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Abstract
Background tropospheric ozone (O3) is increasing particularly over China and India, and becomes
a major threat to Asian forests. By using the coupled WRF-Chem model at high spatial resolution
(8 km) over Asia in 2015, we showed that both standards AOT40 (European) and W126 (United
States) underestimated the O3 risk to deciduous forests and overestimated it to evergreen forests
compared to the biologically based metric POD1. Both metrics AOT40 and W126 showed different
spatial distribution and exceedance extent with respect to POD1. We found very high potential of
O3 impacts on deciduous forest growth in Asia, while potential O3 impacts on evergreen forest
types were lower. The most limiting factors were light availability, soil water content and air
temperature (65%, 29% and 6%, respectively), making this region of the globe at high O3 risk for
deciduous species and at medium O3 risk for evergreen species. For the first time, the O3 risk to
Asian forests was quantified at high spatial resolution; and our results suggested: (i) a relevant
overestimation of O3 risk to evergreen forests when using AOT40 and W126 relative to the more
biologically based POD1 metric; and (ii) a significant underestimation of O3 risk to the boreal
deciduous forests when using AOT40 and W126 relative to POD1 because of stomatal aperture
permissive condition.

1. Introduction

Tropospheric ozone (O3) is a seriously damaging
air pollutant affecting human health (World Health
Organisation 2013, Fu and Tai 2015, Cohen et al
2017), materials (Screpanti and De Marco 2009)
and vegetation (Lu et al 2018, Mills et al 2018).
Despite effective control efforts and legislation to
reduce O3 precursors emissions, such as nitrogen
oxides (NOx) and non-methanic volatile organic
compounds (NMVOCs), surface O3 pollution is still
a major air quality issue over large regions of the
globe (Sicard et al 2017, Gaudel et al 2018), and it is
expected to increase in the future because of increas-
ingmethane emissions (Sicard et al 2017) and climate
change (Anav et al, 2019). The high O3 concentra-
tions found over China and India megacities pose a
major threat to food production and other ecosystem
services in Asia (Tai et al 2014, Feng et al 2019, Zeng
et al 2019).

Several studies reported the decrease of surfaceO3

mean concentrations in United States (Lefohn et al
2010, Cooper et al 2012, Lin et al 2017) and West-
ern Europe (Sicard et al 2013, Paoletti et al 2014, EEA
2016, Yan et al 2019). In contrast, in the last dec-
ades Asia became the world’s largest emitter of O3

precursors (Hoesly et al 2018). In particular, China
emits 30% and 19% of the global emissions of NOx

and NMVOCs, respectively, followed by India with
13% and 11% (Hoesly et al 2018). Some region of
East Asia have experienced decreases of O3 precurs-
ors emission in recent years such as Beijing, the Pearl
River Delta, Taiwan and Japan, and additional work
is required to understand the response of surface
O3 (Duncan et al 2016, Krotkov et al 2016, Liu and
Wang 2020). Recent analyses of Chinese O3 monit-
oring stations (for the years 2015 and 2016) showed
that O3 levels were well above the threshold set
to protect forests (Lu et al 2018, Feng et al 2019).
All these considerations suggest that O3 impacts on
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vegetation is a relevant issue in Asia and thus warrant
more investigations (Oksanen et al 2013, Feng et al
2015).

Due to the lack of observations with sufficient
spatial and temporal coverage, especially in South
Asia, many studies have used global and regional
scale models to supplement the missing informa-
tion from in situmeasurements (Kunhikrishnan et al
2006, Engardt 2008, Sheel et al 2010). In the past
decades, the important role of numerical models
has been increasingly recognized and numerous air
dispersion or air quality models were developed at
various scales to assist in understanding, predicting
and controlling air pollution (Lamarque et al 2013,
Miranda et al 2015). These models were successfully
applied to air pollution investigation and manage-
ment in populated cities and regions worldwide (e.g.
Reis et al 2005, Calori et al 2006, Haase et al 2014,
Anav et al 2016).

The current O3 pollution levels may lead to
adverse effects on forest trees in East and Southeast
Asia (Lu et al 2018) where high species richness is
present (Kier et al 2009). Although some informa-
tion on the O3 effects on plants species in East Asia is
available, the pollution situation of most Asian coun-
tries is not yet well clarified (Koike et al 2013). Main
reason is the need of high-resolution regional model,
to provide better estimates of air pollution with a
lower bias and the second one is the low availabil-
ity of tropospheric air quality measurements, needed
for model validation. Indeed mostly of the modelling
information available for Asia are from global mod-
els at horizontal resolution of e.g. ~50 km (Engardt
2008). Several air quality or chemical transport mod-
els (CTMs) have been developed and ran to repres-
ent the complex mechanisms involved in transport,
transformation and deposition processes in East Asia
(Han 2007). The CTMs were applied to study air
pollution for China as a whole (Hu et al 2016, Li
et al 2016) and for several Chinese regions (Wang
et al 2012, Liao et al 2015). Hu et al (2016) applied
the Community Multi-scale Air Quality (CMAQ)
and Weather Research Forecasting (WRF) modelling
system to predict air pollutant concentrations over
China. The results showed an overestimation of 1 h
and 8 h O3 averages, probably due to the coarse hori-
zontal resolution (36 km). A modified WRF-CMAQ
modelling system was used to simulate O3 concen-
trations in winter (December 2014–February 2015)
and summer (June–August 2015) for the Sichuan
Basin (Qiao et al 2019). Most of the basin was found
to exceed the World Health Organisation (WHO)
guidelines for 8 h O3 on >70% of winter days and
>40% of summer days. The 1 h and 8 h O3 aver-
ages were both greatly over-predicted in winter, but
the model performance was acceptable in summer,
when the photochemical production of O3 due to
anthropogenic emissions should be strongest in the
basin (Qiao et al 2019).

The availability of station data used to validation
chemistry models was a main issue in this area due to
the scarcity of monitored information (Li et al 2007).
Recently, few authors have validated CTMs results
with in situ and satellite observations (e.g. Kumar et al
2012, Sharma et al 2016, Sicard et al 2020). As an
example, the WRF-CMAQ model was used in India
with different spatial resolution for emissions and
meteorological inputs (e.g. 36 km) to assess source
and species sensitivities of ground-level O3 concen-
trations (Chatani et al 2014, Sharma et al 2016). Sim-
ulations of O3 and its precursors have been conduc-
ted using the updated version-2 (HTAP-v2) emission
inventory and the offline global chemistry transport
model MOZART-4 (Surendran et al 2015), showing
reasonable model performance, but some disagree-
ment in O3 concentrations and seasonal variation
over South Asia were still evident (Surendran et al
2015).

Forests in Asia are important for carbon sequest-
ration (Fang et al 2001, Yu et al 2014) and biod-
iversity conservation (Myers et al 2000). China has
been implementing the most ambitious afforestation
programs in the world (Zhang et al 2017). Thus, it is
important to estimate O3 impacts on forest ecosys-
tems in an area characterized by many different cli-
matic conditions and plant species (Xu et al 2010).

Different criteria have been developed to define
O3 risk assessment for forests (Lefohn et al 2018).
A concentration-based metric, i.e. AOT40 defined
as the sum of hourly O3 concentration exceeding
40 ppb across daily and seasonal time windows, is
currently used in the European legislation for O3

risk assessment (CLRTAP 2017). The second met-
ric, i.e. PODY, developed more recently in Europe,
is based on phytotoxic O3 dose entering the leaves,
depending on the stomatal aperture (Paoletti and
Manning 2007), with an hourly threshold Y that is
set to 1 nmol m−2 s−1 for forests (CLRTAP 2017).
The two metrics showed inconsistent spatial (Anav
et al 2016) and temporal patterns (De Marco et al
2015) from local to regional scales over Europe. The
current standard recommended in United States for
forest protection is W126 (US Federal Register 2015),
defined as the sum of the hourly O3 concentrations
during the growing season, and each concentration
is weighted by a sigmoidal function to assign greater
emphasis to the highest concentrations (Lefohn et al
2018). Ozone critical levels (CLs) were developed
for the three metrics, intended as dose (POD1) or
concentration below which no effect on forests is
expected (Büker et al 2015), that showed a differ-
ent sensitivity between evergreen (lower) and decidu-
ous species (higher) (Sicard et al 2016). Information
on PODY in Asia is still limited to specific coun-
tries by modelling approaches (e.g. Japan, Hoshika
et al 2017) or specific locations with poplar only (Hu
et al 2015, Shang et al 2017). Tang et al (2013) eval-
uated the magnitude and distribution of O3-induced
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wheat production loss in China and India using flux-
based methods (POD6) and compared different O3

dose metrics (AOT40 and POD6) with a resolution
of 40 km. At the moment, similar risk assessment is
not available for forests in the same region. There-
fore, there is an urgent need to perform regional sim-
ulations of POD1 to provide high spatial resolution
inputs for a more realistic O3 risk assessment for
forests over Asia.

The main aims of the present study were to (i)
evaluate magnitude and distribution of O3 risk to
Asian forests at high spatial resolution, by compar-
ing concentration-based (AOT40 and W126) and
uptake-based (POD1) metrics; (ii) assess the spatial
consistency betweenmetrics in order to identify areas
where they disagree; (iii) quantify the percentage of
the Asian domain exposed to O3 levels exceeding the
thresholds of protection for evergreen and deciduous
forests in northern, continental and (sub)tropical cli-
mates; and (iv) identify the most important climate
constraints affecting the stomatal uptake of O3 by
Asian forests. We hypothesized that AOT40, W126
and POD1 are uncoupled, and that deciduous forests
are at higher risk than evergreen forests, as suggested
by a meta-analysis of experimental results in Asia (Li
et al 2017).

2. Methods

2.1. WRF-Chemmodel
Weused theWeather Research and Forecastingmodel
(WRF-Chem, v3.9), a coupled climate-chemistry
model (Grell et al 2005, Skamarock andKlemp 2008),
to reproduce the regional climate and surface O3

concentrations over South-Eastern Asia. The model
domain (figure 1) is projected on a lambert conformal
map with a horizontal resolution of 8 km, which
allows to simulate atmospheric chemical and phys-
ical processes at fine spatial scale. The entire year 2015
was simulated, with a spin up of 1 month (1st–31st
December 2014).

The initial and boundary conditions for met-
eorology, updated every 3 h, were retrieved from
the European Centre for Medium-range Weather
Forecast ERA5 product (C3S-ERA5 2017), whose
outputs are available with a horizontal resolution
of ~31 km. Similarly, chemical boundary condi-
tions were provided from MOZART-4 (Model for
OZone And Related chemical Tracers) every 6 h
(Emmons et al 2010) with a horizontal resolution
of ~180 × 240 km. We used the MOZART scheme
to simulate atmospheric chemistry, the MEGAN
(Model of Emissions of Gases and Aerosols from
Nature)model to estimate biogenic emissions (Guen-
ther et al 2012), while fire emissions were taken
from the FINN (Fire INventory from NCAR, v1.5)
inventory (Wiedinmyer et al 2011). Monthly varying
anthropogenic emissions were based on the EDGAR-
HTAP (Emission Database for Global Atmospheric

Research for Hemispheric Transport of Air Pollu-
tion, v2.2) inventory (Janssens-Maenhout et al 2015)
which is available on a grid of ~10 × 10 km for
the year 2010. Ozone concentrations obtained by
the model were considered as top of the forest can-
opy, because the first layer of WRF/Chem is around
30 m height. The model validation is not showed in
this manuscript, but is fully reported by Sicard et al
(2020).

2.2. Definition of the forest types
The dominant forest distribution (figure 1) was
obtained by merging the USGS landcover distribu-
tion and the Koppen climate, following the meth-
odology proposed by Anav et al (2016). This allows
using the vegetation definition and the paramet-
erizations described in chapter 3 of the Mapping
Manual (CLRTAP 2017) and computing the POD1
and its CL derivation. The six categories of forests
identified are boreal deciduous (BD), boreal ever-
green (BE), continental deciduous (CD), contin-
ental evergreen (CE), (sub)tropical deciduous (TD),
and (sub)tropical evergreen (TE) species. For boreal
and continental types, we used the parameteriza-
tion developed by CLRTAP (2017) for beech/birch
(deciduous) and Norway spruce (evergreen). Due to
the lack of specific tropical and sub-tropical forest
parameterization in CLRTAP (2017) and in the sci-
entific literature, we decided to join tropical and sub-
tropical forest species in a single category and approx-
imate the (sub)tropical species toMediterranean spe-
cies. Indeed, the Koppen classification includes both
sub-tropical and Mediterranean climates into the
same category C of temperate climates (Kottek et al
2006). For the (sub)tropical type, we thus selected the
parameterization suggested forMediterranean condi-
tions (CLRTAP 2017) for deciduous oaks (TD) and
evergreen oak (TE).

2.3. Estimation of AOT40,W126 and POD1metrics
AOT40 (expressed in ppm h) was computed accord-
ing to the following formulation (CLRTAP 2017), i.e.
as the sum of the hourly exceedances above 40 ppb
over the time window between start date of the grow-
ing season (SGS) and end date of the growing season
(EGS) according to figure 2, during daylight hours:

AOT40=
EGS
∫

SGS
max([O3]− 40,0)dt (1)

where [O3] is the hourly O3 concentration (ppb)
and dt is the time step (1 h). The function ‘max-
imum’ ensures that only values exceeding 40 ppb are
included.

The W126 exposure index (expressed as ppm
h) is a non-threshold index that is described as
the sigmoidal weighting sum of hourly O3 concen-
trations recorded during specified daily and sea-
sonal time windows, where each hourly O3 value is
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Figure 1. Classification of forest types of Asia, according to the parameterization in CLRTAP (2017). 1= Boreal Deciduous (BD);
2= Boreal Evergreen (BE); 3= Continental Deciduous (CD); 4= Continental Evergreen (CE); 5= (Sub)tropical Deciduous
(TD); 6= (Sub)tropical Evergreen (TE). Details on the parameterization are in the text. White color represents grid points
without forest cover, and grey color is used outside the domain.

Figure 2. Day of the year (DOY) for start of the growing season and end of the growing season over Asian forests. White color
represents grid points without forest cover, and grey color is used outside the domain.

given a weight that increases from zero to one with
increasing value (Lefohn et al 2018) and is defined as
follows:

W126=ΣWi ×Ci (2)

Wi =
1[

1+M× exp
(
−A× Ci

1000

)] (3)

whereM = 4403, A = 126, and Ci is the hourly aver-
age O3 mixing ratio in ppb. Further details about the

index are available in Lefohn et al (2018). For consist-
ency W126 and ATO40 were cumulated during the
same daylight hours and growing season.

For the PODY, we applied a threshold Y of
1 nmol m−2 s−1 for consistency with the approach
recommended by CLRTAP (2017) for forest protec-
tion; the POD1 was computed as follows (Simpson
et al 2007, Tuovinen et al 2007, Büker et al 2015,
CLRTAP 2017):

POD1=
EGS
∫

SGS
max

(
Rc

Rb +Rc
× gsto × [O3]− 1, 0

)
dt

(4)
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where dt is 1 h, [O3] is the hourly O3 concentrations
(ppb), Rb is the quasi-laminar resistance (s m−1), Rc

is the leaf surface resistance (s m−1), and gsto is the
hourly value of stomatal conductance to O3 (mmol
O3 m−2 PLA s−1, where PLA is the Projected Leaf
Area) computed as following.

gsto = gmax ∗ fphen ∗ flight ∗max(fmin, ftemp ∗ fVPD ∗ fSWC)
(5)

where gsto is the actual stomatal conductance and gmax

is the maximum stomatal conductance of a plant spe-
cies (mmol O3 m−2 PLA s−1) expressed on a projec-
ted total leaf surface area. The functions flight, ftemp,
fVPD, and are the variation in the maximum species-
specific stomatal conductance gmax with photosyn-
thetically flux density at the leaf surface (PPFD µmol
photons m−2 s−1), surface air temperature (T, ◦C),
vapor pressure deficit (VPD, kPa), and volumetric
soil water content (SWC, m3 m−3), respectively. The
function fmin is the minimum stomatal conductance.
These species-specific functions vary between 0 and 1,
with 1meaning no limitation to gsto, and are expressed
as CLRTAP (2017):

flight = 1− e(−lighta×PPFD) (6)

ftemp=

(
T−Tmin

Topt −Tmin

)
∗

( Tmax −T

Tmax −Topt

)(
Tmax−Topt
Topt−Tmin

)
(7)

fVPD

=min{1,max [fmin,

×
(
(1− fmin) ∗ (VPDmin −VPD)

VPDmin −VPDmax

)
+ fmin

]}
(8)

fSWC =min

[
1,max

(
fmin,

SWC−WP

FC−WP

)]
(9)

where lighta is a dimensionless constant, PPFD is
hourly photosynthetic photon flux density, Topt,
Tmin, and Tmax represent the optimum, minimum,
and maximum temperature for gsto, VPDmin and
VPDmax are minimum and maximum VPD for gsto,
and WP and FC are the soil water content at wilting
point and field capacity, respectively (Anav et al 2016,
CLRTAP 2017).

In addition, fmin is the species-specific fraction of
gmax and fphen, i.e. the phenology of vegetation, is used
to compute the duration of the growing season dur-
ing which plants can uptake O3. In detail, we used
the seasonal variation of third generation Leaf Area
Index, i.e. bi-weekly LAI3g data with ~8 km of spatial
resolution (Zhu et al 2013) to define the start of the
growing season (SGS) and end of the growing season
(EGS) (figure 2), as described by Anav et al (2018).

2.4. Calculation of CL exceedances and biomass
losses
CLs are defined as ‘concentrations, cumulative expos-
ure or cumulative stomatal flux of atmospheric pol-
lutants above which direct adverse effects on sensit-
ive vegetation may occur according to present know-
ledge’ (CLRTAP 2017). The parameter usually eval-
uated for estimating such adverse effect on forests
is a 4% reduction in biomass except for evergreen
species where the biomass reduction is set to 2%
(CLRTAP 2017). Exceedances of O3 CL were calcu-
lated for the three metrics AOT40, W126 and POD1
as recommended by CLRTAP (2017), i.e. as differ-
ence between the estimated value in each grid cell and
the CL obtained by literature data. We used differ-
ent CLs depending on the metric, i.e.: for AOT40 we
applied the European CL set to 5 ppm h to protect
all forests types (CLRTAP 2015); for W126, we used
7 ppm h or 21 ppm h, as recommended by Environ-
mental Protection Agency (EPA 2007) to protect the
most sensitive tree species or any kind of vegetation;
for POD1, we used 5.2 mmol m−2 for BD and CD,
9.2 mmol m−2 for BE and CE, 14.0 mmol m−2 for
TD and 47.3mmolm−2 for TE, according to CLRTAP
(2017).

After performing a point-wise calculation of
the exceedances over the model domain, the non-
attainment area of the target value (in %) was
calculated relative to the total domain covered by
either deciduous or evergreen forests. The biomass
losses for each forest type were estimated based
on the dose-response functions derived by CLRTAP
(2017), as indicated in table S1 (available online at
https://stacks.iop.org/ERL/15/104095/mmedia).

3. Results

The lowest AOT40 levels were found in South Asia
(i.e. Vietnam, Laos and Thailand) dominated by
moist and dry broadleaf forest types (figure 1) and
with lower O3 concentrations (figure 3). The area
with highest AOT40 values was observed in cent-
ral China, characterized by high O3 concentrations,
especially during growing season (Sicard et al 2020)
and in the Indo-Gangetic Plain region, character-
ized mainly by high-elevation forests e.g. Himalaya
(figure 1). The spatial distribution of W126 was sim-
ilar to AOT40, but the highest and lowest values were
amplified due to the nature of the metric. Peaks of
W126 were located mainly in Northern and North-
eastern India (figure 3).

In contrast, the spatial pattern of POD1 was dif-
ferent from that of AOT40 and W126 (figure 3), with
the highest absorbed dose for TD and TE forests and
the lowest for BE forests (figure 4). A different spatial
distribution of hot-spots was observed in the south-
ern region, with the highest POD1 values in southern
China rather than in India (figure 3). The average spa-
tial correlation coefficient was 0.96 between AOT40
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Figure 3. Ozone risk assessment for Asian forests estimated by three metrics (AOT40, W126 and POD1) in 2015. White color
represents grid points without forest cover and grey color is used outside the domain.

andW126 and 0.20 between AOT40 and POD1 (data
not shown).

The selected metrics split in terms of dominant
vegetation are displayed in figure 4; our results indic-
ate that, in 2015 the lowest AOT40 and W126 val-
ues were found in the northern region (figure 3)
dominated by boreal or continental forest species
(figure 1), while the highest AOT40 and W126 val-
ues were observed in the areas where tropical and sub-
tropical forests grow (figure 4).

Considering the CLs, our results indicate that the
AOT40 CL was exceeded over 53%, 93%, 74%, 86%,
98% and 97% of the areas covered by BD, BE, CD,
CE, TD and TE forest types, respectively (figure 5).
The W126 CL recommended for protecting sensit-
ive plant species was exceeded over 31%, 87%, 57%,
73%, 98% and 98% of the areas covered by BD, BE,
CD, CE, TD and TE forest types, respectively, while

the exceedances of the W126 CL for the protection
of all species covered 5%, 59%, 28%, 43%, 93% and
94% of the areas covered by BD, BE, CD, CE, TD
andTE forest types, respectively. For both AOT40 and
W126, the main attainment areas (i.e. achieving the
air-quality standard) were in boreal and continental
climates, with deciduous species showing lower risk
than evergreen species. Regarding the POD1, 99%,
12%, 65%, 18%, 93% and 46% of the areas covered
by BD, BE, CD, CE, TD and TE forest types exceeded
the respective CLs (figure 5). The POD1-based O3

risk was higher for deciduous forests than evergreen
forests, despite the shorter duration of the growing
season.

To link the POD1 to the forests biomass loss,
we applied the dose-response function to the differ-
ent forests type. The average POD1-driven biomass
loss for the six forest types is shown in figure 6. The
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Figure 4. Average value of AOT40 (white bars), W126 (line bars) and POD1 (black bars) in the six forest types: B, Boreal; C,
Continental; T, (sub)tropical; D, deciduous; E, evergreen.

Figure 5. Non-attainment area (in %) for Asian forests exposed to ozone levels exceeding the critical levels for each metric in
2015. Forest types: B, Boreal; C, Continental; T, (sub)tropical; D, deciduous; E, evergreen.

most POD1-affected forest types were the decidu-
ous species, in particular BD and TD, with a respect-
ive biomass loss of 16% and 17%. The CD showed
a biomass reduction of 7%, while evergreen species
showed lower biomass reductions, even if the accu-
mulation period was longer. Indeed, a biomass loss of
1.5%, 1.6% and 4.4% was estimated for BE, CE and
TE species, respectively. When all forests were aver-
aged, the POD1-estimated biomass loss was 7%.

The spatial distribution of the limiting functions
f, i.e. the functions regulating the stomatal opening
and consequently the O3 uptake by leaves, is shown
in figure 7.

Considering the temperature, we found a relev-
ant limitation to stomatal opening only in the moun-
tainous region around the Tibetan plateau, while in
the remaining area of the domain the air temperature
is not significantly limiting O3 uptake. In contrast,
the maximum flight limitation was observed in the
south-eastern area of the domain, and this function
was relatively low (i.e. high limitation) over the whole

domain. fVPD was generally not limiting for stomatal
conductance in Asia, except in the central-western
part of the domain, while fSWC was strongly limit-
ing for stomatal conductance over almost all India
and the central part of the domain. The average val-
ues of the 4 limitation functions in the six forest
types is shown in figure 8. As expected ftemp is mostly
limiting for stomatal conductance in boreal forests
(0.62 and 0.44 for BD and BE, respectively), and flight
is mostly limiting stomatal conductance in tropical
forests (0.46 and 0.48 for TD and TE, respectively),
while intermediate values were found in the contin-
ental forests for both CD and CE, where fSWC limita-
tion seems to be more relevant (0.56 and 0.51 for CD
and CE, respectively)

By selecting themost limiting function in each cell
grid, we observed that the most distributed limiting
function over Asia was flight (over 65%of the domain),
followed by fSWC (29%) and ftemp (6%) (figure 9). Just
in few grid points (<1%) the most limiting function
was fVPD.
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Figure 6. Average biomass loss due to cumulative stomatal ozone uptake (POD1) for the six forest types over the Asian domain,
expressed as an average on all forests (Tot) or per forest type. Forest types: B, Boreal; C, Continental; T, (sub)tropical; D,
deciduous; E, evergreen.

Figure 7. Average limitation of stomatal conductance due to temperature (ftemp), solar radiation (flight), vapor pressure deficit
(fVPD) and soil water content (fSWC) over Asian forests in the year 2015. The values are dimensionless, ranging from 0 (maximum
limitation) to 1 (no limitation). Withe color represents grid points without forest cover, and grey color is used outside the domain.

4. Discussion

East and South Asia has recently experienced rapid
economic growth, during which anthropogenic emis-
sions have increased and deteriorated air quality
(Kurokawa and Ohara 2019). Air pollution, espe-
cially surface O3 in East and Southeast Asia, is more
serious than in Europe and North America (Koike
et al 2013, Mills et al 2018) and is still expected to
increase by 2100 (Sicard et al 2017). Thus, the use of

air quality models has also increased in this region to
better understand the spatial and temporal distribu-
tions of air pollutants and to examine the impact of
the increased anthropogenic emissions on air quality
degradation for Asian countries (Park and Kim 2014)
and consequently the impacts on forests (Feng et al
2019).

In this study, we used WRF-Chem with a high
horizontal resolution (8 km) over a domain cov-
ering all India, China, part of southern Asia, and
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Figure 8. Average limitation function values for the six forest types over the Asian domain, expressed as an average on all forests
(TOT) or per forest type. Forest types: B, Boreal; C, Continental; T, (sub)tropical; D, deciduous; E, evergreen. Black bars indicated
ftemp, grey bars flight, white bars fVPD and striped bars indicated fSWC.

Figure 9. Distribution of the most limiting function per each grid cell (temperature in red, light in green, vapor pressure deficit
(VPD) in yellow and soil water content (SWC) in blue) over the Asian forests in 2015. White color represents grid points without
forest cover, and grey color is used outside the domain.

reaching southern Siberia. The same model was pre-
viously used to simulate ground-level O3 over a
smaller domain in East Asia (Park et al 2014), and
emphasized the importance of the resolution in the
performance of the model. For this reason, we selec-
ted a fine spatial resolution to have more realistic
results. Our simulation was validated against in-
situ measurements from monitoring stations across
China and satellite data (Sicard et al 2020); the com-
parison with measurements suggests that the model
well reproduces the spatial pattern of meteorological

variables and surface O3 concentration. Indeed, the
WRF-Chem model simulated well the spatial dis-
tribution and seasonal variation of O3. Compared
to IASI-GOME2 satellite retrievals, a good spa-
tial agreement is noticed in summer, with a spa-
tial correlation of 0.99, and a lower correlation is
observed during spring and winter (0.61 and 0.71,
respectively). Compared to ground observations data
(from 1500 air quality monitoring network across
China), a mean annual bias of 5 ppb is observed in
2015. This bias is in line with the ones showed by
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the European regional models described in Colette
et al (2011). Looking at the surface air temperature,
one of the most important parameter affecting POD1
entity, WRF captures well the spatial pattern with a
decreasing south-north gradient and a cold area over
the Tibetan plateau (Sicard et al 2020).

Interestingly, the POD1 values were consistent
with the results shown for Europe (Anav et al 2016),
while AOT40 values were around 100%–200% higher
in Asia than in Europe. The latter result is consistent
with Lu et al (2018), that found significantly higher
AOT40 andW126 levels in China, i.e. 35%–100% and
50%–170% higher than in Europe and United States,
respectively.

Asian studies implementing PODY are fewer for
trees than for crop species (Agathokleous et al 2018),
and have normally provided experimental observa-
tions in very local plots and for a few species. POD1 is
the index recommended by CLRTAP (2017) for pro-
tecting trees against O3-induced biomass loss. In an
experiment with poplars in China, AOT40 and POD1
dose-response relationships indicated a 5% biomass
loss at 12.0 ppm h and 6.1 mmol m−2, respectively
(Hu et al 2015). To calculate the exceedance, we used
the thresholds, dose-responses and CLs set in Europe
(CLRTAP 2017) because the only PODY-based dose-
response relationships for Asia are for hybrid pop-
lar and thus insufficient to represent the variety of
forest types inAsia. Our results showed different sens-
itivity of forest types to O3 concentrations potential
exposure (AOT40 and W126) or O3 fluxes (POD1),
in particular with respect to the non-attainment area
for forest protection.Most of evergreen forests (86%–
97%) were potentially exposed to O3 concentrations
exceeding the limits for forest protection while the
percentage of evergreen forests exposed to POD1
above the CLs was lower (12%–46%). Asian studies
should focus on flux-based O3 metrics to provide rel-
evant bases for developing proper standards. How-
ever, given the technical requirements in calculat-
ing flux-based O3 metrics, which can be an import-
ant limitation in developing countries, cumulative
exposure indices like AOT40 should always accom-
pany flux-based indices (Agathokleous et al 2018).

A different spatial distribution of AOT40 and
POD1 in East Asia was previously described by
Hoshika et al (2011) and by De Marco et al (2015)
and Anav et al (2016) in Europe. In particular in Asia
POD0 values ranging from 10 to 48 mmol m−2 were
reported (Hoshika et al 2011), while in our results
we obtained values of similar magnitude, but with
an hourly threshold Y of 1 nmol m−2 s−1. Our spa-
tial variability was in line with the spatial distribu-
tion obtained by Hoshika et al (2011). We obtained
similar results with no limitation due to VPD on
the major part of the domain, excluding the cent-
ral north-western part of India. One possible explan-
ation is that the Tibetan Plateau (mean elevation
over 4000 m a.s.l.) acting as a strong heat source

in summer, generates upward airflow motions over
its eastern flank that, combined with large amounts
of moisture from the tropics, result in strong mon-
soons and wet climate in East Asia (Ding and Chan
2005).

The limiting functions are important to determ-
ine the role of climatic conditions on stomatal
conductance (Emberson et al 2007). Physiological
responses to changes in climate are highly depend-
ent on the limiting factors of a particular site to
forest growth. The eastern part of the domain did not
show SWC as most limiting factor, while the west-
ern part of the domain, including India, with either
limited rainfall or high temperature showed some
areas characterized by limiting soil moisture, a very
important function inmany dry area of the globe (De
Marco et al 2016). We showed that the most limit-
ing function to O3 uptake in eastern Asia was flight,
in agreement with Nemani et al (2003) that invest-
igated geographic distribution of potential climatic
constraints to plant growth derived from long-term
climate statistics. As the exchange of gases between
atmosphere and terrestrial vegetation is regulated by
stomata opening, air pollutants may take advantage
of the stomatal aperture to enter leaves, suggesting
that the temporal evolution of O3 and CO2 uptake
are consistent. Indeed Melillo et al (1993) found that
the predicted NPP decreases for tropical evergreen
forest, may be related to increased temperature and
cloudiness. It is important to note that flight estima-
tion included nighttime hours, and thus is affected
by the duration of daylight hours. Similar analysis
was done in Europe (Emberson et al 2007, Anav et al
2019) to identify the key drivers determining O3 flux
by tree species and region. In Europe a key driver for
PODY variation was the length of the growing season
(fphen), which increased and counteracted the negative
trend inO3 concentrations leading to a limited PODY
increase during the time period 2000–2014 (Anav
et al 2019). Epidemiological studies where PODY is
compared with observed impact on vegetation would
help in selecting the bestmetric to estimate theO3 risk
for forests in Asia (Sicard et al 2016, Braun et al 2017).
Some evidences showed the higher performance ofO3

flux instead of exposure to estimate the impacts of O3

on forest trees in Europe (DeMarco et al 2015, Sicard
et al 2016, Paoletti et al 2019).

5. Conclusions

The lack of information still presents in Asia in
terms of stomatal O3 uptake by the forests, both for
modelling and in-situ measurements, warrant more
intense studies in this region of the globe. To bridge
this gap of knowledgewe performed, for the first time,
a risk assessment on Asian forests using a high spa-
tial resolution model in order to estimate the phyto-
toxic O3 uptake (POD1) into the tree leaves for six
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forest types, highlighting its spatial distribution com-
pare to concentration-based metrics. We found very
high potential of O3 impacts on deciduous forest
growth in Asia, while potential O3 impacts on ever-
green forest types were lower. In particular, the limit-
ing conditions of light, soil water content and temper-
ature in a context of climate change, make this region
of the globe at high O3 risk for deciduous species and
medium O3 risk for evergreen species.
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