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Abstract. The nonlinear evolution of collisionless magnetic reconnection in the presence of
a strong guide field is analyzed on the basis of a gyrofluid model for compressible plasmas. It
is found that, in a certain regime of plasma parameters, ion gyration contributes to generate
two distinctive nonlinear acceleration phases of the growth rate. Furthermore, in the advanced
nonlinear phase, finite values of the ion Larmor radius are identified to be responsible for
a splitting of the narrow layer structures of ion guiding-center parallel velocity and density
perturbations around the magnetic equilibrium null line.

1. Introduction

Magnetic reconnection is a process that changes the topology of the magnetic field lines and
results in the conversion of magnetic energy into kinetic energy, thermal energy, and particle
acceleration. It is observed to occur both in laboratory and in space plasmas, where it plays a
key role in a number of events, classical examples of which are sawtooth relaxations in fusion
devices, substorms in the Earth’s magnetosphere, and solar and stellar flares [1, 2]. A general
feature of these phenomena are the short time scales involved, which are much shorter than
those associated with classical collisional dissipation processes. In the absence of collisions, the
finite mass of electrons limit their response to a magnetic-field-aligned electric field and allows
magnetic field lines to reconnect. Another common characteristic of these events is that the
reconnection rate is not only fast, but also exhibits a sudden increase in its time derivative (see,
e.g., [3, 4]). Explanation of the observed growth rates constitutes one of the main challenges of
magnetic reconnection theory (see, e.g., [5]).

In this work we consider the regime of high temperature plasmas in the presence of a strong
guide field, that is relevant for tokamaks as well as the solar corona. In this regime the sonic and
ion Larmor radius, ρs and ρi, exceed the width of the electron diffusion region [6]. Therefore,
sonic and ion finite Larmor radius effects cannot be neglected and indeed are known to produce
a speed up of the reconnection rate [7 - 14]. Here we report new results of gyrofluid simulations
that enable us to examine the effects of ion gyration on the growth rate and the field structures of
spontaneous collisionless magnetic reconnection. This paper is organized as follows. In Section
2 we present the model equations that include the nonlocal response of the plasma resulting
from ion gyration. In Section 3 these equations are used to simulate spontaneous magnetic
reconnection in a current sheet. Finally, conclusions are drawn in Section 4.

Joint Varenna-Lausanne International Workshop 2012 IOP Publishing
Journal of Physics: Conference Series 401 (2012) 012005 doi:10.1088/1742-6596/401/1/012005

Published under licence by IOP Publishing Ltd 1



2. The electromagnetic gyrofluid model

We consider a Hamiltonian gyrofluid model [15] obtained by taking the two lowest velocity space
moments of the five-dimensional gyrokinetic equations for electrons and ions [16], assuming
constant temperatures and neglecting collisions and the electron gyroradius. Electron inertia
terms, on the other hand, are retained in order to break the frozen-in condition and allow for
magnetic reconnection phenomena. The system of equations is completed using Ampère’s law
and the quasi-neutrality condition. As in Ref. [17], the magnetic curvature effects are neglected
and the dynamics is assumed two-dimensional, with an ignorable coordinate along the strong,
out-of-plane, magnetic field B0ẑ (the guide field, that is taken to be constant). Furthermore, a
plasma with single ion species and charge number Z = 1 is assumed.

We adopt a normalization scheme such that all the lengths are normalized to a characteristic
magnetic equilibrium scale length L, and all times to the Alfvén time τA = L/vA, where

vA = B0/(µ0n0mi)
1/2, with n0 a constant background density, µ0 the permeability of free space,

and mi the ion mass. Thus, dependent variables are normalized in the following way:

(

n̂i,e, ûi,e, ψ̂, φ̂
)

=

(

L

di

ni,e
n0

,
L

di

ui,e
vA

,
ψ

B0L
,

φ

B0LvA

)

, (1)

where dimensionless quantities appear on the left hand side. Hereafter the carets denoting
normalized quantities will be omitted for simplicity of notation. The fields ni and ui = ẑ · v̄i

represent the perturbed density and the parallel (out-of-plane) velocity of the ion guiding centers,
whereas ne and ue = ẑ·ve are the perturbed density and the parallel velocity of the electrons. We
indicate with ψ the magnetic flux function, related to the in-plane magnetic field byB⊥ = ∇ψ×ẑ,
and with φ the electrostatic potential.

In a right-handed Cartesian coordinate system (x, y, z), the evolution equations of the model
are:

∂ni
∂t

+ [Φ, ni] + [ui,Ψ] = 0, (2)

∂

∂t

(

Ψ+ d2i ui
)

+ [Φ,Ψ+ d2i ui] + ρ2i [ni,Ψ] = 0, (3)

∂ne
∂t

+ [φ, ne] + [ue, ψ] = 0, (4)

∂

∂t

(

ψ − d2eue
)

+ [φ,ψ − d2eue]− ρ2s[ne, ψ] = 0, (5)

where [f, g] = ∂xf∂yg−∂yf∂xg is the canonical Poisson bracket between two generic fields f and
g. The four dimensionless parameters appearing in the above equations are the (normalized)
electron and ion skin depth, de = (c/ωpe)/L and di = (c/ωpi)/L respectively, and the
(normalized) sonic and ion Larmor radius, ρs = (cs/ωci)/L and ρi = (vti/ωci)/L respectively.

Here, cs = (Te/mi)
1/2 is the sound speed based on the electron temperature, vti = (Ti/mi)

1/2 is

the ion thermal speed, and the other symbols have their usual meaning. Furthermore, Φ = Γ
1/2
0
φ

and Ψ = Γ
1/2
0
ψ are the gyro-averaged electrostatic and parallel magnetic potentials, where the

symbol Γ
1/2
0

refers to the gyro-averaged operator introduced by Dorland and Hammet [18], that

we adopt in its lowest-order Padé approximant form Γ
1/2
0

=
(

1− ρ2i∇
2

⊥
/2

)−1
. Eqs. (2)-(5) are

closed by the parallel component of Ampère’s law

∇2

⊥ψ = ue − Γ
1/2
0
ui, (6)

and by imposing quasi-neutrality on the particle density (not the guiding-center density)

ne = Γ
1/2
0
ni +

(

Γ0 − 1

ρ2i

)

φ, (7)
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where the last term of Eq. (7) represents the polarization density due to the variation of the
electric field around a gyro-orbit.

The system of equations (2)-(7) describes both the inertial (βe ≪ 2me/mi) and the kinetic
(βe ≫ 2me/mi) Alfvén wave regimes, whereas for βe ∼ 2me/mi the model equations need to
be extended to account for the electron Landau damping occuring in this regime vte ∼ vA [19].
Here, the parameter that distinguishes between these regimes is the electron beta, defined as
βe ≡ 2µ0n0Te/B

2

0
, which represents the ratio of the electron thermal pressure to the magnetic

pressure.

3. Reconnection rate and field structures of ion guiding centers

In order to investigate the evolution of spontaneous magnetic reconnection instabilities, the
system of equations (2)-(7) is solved numerically considering the following static equilibrium:

ψeq(x) =

11
∑

n=−11

ane
inx, nieq(x) = neeq(x) = neq, uieq(x) = 0, (8)

where an are the Fourier coefficients of the function f(x) = 0.1/ cosh2 x, and neq represent a
uniform, nondrifting background density. The fields in the model equations are decomposed
in a time independent equilibrium and an evolving perturbation that is advanced in time
according to a third order Adams-Bashforth algorithm. Double periodic boundary conditions
are imposed and a pseudospectral method is used for the space discretization on a domain
{(x, y) : −π ≤ x < π,−2π ≤ y < 2π}, with a resolution up to 2048×256 grid points. The
reconnection instability is initiated by perturbing the equilibrium with a small disturbance of
the ion guiding-center density defined as ñi = 10−6 (cos(x+ y/2)− cos(x− y/2)).

The equilibrium (8) is tearing unstable with linear stability parameter ∆′ = 59.9 for the
longest wavelength mode in the system ky = 2π/Ly = 1/2, with Ly the length of the domain
along the y direction. This choice allows us to explore magnetic reconnection in the large-∆′

regime, relevant to the sawtooth oscillations in tokamaks [20], for example, or the Geospace
Environmental Modeling (GEM) Challenge [21]. The value of the ion skin depth di is taken to
be equal to the half width of the magnetic equilibrium scale length L. Considering the challenge
to clearly separate all relevant spatial scales of the problem, the electron to ion mass ratio,

me/mi, is chosen to be 1/100, making de = (me/mi)
1/2di = 5× 10−2. This mass ratio is larger

than the real one, but it has been shown by Ricci et al. [22] that most features of collisionless
reconnection with a guide field are not sensitive to the mass ratio, except for the magnitude
of the electron velocities in the electron diffusion region. Finally, in order to distinguish ion
gyration effects from those of electron pressure gradient and electron inertia, ρi and ρs are
varied independently.

As a first step, we consider a range of parameters such that ρi ≪ ρs < de ≪ di . L. In this
regime, with ρs = 2.5 × 10−2 and ρi = 10−5, the instantaneous growth rate of the reconnection
instability is shown in Fig. 1(a). The growth rate is defined as γ = d(ln δψX )/dt, where δψX

is the reconnected flux at the X-point. After an initial transient (γLt . 1.5), the reconnection
instability evolve through three different stages: the linear phase, scaling as eγLt (constant
growth rate γL = 2.9 × 10−3) (1.5 . γLt . 4.5), followed by the faster-than-exponential phase,
during which the growth rate increases up to a peak value γ = 1.3 × 10−2 (4.5 . γLt . 7.7),
and finally the saturation period in which the growth rate slows down (γLt & 7.7).

A similar evolution of the reconnection instability is found for ρi ≪ de < ρs ≪ di . L, but
with higher linear (γL = 4.9 × 10−3) and nonlinear growth rates (peak value γ = 1.83 × 10−2).
Fig. 1(b) shows the instantaneous growth rate for ρs = 0.1 and ρi = 10−5. The speed up of
the reconnection can be linked to the different dispersive character of the kinetic Alfvén wave
respect to the shear Alfvén wave. In fact, the term proportional to ρ2s in Eq. (5) introduces
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Figure 1. Growth rate of the reconnection instability, γ = d(ln δψX )/dt, as a function of γLt,
for (a) ρs = 2.5×10−2, ρi = 10−5, (b) ρs = 0.1, ρi = 10−5, and (c) ρs = 0.1, ρi = 0.2. The linear
growth rate γL is determined numerically: (a) γL = 2.9 × 10−3, (b) γL = 4.9 × 10−3, and (c)
γL = 7.3× 10−3. The values of the electron and ion skin depth are de = 5× 10−2 and di = 0.5.

the dynamics of the kinetic Alfvén wave, which has a dispersive character, i.e. ω ∝ k2
⊥
, where

ω is the wave frequency and k⊥ the wave number. For ρs > de (equivalent to βe > 2me/mi),
the structure of the electron inertial region is controlled by the dynamics of the kinetic Alfvén
wave rather than the Alfvén dynamics because this region has an intrinsic scale length which
is well below the ion inertial length. Indeed, the quadratic dispersion character of the kinetic
Alfvén wave leads to an increase in the phase speed (vφ ∝ k⊥) with decreasing spatial scales and
therefore to an increase in the velocity at which the electrons can be ejected from the X-point
as the spatial scales of the electron diffusion region decrease [23]. In the absence of a guide field
(strictly antiparallel field merging), the counterpart of the electron pressure term is the Hall
term in the generalized Ohm’s law, which also introduces a high frequency dispersive wave, the
whistler, which plays a role analogous to that of the kinetic Alfvén wave [24 - 26].

For plasma parameters of interest to magnetic confinement fusion experiments, ion Larmor
radius effects and sonic Larmor radius effects should be considered simultaneously, since

ρi/ρs = (Ti/Te)
1/2 ∼ 1 and ρi/de = (βimi/2me)

1/2 > 1, with βi ≡ 2µ0n0Ti/B
2

0
. For this

reason and to highlight the contribution of the ion gyration, we consider a regime such that
de < ρs . ρi ≪ di . L. In particular, the instantaneous growth rate for ρs = 0.1 and
ρi = 0.2 is shown in Fig. 1(c). In comparison to the cold ion limit, the evolution of the
reconnection instability exhibits a novel behaviour: nonlinearly, the growth rate is characterized
by two distinct phases of strong increase. After an initial transient, which lasts until γLt . 2,
reconnection evolves through a linear phase from γLt ≈ 2 to γLt ≈ 3 with γL = 7.3 × 10−3,
and then develops into a first growth rate acceleration phase that begins at an island width
w ∼ de, and persists until γLt ≈ 5.5, when γ = 1.49 × 10−2. The first acceleration stage is
followed by a phase in which the growth rate decreases until γLt ≈ 6, when a second remarkable
increase takes place. This second acceleration phase is accompanied by an opening up of the
electron parallel velocity layer into an “X”-geometry similar to the island separatrix. Moreover,
from γLt & 7 also the parallel velocity of the ion guiding centers splits into an “X”-geometry
configuration centered at the X-point, but with lower opening compared to the electron velocity.
The formation of an “X”-geometry in the current distribution was linked to an increase of the
reconnection rate in a number of works [7 - 9, 23 - 28]. Here we observe a similar behaviour
in the parallel velocity of the ion guiding centers, which enters the parallel electron momentum
equation through Ampère’s law. In fact, making use of Eq. (6) we can rewrite Eq. (5) as

∂

∂t

(

ψ − d2e∇
2

⊥ψ − d2eΓ
1/2
0
ui

)

+ [φ,ψ − d2e∇
2

⊥ψ − d2eΓ
1/2
0
ui]− ρ2s[ne, ψ] = 0, (9)
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Figure 2. Contour plots of the ion guiding-center parallel velocity ui and perturbed density
ni at an island width w ≈ 1.2π for (a)-(b) ρs = 0.1, ρi = 10−5, and for (c)-(d) ρs = 0.1,
ρi = 0.2. The values of the other plasma parameters are: de = 5×10−2, di = 0.5. The magnetic
island separatrix at the corresponding time have been superimposed (white line). White arrows
indicate the length scale ρi.

which puts in evidence how the frozen-in condition is violated also due to a term depending
on ui and often neglected in fluid models. However, for low-β regimes the influence of ui on
the rate of reconnection remains small in comparison to the role played by ue. The increase of
the growth rate during the second acceleration phase reaches a peak value γ = 2.12 × 10−2 at
γLt ≈ 7.8. After this time a saturation stage takes place.

The macroscopic structures that develop in the advanced nonlinear phase for the cold ion
limit (ρ2i /ρ

2
s = Ti/Te ≪ 1) and for the finite ion Larmor radius regime are compared in Fig.

2. Contour plots of ui and ni for ρs = 0.1, ρi = 10−5 are shown in Figs. 2(a) and 2(b) for an
island width w ≈ 1.2π, corresponding at γLt ≈ 8.3 in Fig. 1(b). Isocontours of the same fields
for ρs = 0.1, ρi = 0.2 are shown in Figs. 2(c) and 2(d) for the same island width, corresponding
at γLt ≈ 8 in Fig. 1(c). In the cold ion limit narrow layer structures aligned with the magnetic
equilibrium null line characterize the parallel velocity and perturbed density of the ion guiding
centers. Finite values of the ion Larmor radius are identified to be responsible for a splitting
of the regions of high ion parallel velocity. The same splitting happens in the regions of high
density fluctuations. The result is that the quadrupolar density perturbation of the ion guiding
centers, characterized by two regions of enhanced ion density and two regions of depleted ion
density (cavities), instead of being aligned along the neutral line, opens on a spatial scale ∼ ρi,
as shown in Fig. 2(d). This behaviour is different from what was found for the antisymmetric
signature of the quadrupolar electron density perturbation, where the regions of high and low
electron density map the separatrices [8, 17, 22, 29 - 31]. The field structures of ui and ni were
interpreted in terms of the change, due to ion Larmor radius effects, of the advection of two
of the four Lagrangian invariants of the model (2)-(7), defined as I± ≡ Ψ + d2i ui ± diρini [17].
We observe that the splitting of ui and ni for large values of ρi was not found in Ref. [17],
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where a regime of plasma parameters (de,i, ρs,i) four times larger than those of Figs. 1(c), 2(c),
2(d) was investigated (but with the same initial current sheet), in such a way that βe and βi
remain the same. This is because the excursion of the ions in their Larmor gyration causes a
smoothing of ui and ni for which ρi is the typical scale length [17, 32]. Ion gyration effects
also influence the growth rate, that does not exhibit two distinct strong acceleration phases
for the plasma parameters de = 0.2, di = 2, ρs = 0.2, ρi = 0.8, corresponding to the regime
de < ρs . ρi ∼ L . di.

4. Conclusions

In summary, we have shown that collisionless magnetic reconnection with a guide field undergoes
a strong enhancement of the growth rate when a rarefied high temperature plasma is considered.
Particularly noteworthy is the fact that the growth rate exhibits two distinct nonlinear
acceleration phases when the ion Larmor radius exceeds the electron skin depth and is much
less than the magnetic equilibrium shear length. We have also shown that finite values of the
ion Larmor radius are responsible to produce an open configuration of the ion guiding-center
parallel velocity, that is reminiscent of the cross-shaped configuration that characterize the
parallel current density in magnetic reconnection mediated by the kinetic Alfvén wave. The
same geometric pattern belongs to the quadrupolar ion guiding-center density perturbation.
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