occurrence, in distinct 
geomorphic-regions. Results showed that the current daily rainfall and 
the antecedent rainfall for the HMP occurrence were severe higher in the 
monsoon regions: SEM, SWM, and EP. While in NWB, most of its area is 
characterized as desert, showed the most extremely low amount of 
rainfall (lower than 50 mm) for the HMP occurrence. Moreover, the 
different geomorphic-regions displayed obviously different triggering 
rainfall patterns. 

We further analyzed the current daily rainfall and antecedent rainfall 
related to HMP occurrences according to specific geomorphic types, 
including coastal/lake plains, flood/alluvial fan, mountain slope, 
mountain valley, plain slope, and plain valley. Here, the geomorphic 
types indicate the occurrence location of HMP categorized through the 
combination of general landscapes. This comparison information is 
supposed to assist the understanding of our choice of using geomorphic- 
regions as the final input. Fig. 6b displays the summary of the triggering 
rainfall patterns for HMP within each localized geomorphic unit. The 
highest current daily rainfall was associated with coastal/lake plain, 
followed by plain slope and mountain slope. However, HMP occurred in 
flood/alluvial fan and mountain valley were more likely to be induced 

Fig. 5. Current daily rainfall (rainfall date extracted on the same date reported in the HMP catalogue) and its relative bias computed as the difference between rain 
gauge (blue) and GPM (green) data. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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by a smaller amount of rainfall compared to the other geomorphic types. 
The figure also reveals different levels of variance for antecedent rainfall 
among the geomorphic types. For coastal/lake plain, the 1 to 7 days 
antecedent rainfall are all relative low, which are mostly lower than 50 
mm. While, in plain slope, the continuously rainfall increase in at most 
4-day before the occurrence of HMP together with the merely rainfall 
accumulation in the more previous stage was detected. 

Fig. 7 displays the probability density plots of antecedent rainfall. 
The antecedent rainfall in SEM region can reach up to 700 mm, followed 
by SWM with a range of 0 to 500 mm. In EP, NCP, and TP regions, the 
maximum antecedent rainfall was detected to be less than 300 mm. 
However, the antecedent rainfall related to HMP initiation was merely 
less than 100 mm in NWB, which is recognized as the driest region in 
China. The probability density plots in Fig. 7 also illustrated a large 
variability of rainfall distributions across geomorphological sectors 
namely, from unimodal to bimodal as well as near-Gaussian to heavy- 
tailed shapes. For most of geomorphic-regions, the highest probability 
appeared between 0 to 100 mm. Notably, the 5 or more days antecedent 
rainfall in SEM and SWM indicated a second peak with the highest 
probability show up at 200 mm and 150 mm (Fig. 7b and Fig. 7e), 
respectively. 

4.5. Rainfall thresholds for HMP 

We then plot the current daily rainfall and antecedent rainfall series 
for HMP and non-HMP separately with the purpose of graphically dis-
tinguishing between the two situations. The most obvious difference in 
precipitation regimes between HMP presence (shown in orange) and 
absence (shown in green) conditions can be seen in the geomorphic- 
regions of EP, SEM, and SWM (Fig. 8a, Fig. 8b, and Fig. 8e). Here the 
interquartile ranges (the distance between the 75th and the 25th per-
centiles) of the presence and absence cases do not overlap. As for the 
NCP, NWB, and TP regions (Fig. 8c, Fig. 8d, and Fig. 8f), the situation is 
more complex. Here the distinction between rainfall amounts and the 
resulting presence or absence of HMP not straightforward because the 
main bulk of the rainfall distributions does overlap. This may imply, 
already from a simple graphical summary that a better performance of 
rainfall thresholds might be achieved for EP, SEM, and SWM rather than 
for NCP, NWB, and TP. Before testing this consideration through specific 
thresholds, we also included a complementary threshold-independent 
metric in our workflow. Specifically, we calculated the ROC curves 
(Receiver Operating Characteristic; Fawcett, 2006; Hosmer and Leme-
show, 2000; Amato et al., 2019) for each geomorphic-region. A ROC 
curve is a common performance evaluation tool for binary classifiers 
(Lombardo et al., 2020). The vector of presence/absence instances is 
compared to a vector of continuous values for which a large number of 

Fig. 6. Rainfall estimates extracted for each HMP and within each geomorphic types under consideration. The color scheme indicates the timespan considered for 
rainfall analysis: the rainfall in day of the HMP occurrence is indicated in purple; the other colors are associated with antecedent precipitation aggregated from 1 to 7 
days before the date of the HMP occurrence. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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thresholds is tested. For each considered threshold, the TPR and the FPR 
are computed, becoming the coordinate pair of each point in a ROC 
curve. As a result, the integral of this curve (or AUC for Area Under the 
Curve) measures the ability of a continuous estimate (here our rainfall) 
to match the presence/absence HMP conditions. AUC values nearing 1 
are considered optimal and values nearing 0.5 indicate quite poor results 
(Lombardo and Mai, 2018). 

In Fig. 9, with the exception of SWM, we show that the largest AUC 
values are achieved by considering the rainfall discharged the same day 
of the HMP occurrence. As for the SWM region itself, the best perfor-
mance is achieved by considering one day before the event. This indi-
cation is quite reassuring in light of the following consideration. In 
rainfall threshold studies applied to landslides, a large antecedent period 
before the actual mass movement is a robust choice because the increase 
in pore pressure required to trigger the failure mechanism may actually 
span over several days, especially when the sliding surface is deep. 
However, for shallow processes such as those featured in our HMP 
catalogue, we expect the slope response to act on a much narrower time 
window. 

Having tested the efficiency of satellite rainfall estimates in dis-
tinguishing HMP and non-HMP conditions over China, both graphically 
and via threshold-independent performance metrics, in the remainder of 
the manuscript we will focus on testing specific rainfall thresholds. To do 
so, we tested thresholds corresponding to five quantiles (τ1 = 0.025,
τ2 = 0.25, τ3 = 0.50, τ4 = 0.75 and τ1 = 0.975) and the mean of the 
rainfall distribution for each of the six geomorphic-regions of China. For 
each of these six thresholds we then computed: sensitivity, precision, 
specificity, and accuracy, based on a classic contingency matrix (Rah-
mati et al., 2019). On the basis of the Pareto Efficiency criterion (see 
Tegmark and Wu, 2020, for further details), when both the higher TPR 
and lower FPR reach their optimal values, then the improvement of one 

might result in the worsening of the other (Vrugt et al., 2003). In this 
work, to optimize the statistics indices, the satisfactory result are ob-
tained when the threshold was set as the upper quantile (τ4 = 0.75) or 
mean of the rainfall distribution (Fig. 10). More specifically, in SEM and 
SWM, the threshold set at τ4 = 0.75 or mean value showed the notable 
difference between HMP and non-HMP with the four statistics indices, 
all greater than 0.8. The cutoffs worked best with 1-day antecedent 
rainfall for estimating rainfall thresholds in SEM and SWM. For EP, NCP, 
and NWB, the best performance for distinguishing HMP was found at 
τ4 = 0.75 or mean of current daily rainfall with the acceptable values of 
accuracies. 

The most important parameter out of the four performance metrics is 
the sensitivity because it indicates the rate with which a binary classifier 
is able to estimate the presence conditions, or the HMP in our case. 
Therefore, we selected the 75% percentile or mean as our best rainfall 
threshold because they actually produce the highest sensitivity results as 
well as the acceptable other three indicators. In light of this consider-
ation, the higher specificity and accuracy obtained by using larger 
thresholds such as the τ1 = 0.975 has less priority and we still favored 
the cutoff set at τ4 = 0.75 (or the mean itself). 

To further clarify this concept, we use the HK skill score to directly 
interpret the performance of the rainfall thresholds (Fig. 11). When 
shifting the cutoff along with the distribution of HMP and non-HMP, for 
most geomorphic-regions, the best performance among all these com-
binations of antecedent rainfall sequence and quantiles are detected 
with τ4 = 0.75 and mean values. Meanwhile, the increase of the ante-
cedent rainfall duration results in a general worsening of the HK skill 
scores. In SEM and SWM, the variance of HK skill score is not obvious, 
while the difference is much more evident in NCP and NWB. TP shows 
an exception with the best performance detected with 50% percentile of 
current daily rainfall (HK  = 0.37). 

Fig. 7. Probability density plot of the antecedent rainfall of HMP in each of the six geomorphic-regions. Key: EP, eastern plains; SEM, southeastern hills; NCP, north- 
central plateaus; SWM, southwestern mountains; NWB, northwestern basins; TP, Tibetan Plateau. 
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Fig. 8. Boxplot of the antecedent rainfall for HMP (orange bars) and non-HMP (green bars) events. Key: EP, eastern plains; SEM, southeastern hills; NCP, north- 
central plateaus; SWM, southwestern mountains; NWB, northwestern basins; TP, Tibetan Plateau. (For interpretation of the references to color in this figure 
legend, the reader is referred to the web version of this article.) 

Fig. 9. ROC curves for the antecedent rainfall of HMP and non-HMP events, for the six geomoprhological regions (key: EP, eastern plains; SEM, southeastern hills; 
NCP, north-central plateaus; SWM, southwestern mountains; NWB, northwestern basins; TP, Tibetan Plateau). The coloured values are the AUC values for 
each duration. 
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Following the aforementioned criteria, the rainfall thresholds dis-
tinguishing between HMP and non-HMP were obtained accordingly 
(Table 4). Here, the final choices of rainfall thresholds in each 
geomorphic region were highlighted with red font and the values with 
accuracy values greater than 0.7 were labeled with bold. Ultimately, we 

obtained the rainfall thresholds with well performance in EP, SEM, and 
SWM. In SEM, the 1-day antecedent rainfall reach up to 22.9 mm was 
considered to reach the low triggering condition for HMP. In SWM, the 
critical value was detected as the 1-day antecedent rainfall of 15.5 mm. 
In EP, a HMP could be triggered when the rainfall in the current day 

Fig. 10. Classification statistics matrix computed on the basis of rainfall thresholds (columns) selected by using current daily rainfall and antecedent rainfall 
sequence (rows). 

Fig. 11. The validation HK skill score on rainfall thresholds selection by using current daily rainfall and antecedent rainfall sequence.  
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reaches 7.1 mm. The relationships between accumulative rainfall and 
duration shown in Fig. 12 presented the reference fitting lines for HMP 
triggering conditions in each geomorphic-region, and could be consid-
ered preliminary rainfall threhsolds. The equations obtained in SEM, 
SWM, EP, and TP showed a more reliable benchmark line. While, the 
low thresholds detected in NCP and NWB might partially due to the 
arid/semi-arid climatic conditions, which should be discussed with the 
further effort. 

5. Discussions 

5.1. Comparison with previous studies 

The performance of GPM and CHIRPS have been evaluated via taking 
rain gauge observations as the benchmark over mainland China in 
several previous researches (e.g., Tan and Duan, 2017). Overall, GPM 
outperformed CHIRPS over the majority of the study area, except for the 
most northeast China. Despite the higher spatial resolution (0.05◦×

0.05◦) of CHIRPS, it indicated no big improvements in detecting the 
extreme rainfall events. As for GPM, the underestimation detected from 
daily rainfall may partially be attributed to the coarser spatial resolution 
(Khan and Maggioni, 2019). In spite of this, GPM showed the best per-
formance in southern China, where conversely CHIRPS reported the 
most severe bias (Shen et al., 2020). Besides, GPM performed well for 
the detection of extreme events, such as R90p (see Fig. 4), indicating its 
applicability for capturing the rainfall responsible for HMP initiation. 
Smith et al. (1996) also observed that the intensity of some concentrated 
rainfall events can’t be catched even by relatively dense rain gauge 
networks. For the specific analysis on HMP, which concentrated mostly 
in humid regions during the rainy season, it is a good choice to introduce 

the GPM-derived rainfall indices into prediction on HMP. As an example, 
Tang et al. (2017) observed that the performance of GPM IMERG Late 
run are the closest to ground observations and recommended it in 
capturing HMP by taking the events of 2016 Summer in South China as 
an example. Similarly, Ma et al. (2020a) assessed the performance of 
GPM products in HMP warning in Yunnan province of China, and they 
confirmed that GPM IMERG Final run could contribute to improving the 
accuracy of HMP warning in their specific study area. Despite that the 
ability of satellite rainfall products on predicting HMP has been tested 
by researchers in several regions of China, these efforts either focus on a 
short time slice, or put an emphasis on the specific region. In this study, 
we gave the first try on deriving the rainfall thresholds by taking full use 
of the historical HMP records on a national scale. The empirical, sta-
tistical rainfall thresholds derived from antecedent rainfall series of 
HMP and non-HMP events represent the minimum rainfall conditions 
above which new HMP are likely to occurr, and could be considered as a 
preliminary reference. 

In this work, the empirical rainfall triggering conditions for HMP 
within different geomorphological settings were defined taking full 
advantage of the duration of daily rainfall and a series of statistical 
cutoffs. The results suggested that the combination of these two pa-
rameters (duration and cutoff) should be adjusted with the shifting of 
background settings accordingly. The bimodal of the probability density 
plots displayed in Fig. 6b and 6e illustrated the apparent higher value 
detected in the longer period of accumulative rainfall. In regions located 
in semi-humid or semi-arid areas i.e. NCP, NWB, and TP, the antecedent 
rainfall with different durations showed little difference (Fig. 6c, 6d, and 
6f). The most proper duration of antecedent rainfall for HMP occurrence 
in SEM and SWM were determined as 1 day, while for the other regions 
were defined as the current daily rainfall (red values in Table 4). This 

Table 4 
Rainfall threshold values (τ4 = 0.75 without background or mean value with grey shade) for HMP initiation in six geomorphic-regions. Key: EP, eastern plains; SEM, 
southeastern hills; NCP, north-central plateaus; SWM, southwestern mountains; NWB, northwestern basins; TP, Tibetan Plateau. The final choices of rainfall thresholds 
in each geomorphic-region were highlighted with red font.  

Fig. 12. The rainfall thresholds for HMP initiation for the six geomorphic-regions. Dotted curves and equations in grey indicate not reliable thresholds.  
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could partially be attributed to that HMP occurrences in different 
geomorphic-regions encompass the diversity of meteorological and hy-
drological processes. Miao et al. (2016) defined and run an hydrological 
model based on geomorphological properties in four mountainous 
catchments ranging from humid to arid regions. They pointed out that in 
humid regions triggering conditions are related to long-time cumulative 
rainfall whereas in semi-humid and semi-arid regions they depend more 
on short-time rainfall events. Our findings shown in Fig. 6, 7, and 
Table 4 are in agreement with this argument in a broader context. 

Besides, the traditional empirical method for the prediction of HMP 
initiation has also be tested by researchers. Here, we compared our 
findings with the results detected by He et al. (2020) and Ma et al. 
(2020b). The former proposed two groups of rainfall thresholds: the 
cumulated event rainfall duration thresholds (E-D) by using merged and 
CMORPH rainfall products. For instance, the E-D in the rainy season in 
their work were defined as E = 0.86D0.48(1h⩽D ≤ 47h) and E =

0.18D1.07(48h⩽D⩽602h). Moreover, Ma et al. (2020b) proposed a 
rainfall trigger index for selecting early warning methods in the light of 
trigger factors. They obtained the fitting relationship between rainfall 
intensity and duration (I-D): I = 16D− 0.7, for Yunnan province (located 
in Southwest China). Similarly, we achieved the relationship between 
accumulative rainfall and duration indicating that E = 0.91D0.78 in the 
same region (region SWM), as well as the targeted relationships in the 
other geomorphic-regions across the entire Chinese territory (see 
Fig. 12). However, it should be acknowledged that the thresholds 
defined by He et al. (2020) are related only to landslides initiation, and 
the work by Ma et al. (2020b) focused purely on the flash floods in a 
small sector of China, while the thresholds defined in our work are 
related to the wide spectrum of all hydro-morphological processes 
(HMP) across the entire Chinese territory. Therefore, a direct compari-
son among them could be not very rigorous, also because the methods 
used for their calculations are different. In particular, the method here 
proposed is based on the cutoff between HMP and non-HMP triggering 
conditions and on the HK discriminant, so guaranteeing a better 
compromise between correct and incorrect predictions. However, if we 
compare the threshold values of a cumulated rainfall with a duration of 
24 h, we observe that the values here calculated for all geomorphic- 
regions (only reliable thresholds) are lower than the value obtained by 
Ma et al. (2020b) for a sector of China and by far higher than the value 
obtained by He et al. (2020) for the whole Chinese territory. 

5.2. Uncertainties and limitations 

The rapid rise and the continuous update of satellite rainfall products 
offer interesting chances for hydro-morphological studies (Hapuar-
achchi et al., 2011) and for the definition of triggering conditions of geo- 
hydrological and hydro-morphological processes. This work took full 
advantage of these challenges by combining satellite-based datasets 
with geomorphological settings as input. Satellite-based rainfall esti-
mates offer good solutions, with pros and cons (e.g., significant esti-
mation uncertainties in some cases), to the coarse density of ground 
measuring instruments at the national to continental to global scale 
(Nikolopoulos et al., 2017). In some cases, e.g. in data scarce regions, 
satellite rainfall products are the only available data source. The use of 
satellite rainfall products is becoming very popular among scientists and 
technicians working on geo-hydrological and hydro-morphological an-
alyses, and their resolution is surely a relevant issue when rainfall es-
timates are used in such analyses. However, in the present case (i.e. the 
whole Chinese territory) the grid resolution is lower than the average 
reference area of each rain gauge included in the available network. 

Commonly, satellite-based rainfall products can provide pixel-level 
spatial average measurement results (compared to a punctual larger 
spatial rainfall intensity retrievable from rain gauges). As also stated by 
Brunetti et al. (2018), such underestimation could result in bias for 
rainfall thresholds, e.g. low threshold values as some derived in this 

work. The coarse spatial resolution of satellite rainfall products would 
also lead to the restricted depiction on the spatial heterogeneous rainfall 
patterns (Chikalamo et al., 2020). However, the rainfall product per-
formance in terms of its ability to detect rainfall events leading to HMPs 
is not affected, in particular if the products are not biased in space and 
time (Brunetti et al., 2018), as the case of used products. 

Concerning rainfall thresholds, those defined in this work should also 
be considered with respect to the associated topographic attributes, soil 
types, and vegetation coverage to getting the more robust prediction. 
The historical HMP inventory used in this study provided a large amount 
of records for the empirical estimation, however, still far from 
completeness, which could also lead to uncertainties. Another source of 
uncertainties in the thresholds is to be found in the coarse temporal 
resolution of daily rainfall data of some products (Gariano et al., 2020). 
Additionally, the statistically-based method proposed in this study did 
not pay attention to the possibility of temporal non-stationary inherited 
from climate change (e.g. Seidou et al., 2012; Salas and Obeysekera, 
2014). Finally, we estimated the rainfall thresholds over a large area, 
which might result in the uncertainties due to the complex environ-
mental settings. However, our main aim was to provide some new 
insight into assessing the rainfall triggering conditions by taking full 
advantage of satellite rainfall products together with long-term histori-
cal HMP records. We suggested to perform this practically easy and 
straightforward approach within a catchment scale to obtain and update 
the rainfall triggering conditions with a finer spatio-temporal resolution. 

6. Conclusion 

In this work, an empirical, statistically-based method to detect the 
rainfall conditions for the initiation of hydro-morphological processes 
(HMP), based on satellite rainfall datasets and long-term historical 
catalogue is proposed. The quantile relationship of the antecedent 
rainfall for HMP/non-HMP were established for detecting the reliable 
rainfall triggering conditions. The results verified the ability of satellite- 
derived rainfall indices to provide a preliminary reference for HMP 
prediction. We list the main conclusions drawn from this work below:  

1. GPM outperformed CHIRPS products at deriving the daily rainfall by 
setting ground rain gauge observations as reference. The best per-
formance of satellite rainfall products were detected in southern 
China, and higher bias were prone to show in arid regions. These two 
products both had a higher consistency with gauge measurements for 
extreme indices, with the highest accuracy for R90p. 

2. Current daily rainfall calculated via GPM indicated the severe un-
derestimation versus the grid-interpolated rain gauge rainfall esti-
mates on capturing HMP. The high value of relative bias between 
these two datasets is homogeneously distribution in spatial.  

3. The rainfall triggering conditions and the preliminary rainfall 
thresholds for HMP initiation were determined by using a series of 
antecedent rainfall within different geomorphic-regions. The cutoffs 
were setting as τ4 = 0.75 and mean value of 1-day antecedent rain-
fall in SEM and SWM, respectively. While, the τ4 = 0.75 or mean 
values of the current daily rainfall work better in EP, NCP, and NWB. 

We maintain that the thresholds here defined can provide good re-
sults in an operational application, for different reasons: first, the 
applied method, based on the cutoff between HMP and non-HMP con-
ditions and on the HK discriminant, guarantees a good compromise 
between correct and incorrect predictions - this is not the case of the 
other mentioned studies in China; second, the use of daily rainfall data to 
reconstruct triggering rainfall events can produce high uncertainties in 
the threshold parameters - this can be overcome when using fixed 
duration values, as in the present case; third, the validity range of the 
thresholds here defined is up to 7 days, which is a reasonable duration of 
a rainfall event responsible for the triggering of a hydro-morphological 
process - on the contrary, longer duration ranges, as defined in the other 
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works, include rainfall events too long for the initiation of a shallow 
landslide or a flash flood. Finally, the here defined thresholds refer to a 
catalog that encompasses the whole spectrum of phenomena defined as 
hydro-morphological processes; this can represent another strength in 
an operational application, given that the occurrence of different phe-
nomena triggered by rainfall (e.g. shallow landslides, debris flows, flash 
floods) can have similar effects on an element at risk (e.g. population, 
properties, infrastructures); therefore, their concurrent prediction that 
can be achieved with the proposed models is useful for civil protection 
purposes. 

This work made an attempt on detecting the rainfall triggering 
conditions of HMP within different geomorphological settings, which 
has not yet been implemented on a national scale in China. This could be 
utilized as a guideline for HMP risk management in China. A potential 
improvement of our work might be a further downscaling of the analysis 
and the spatial distribution of the rainfall thresholds, which currently 
are only related to six, wide geomorphic-regions. Moreover, the bias and 
uncertainties might also be discussed in terms of the complex localized 
terrain and climate. We addressed that the absolute rainfall value ob-
tained from multi-sources should not be compared directly. The method 
for determining rainfall triggering conditions from satellite rainfall 
products also ought to be applied in similar contexts. 
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