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Abstract

Purpose To compare texture feature estimates obtained from '®F-FDG-PET images using three different software packages.
Methods PET images from 15 patients with head and neck cancer were processed with three different freeware software:
CGITA, LIFEx, and Metavol. For each lesion, 38 texture features were extracted from each software package. To evaluate
the statistical agreement among the features across packages a non-parametric Kruskal-Wallis test was used. Differences
in the features between each couple of software were assessed using a subsequent Dunn test. Correlation between texture
features was evaluated via the Spearman coefficient.

Results Twenty-three of 38 features showed a significant agreement across the three software (P <0.05). The agreement was
better between LIFEX vs. Metavol (36 of 38) and worse between CGITA and Metavol (24 of 38), and CGITA vs. LIFEx (23 of
38). All features resulted correlated (p> =0.70, P <0.001) in comparing LIFEx vs. Metavol. Seven of 38 features were found
not in agreement and slightly or not correlated (p <0.70, P <0.001) in comparing CGITA vs. LIFEx, and CGITA vs. Metavol.
Conclusion Some texture discrepancies across software packages exist. Our findings reinforce the need to continue the
standardization process, and to succeed in building a reference dataset to be used for comparisons.

Keywords Positron emission tomography - Oncology - Radiomics - Texture

Introduction results appear to be confounding. It is not clear which indi-
ces carry useful information, which of them are stable, and
which is the added value compared to conventional indices

[5-9].

Radiomics refers to the set of image analysis techniques
aimed at extracting quantitative information intending to find

useful indications for the diagnosis and prognosis of tumor
diseases. A relevant part of radiomics is represented by tex-
ture analysis. Texture refers to the calculation of features
aimed to identify spatial patterns of variation and or repeti-
tion of grey tones on the entire image or within a region of
interest [1, 2]. The texture is expected to give a measure of
the lesion heterogeneity [3], which is likely to be related to
the aggressiveness of the disease [4]. However, to date, the
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Texture analysis workflow starts with the definition of
a region of interest (ROI) that delineate the tumor volume.
Then, features extraction is performed by image-processing
software. Next, a statistical analysis is performed, combin-
ing extracted features with clinical data for the selection
of clinical-informative features and the formulation of a
radiomics prediction model. Multiple factors can influence
texture extraction, including image acquisition and recon-
struction settings, tumor delineation, image pre-processing,
and the software used for texture calculation [10]. The adop-
tion of feature extraction software is a critical aspect, as,
for the same image, different software packages can return
different values for the same texture index. This is because
there is a certain variability in the features’ nomenclature,
in the formulas underlying the names, and in their software
implementation. This makes the results obtained by different
research groups not comparable and affects the validity and
reproducibility of the clinical indication of the features. The

@ Springer


http://orcid.org/0000-0002-5716-2137
http://crossmark.crossref.org/dialog/?doi=10.1007/s11604-021-01100-0&domain=pdf

Japanese Journal of Radiology

issue is known, and the image biomarker standardization ini-
tiative (IBSI) is an international collaboration which works
towards standardizing the extraction of image biomarkers
from acquired imaging for the purpose of high-throughput
quantitative image analysis [11-13]. IBSI provides guide-
lines and reference values with which developers can verify
their software and declare them IBSI-compliant.

Several research groups have been working on the tex-
ture extraction from Positron Emission Tomography (PET)
images, and some of the developed software have been
made available to the scientific community as freeware or
open-source [14—19]. Despite the availability of these soft-
ware tools, a limited number of studies on the comparison
between software dedicated to radiomics have been reported
in the literature. Only some of these works refer to PET
imaging modality, being mostly addressed to Computed
Tomography (CT) [20-22].

This article aims to test three freeware software for tex-
ture, to understand and measure the level of agreement when
they are used with the same PET image dataset as input.

Materials and methods
Software packages

Three software were considered for comparison: CGITA ver-
sion 1.4 (Chang-Gung Memorial Hospital, Taiwan), LIFEx
version 6.3 (Inserm, CEA, CNRS, Université Paris Sud,
France), and Metavol/Ptexture version 20181009/20180909
(Hokkaido University, Japan).

CGITA (https://sites.google.com/site/deanfanglab/softw
are) is a freeware and open-source software developed in
Matlab for quantifying tumor heterogeneity with molecular
images [14].

LIFEx (http://www.lifex.org) is a freeware software
developed in Java for radiomic feature calculation in multi-
modality imaging for characterization of tumour heteroge-
neity [15].

Metavol (https://www.metavol.org/) is a freeware soft-
ware for metabolic tumor volume measurement in FDG
PET/CT and Ptexture (https://github.com/metavol/ptext
ure) is an open-source add-on software for Metavol devel-
oped in Python to compute texture features from a seg-
mented lesion volume [16]. In the following, we will use
the term Metavol to indicate the two packages—Metavol
and Ptexture—together.

The three considered software are packages developed for
the processing of PET images, although CGITA and LIFEx,
widely used in literature, can be used with other imaging
modalities. LIFEX is the only software declaring compliance
with the IBSI standard. The main characteristics of the three
software packages are summarized in Table 1.
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Patient data

We retrospectively analyzed imaging data of 15 patients (9
men and 6 women) with locally advanced head and neck
cancer. The mean patient age was 60+ 10 years. All patients
underwent a whole-body '8F-FDG PET/CT before the start
of radiotherapy. Most cases (93%) were squamous cell car-
cinomas. The primary tumor site was larynx in 5 cases, oro-
pharynx in 5 cases, oral cavity in 4 cases, and rhinopharynx
in 1 case.

All procedures performed in this study involving human
participants were in accordance with international ethical
standards detailed in the 1964 Declaration of Helsinki and
its later amendments, and according to the Italian Personal
Data Protection Code for scientific research.

Image dataset

PET/CT studies were performed on a Discovery LS scanner
(GE Healthcare) 45 min after the intravenous administra-
tion of 5 MBg/Kg of '8F-FDG. Images were reconstructed
using an iterative OSEM algorithm with CT-based attenua-
tion correction. Each slice consists of 128 X 128 pixels with
a pixel size of 3.90625 x 3.90625 mm? and a slice thickness
of 4.25 mm. The authors used PET images in the form of
anonymized DICOM files. For the segmentation and subse-
quent feature extraction, only patients’ primary tumors were
considered. Patient’s lesions were segmented using the 40%
of the SUV . [23]. The median SUV , was 16.9 (range
9.4—30.6). The median tumor volume was 10.8 mL (range
3.8-40.7 mL).

Digital phantom

To assess the origin of observed differences across packages,
we developed a simple digital phantom. The phantom con-
sists of 224 voxels with SUV decreasing from 5.0 (SUV )
to 1.5 (SUV,,;,). The phantom is depicted in Fig. 1. It is
composed of 8 slices symmetrically disposed respect to the
z-axis; voxel dimensions are the same as the patient’s PET
studies. The 224 voxels are arranged as follows: 12 voxels
have SUV .. =5.0, 24 voxels have SUV =4.5, 52 voxels
have SUV =3.5, and 136 voxels have SUV =1.5. The out-
side of the phantom is filled with voxels having SUV =0.
Setting the threshold at 40% of SUV a volume of 88
voxels is expected to be segmented.

max?

Feature extraction

First, for each of the three software, patient’s lesions were
segmented using the 40% of the SUVmax. Second, for each
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Table 1 Summary of the main characteristics of the three software considered in the study

Software package Software license ROI/VOI definition and fea-
ture calculation settings

N. features
calculated

Operating system supported

Note

CGITA Open-source 3D Region Growing with 72
absolute SUV threshold, or
Fuzzy C-mean

Imports VOI in PMOD.voi or
in DICOM-RT format

Fixed bin number discretiza-
tion: absolute (0-max) or
relative (min—max in the
VOI)

No fixed bin width; no spatial
resampling

2D/3D ROI/VOI manually, 44
semi-automated, or by SUV
threshold (absolute, %SUV-
max> Nestle)

Imports RTSTRUCT object
in DICOM or NIFTI-1
format

Fixed bin number discretiza-
tion: absolute (0-max)
or relative (min—max or
mean + 3sd in the ROI/
VOI)

Fixed bin width discretization

Spatial resampling

2D/3D ROI/VOI semi-auto- 42
mated, or by SUV threshold
(relative or fixed)

Fixed bin number discretiza-
tion: absolute (0-max) or
relative (min—max in the
ROI/VOI)

No fixed bin width; No spa-
tial resampling

LIFEx Freeware

METAVOL Freeware

Windows, Linux, and
MacOS, with Matlab
licence

A compiled version for Win-

Source code almost not com-
mented

Lesion Volume only expressed
in mL

dows is available Last update 2014

Windows, Linux, MacOS Possibility to save the matrices
used for texture calculation

Lesion Volume expressed in
mL and in number of voxels

Last update 2020

Windows

Ptexture add-on is in Python
language and runs in every
platform

Lesion Volume only expressed

in number of voxels
Documentation not available
Last update 2018

lesion, a total of 38 texture features representing the com-
mon group of features among all packages, were extracted.
The features list comprise:

1 four conventional features: Metabolic Tumor Volume,
SUV o SUV eans and SUV

1 three histogram-based (histo) features: Skewness"*®,
Kurtosis"*°, Entropy™*;

1 six grey level co-occurrence matrix (cm) features:
Homogeneity“™, Energy®™, Correlation®™, Contrast™,
Entropy“™, Dissimilarity“™;

1 eleven grey level run-length matrix (rlm) features:
SRE"™, LRE"™, LGRE"™, HGRE"™, SRLGE"™,
SRHGE™™, LRLGE"™, LRHGE"™, GLNU"™, RLNU"™,
RPrlm;

1 eleven grey level size-zone matrix (szm) features:
SZES"™ LZE*™, LGZE*"™, HGZE*™, SZLGE*"™,
SZHGE®"™, LZLGE®*™, LZHGE®*™, GLNU®"™,
SZNUszm, ZPszm;

1 three neighbourhood grey level difference matrix (ndm)
features: coarseness"™™, Contrast™™, Busyness“dm.

Features were collected using the same setting for all the
three software: fixed bin number discretization with 32 grey
levels between the minimum and maximum in the lesion
volume (relative intensity rescaling); no spatial resampling.
Second- and higher-order feature calculations (cm, rlm, szm,
ndm) were performed in 3D with an average over 13 direc-
tions and a distance set to one voxel. The three groups of
texture features originated by the three packages were ana-
lyzed and compared.

Statistical analysis
A graphical comparison of range and median values of the
38 features, calculated by the three packages, were reported

as boxplots. To evaluate the agreement among features
across packages a non-parametric Kruskal-Wallis test was
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«Fig. 1 Sketch of the simple phantom used in the study. The phan-
tom consists of 224 voxels with SUV values from 1.5 (SUV ) to
5.0 (SUV .0, placed in 8 slices. In the two central slices, there is
a core of 6x2 voxels with SUV=SUV_ .. This core is surrounded
from a first shell of 6 x4 voxels with SUV=4.5. A second shell of
10x4+6x2 voxels with SUV =3.5 surrounds this first shell. Lastly,
the third shell of 136 voxels with SUV =1.5 surrounds the second
shell

used. Differences in features between each couple of soft-
ware packages were assessed using a subsequent Dunn test.
To verify whether the characteristics that were not in agree-
ment according to Dunn test were at least correlated, we
calculated the Spearman coefficient (p), defining correlated
those features with p >0.70 in absolute value. The correla-
tion among features was also evaluated intra-software, as a
tool for dimensionality reduction. The Bonferroni correc-
tion for multiple comparisons and a significance level of
0.05 were used for all the tests. We computed the Principal
Component Analysis (PCA) and plotted the first principal
component against the second principal component to have a
bi-dimensional representation of the data preserving most of
the sample variance. To visualize the weight of the features
relative to the two main components we plotted the PCA
squared cosines for each of the software packages. Statisti-
cal analysis was performed with R software, version 3.6.2
(R Foundation for Statistical Computing, Vienna, Austria).

Results
Image dataset

Overall, 23 features of 38 showed a good agreement across
the three software. Among these, we found the conventional
indices Metabolic Tumor Volume, SUV .., SUV and
SUV4. Feature’s boxplots are reported in Fig. 2. The fea-
tures resulted significantly different among the three soft-
ware via non-parametric Kruskal-Wallis test are listed
in Table 2. Agreement percentages between packages, as
assessed by post hoc Dunn test, were: 95% (36 of 38 fea-
tures) for LIFEx vs. Metavol, 63% (24 of 38 features) for
CGITA vs. Metavol, and 60% (23 of 38 features) for CGITA
vs. LIFEx. Correlation analysis highlighted that all features
resulted correlated (p>0.70, P <0.001) in comparing LIFEx
vs. Metavol, while 7 of 38 features (18%) were found not in
agreement and not correlated (p <0.70, P<0.001) in com-
paring CGITA vs. LIFEx, and CGITA vs. Metavol. Spear-
man’s correlation coefficients between the features of each
couple of software packages are reported in Table 3. The
PCA bi-dimensional plot with the position of each subject
is reported in Fig. 3. The first two principal components
explain more than 58% of the sample variance. Plots of
squared cosine computed for each of the three software

mean®

packages are reported in Fig. 4. The features correlation
matrix for each of the three software obtained using the hier-
archical clustering method are shown in Fig. 5. PCA plots
and correlation matrices confirm the substantial agreement
between LIFEx and Metavol features, and the discordance
of CGITA features value respect to the other two packages.

Digital phantom

Using the 40% SUV,,,,, threshold, LIFEx and Metavol pro-
vided a volume of 88 voxels, while CGITA underestimated
the volume segmenting 84 voxels. This last package excludes
from the segmentation the four voxels in the central slices
with SUV =3.5 attached to the segmented volume only for
one face.

Discussion

Texture is a promising image-processing technique in pro-
viding biomarkers to support clinical decision making in
cancer, but its added value has not yet been clearly demon-
strated. An interference factor in the comprehension of the
results is represented by the variability in the texture features
extracted by different software. On comparing, software
users may encounter some difficulties, as: (a) different soft-
ware can adopt different features names; (b) features with the
same name do not always have the same calculation formula;
(c) it is not always possible to access the source code to
verify the implemented formulas, as for freeware the code
used for feature calculation is not available; and (d) software
documentation often is incomplete. In this regard, the IBSI
collaboration has been working to standardize the nomen-
clature and the mathematical formulas of a large number of
radiomics features [11-13].

Our study was an analysis of the variability in the values
of the features extracted from PET images by three radiomics
software. Features were selected and matched based on the
name assigned to them by each software package. The analy-
sis was performed on 38 features representing the common
group of features across the three software. In some cases,
the name of the features did not match precisely across pack-
ages, but there was clear evidence of their correspondence.
In particular, the Energy feature derived by the Grey Level
Co-occurrence matrix was called Second Angular Moment
in the CGITA software; the eleven features derived by the
Grey Level Run-Length matrix were called Voxel-alignment
matrix derived in the CGITA software as reported into the
publication that describes the package [14]. An overview of
the differences in the feature’s value calculated by the three
software is provided by features boxplot. Kruskal-Wallis
and Dunn tests highlighted a significant difference between
15 of 38 features of CGITA respect to LIFEx and 14 of 38

@ Springer



Japanese Journal of Radiology

Volume SUVmax SUVmean SUVstd Skewness_histo Kurtosis_histo Entropy_histo
40 0 . 30- ) . . 1.00- 40- o
20- S — | 0.75- i 45-
0- o 25- o) 4 0.50- zz 20l *
‘e (EEE She oew il PR
s, T b 2- i - 5=
* é 10- 5- -gigg. Ry | =
Homogeneity_cm Energy_cm Correlation_cm Contrast_cm Entropy_cm Dissimilarity_cm SRE_rlm
030- o e o 003- 05 $ 150- o o 8- 10- * o ;: - -
0.27- 0.02J 04l 100, 7- 8- * * 0,8
Vet BT HE LETT i e T IS
= 0.1- L} Y Y 41 4- o 06
LRE_rlm LGRE_rlm HGRE_rim SRLGE_rlm SRHGE_rlm LRLGE_rlm LRHGE_rim
3.0 0.16- s 0.16- 300- o o 5. 1200- o
zz é 0.12- * ﬁ 300- ¢ o o0n- * * ;Zg 012 900- @
N 008- o 200- ﬁ * * 008- o 150- $ 0.08- ﬁ 6001
15- Software
10 _e _e 004- =:|=l 100 0.04 - gy 100 - 0.0 300- =91 _’_ _7_ E
GLNU_rlm RLNU_rlm RP_rim SZE_szm LZE_szm LGZE_szm HGZE_szm ' EI?ETxA
50- o J . . 10 ) . 0 .
:g- (] (] igg- s 0.8- i — 0.80- $ 10- Ziz- 240 - ‘ Metavol
1 300- 0.75- . .15 200
20- 200- 0.6 0.70- s 010- ® * *
Chmm S 2 B
SZLGE_szm SZHGE_szm LZLGE_szm LZHGE_szm GLNU_szm SZNU_szm ZP_szm
0.20- . . 250- . e  1600- . () . )
0.15- o« o 20 ig: 1200~ o o 1o 1001 06- * *
010- O g g 150- 1.0- 800: * * o ol 0.4- o o
005- == 100- 05 L ook 7 4
0.0- I 1 1 1 1 l 1 1 l 1 1 l
c CGITA LIFEx Metavol CGITA LIFEx Metavol CGITA LIFEx Metavol CGITA LIFEx Metavol
oarseness_ndm Contrast_ndm Busyness_ndm
0.06- 15- . .
0.04- 0-
i 0.5- * + 05- < "
e ** 00— %—-
CGITA LIFEx Metavol CGITA LIFEx Metavol CGITA LIFEx Metavol
Fig.2 Boxplot of the 38 common features obtained with the three software packages
Tab!e 2 p va.lue's of the features Features Kruskal-Wallis Dunn
statistically significant at
Kruskal-Wallis test, and post CGITA-LIFEx CGITA-Metavol LIFEx—Metavol
hoc Dunn test
Entropy"s®© 1.6%107° 9.0%107 ns 7.3%107°
Energy™ 6.3*%107 3.0%1072 8.4%1076 ns
Correlation®™ 2.5%107 2.7%107* 7.3%107* ns
Entropy™ 2.0%1077 5.3%1073 7.0%107 2.0%107
LGZE™ 3.4%107° 1.6%¥107 1.3%¥107 ns
SZLGE*™™ 3.4%107° 2.1¥107 1.1¥107 ns
LZHGE™ 1.6%107 9.0%107° 7.3%107° ns
Zpsm 1.6%107 8.6%107° 7.5%107 ns
SRE™™ 1.6%107 7.6%107 8.7%107 ns
LRE™ 1.6%107° 8.1%107° 8.1%107° ns
LGRE™™ 2.7%107° 9.6%107° 1.5%107° ns
SRLGE'™ 1.6%107 7.3%107° 9.0%107° ns
LRHGE™™ 4.4%107 1.8¥107° 1.8%107° ns
RPAm 1.6%107 7.0%107 9.3%107° ns
Contrast™™ 9.4%107° 5.6%107 9.1¥107 ns

features of CGITA vs. Metavol (Table 2). The same statisti-  significantly different were: Entropy™*"® and Entropy*™. We

cal test showed substantial overlap between 36 of 38 features  verified that the two Entropy™*® values were correlated and
calculated by LIFEx and Metavol. The only two features  their ratio was constant and equal to log,(e). Therefore, the
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Table 3 Coefficients of correlation between the features of each cou-
ple of software packages

Features Spearman correlation coefficient (p)
CGITA-LIFEx CGITA-Metavol LIFEx—Metavol

Entropy™s© 0.90 0.90 1.00
Energy™ 0.75 0.71 0.99
Correlation®™  0.94 0.95 1.00
Entropy“™ 0.74 0.71 1.00
LGZE™ 0.63 0.63 1.00
SZLGE*™™™ 0.74 0.73 1.00
LZHGE"™ 0.03 0.03 1.00
Zpsm 0.67 0.67 1.00
SRE™™ 0.83 0.83 1.00
LRE"™ 0.83 0.83 1.00
LGRE™ 0.49 0.50 1.00
SRLGE™™ 0.55 0.57 0.99
SRHGE™™ 0.91 0.91 1.00
Rp™ -0.15 -0.15 1.00

difference was only due to the change in the base of the
logarithm (log, for LIFEx and log, for Metavol). In the case
of Entropy“™, the two feature values resulted correlated, but
their ratio was not constant, so the change in the logarithm
base alone cannot explain the observed difference. It is
clear that for this feature there is a difference in the formula
implemented by the two software. No significant difference
between conventional indices, Metabolic Tumor Volume,
SUV o SUV ns and SUV ; was found across the three
software. Regarding the metabolic tumor volume, we found
a systematic underestimation in the CGITA segmentation
of the fifteen patient’s lesion in comparison to the other two
software: median of 10.77 mL for CGITA vs. 11.54 mL for
both LIFEx and Metavol. Therefore, the median underesti-
mation of CGITA compared to other software was about 7%.
To check the 40% SUV ., segmentation output, we
developed a simple phantom that confirmed us that CGITA
returns a volume underestimation probably because of dif-
ferent region growing rules. Due to the different VOI formats
required by the three software packages, it was not possible
to use the same lesion VOI for comparative analysis.
Consequently, we decided to vary the threshold for
CGITA by plus or minus 5% of the SUV,,, to assess how
small changes in the VOI affect the feature calculations. With
the threshold fixed to 35% of the SUVmax, Contrast®™ and
Dissimilarity®™ changed significantly with respect to the 40%
SUVmax comparisons. This variation was observed for both
CGITA vs. LIFEx and CGITA vs. Metavol comparisons. With
the threshold fixed to 45% of the SUV_,., only LZLGE*™"
changed significantly with respect to the 40% SUVmax
comparisons. Also in this case, the variation concerned both
CGITA vs. LIFEx and CGITA vs. Metavol comparisons. None

of the significant features to the Dunn test reported in Table 2
changed significantly varying the segmentation threshold of
CGITA. Therefore, an increase of the ROI volume segmented
by CGITA as to balance its volume underestimation did not
explain the difference in the textural feature calculations
observed between the software.

Correlation analysis was performed to establish if the sig-
nificant features to the Dunn test (i.e., that generate different
distributions by two software) were correlated or not. This
analysis adds further information on if and how the texture fea-
tures extracted by different software are related. Features that
are not in agreement but are correlated may describe the same
image characteristics. The correlation analysis highlighted that
among the 15 significant features to the Dunn test in compar-
ing CGITA vs. LIFEXx, eight were correlated and seven uncor-
related. Also in comparing CGITA vs. Metavol, we observed
the same correlation results. Lastly, Entropy™*® and Entropy®™,
that were significant to the Dunn test in comparing LIFEX vs.
Metavol, resulted correlated.

In an attempt to efficiently visualize the features space a
PCA analysis was performed. Plotting the first principal com-
ponent against the second principal component we found that
the 95% confidence region related to LIFEx and Metavol are
largely superimposed (Fig. 3). At the same time, the overlap
with CGITA is marginal. The PCA squared cosine plots cal-
culated for each software package also indicate an overlap
between the projections of the LIFEx and Metavol features
on the two principal components and a substantial difference
in CGITA compared to them. These plots could also be used
to identify clusters of features from which to select a reduced
number of representative features [24]. Similarly, the feature
reduction can be made by analyzing the intra-software correla-
tion matrix with hierarchical clustering order, shown in Fig. 5.
To obtain a dimensionality reduction for a software package,
users can choose one or a few features from each cluster. Note
that the feature clusters obtained from CGITA are dissimilar
with respect to those produced from LIFEx and Metavol, con-
firming what was previously found.

Despite the limitations of a small number of PET studies
and an analysis confined to the variability of the extracted
radiomic features, we can understand how different software
can lead to a different selection of informative features. The
effect of these variations on the clinical applications has only
recently been investigated [25-27]. Our work highlights the
importance of comparing software and, at the same time,
reinforces the importance of continuing the standardization
process to obtain reproducible and comparable analyses.
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ing the subject (prefix number) and the software package (suffix: L for LIFEx, M for Metavol, and C for CGITA)

Conclusion extracted revealed a significant discrepancy of CGITA

compared to Metavol and LIFEx, while this last two soft-
Three freeware texture analysis software were compared ~ Wware resulted substantially interchangeable. Our findings
using as input 'F-FDG PET images of fifteen patients  reinforce the need to continue the standardization process,

with head and neck cancer. The analysis of the 38 features ~ and to succeed in building a phantom to be used as refer-
ence data for comparisons.
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