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ABSTRACT Latest developments in acoustic research suggest that using surveying methods based on
artificial intelligence (AI) could improve the effectiveness of underwater monitoring. Passive acoustic
monitoring (PAM) has proven to be a cost-effective approach for gathering information about the acoustic
behavior of dolphins and plays a crucial role in studying their vocalizations, particularly whistles. This
study investigates the efficiency of a binary convolutional neural network (CNN) in detecting dolphin
whistles amidst high-density vocalizations in an aquatic environment. Specifically, this analysis intends to
determine whether a properly trained CNN can recognize a single whistle even in challenging condition,
including situations where multiple dolphins vocalize simultaneously, resulting in overlapping whistles that
may have different shapes and durations. To this aim, experimental trials were conducted at Oltremare
marine park, Riccione, Italy, where underwater recordings of seven-dolphin vocalizationswere collected over
22 consecutive hours. The CNN was trained on labeled whistle spectrograms. The model, comprising three
convolutional layers followed by max pooling layers and rectified linear unit (ReLU) activation functions,
was evaluated using a 10-fold cross-validation approach. Confusion matrix and performance metrics indicate
that the proposed approach achieves results comparable to those reported in the literature, despite the more
challenging working conditions. The study supports the potential of AI models in enhancing passive acoustic
monitoring techniques.

INDEX TERMS Artificial intelligence, deep learning, dolphin vocalization, passive acoustic monitoring,
whistles.

I. INTRODUCTION
Common bottlenose dolphins (Tursiops truncatus), referred
to hereafter simply as bottlenose dolphins, are renowned
for their sophisticated vocalizations, which play a cru-
cial role in their communication, navigation, and social
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interactions [1]. Dolphins use three main types of acoustic
signals: echolocation clicks, multiple burst pulse signals, and
frequency-modulated whistles. Echolocation clicks are short,
broadband pulses with frequencies that can extend up to
140 kHz. These clicks are crucial for navigation and forag-
ing, enabling dolphins to construct detailed auditory images
of their surroundings [2], [3]. Burst pulse sounds are rapid
sequences of clicks or pulses, characterized by their high
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repetition rate and variable frequency content. They play a
social role, often associatedwith aggressive interactions, such
as those observed during depredation, and may be used to
resolve rank conflicts and reduce competition among group
members [4]. Whistles are frequency-modulated narrow-
band sounds used predominantly for social communication.
Moreover, whistles can contain unique signature patterns that
can identify individual dolphins, highlighting their impor-
tance in maintaining social bonds and facilitating individual
recognition within pods. These vocalizations are character-
ized by frequencies typically ranging from 1 up to 25 kHz
and durations varying from 0.1 to some seconds [1].

Over the years, passive acoustic monitoring (PAM) has
emerged as a non-invasive and cost-effective method for
acquiring long-term insights into the presence of dolphin
populations, their behavior, social structures, and habitats [5].
It has proved especially beneficial for gathering data during
nighttime and adverse weather conditions [6]. Whistles are
frequently used to indicate the presence of dolphins across
various marine environments. These sounds are especially
valuable in passive acoustic monitoring due to their distinct
acoustic features, which facilitate detection and analysis [7],
[8]. Whistles are typically analyzed using spectrograms,
which are visual representations of the frequency spectrum of
a signal as it varies with time [9]. A spectrogram provides a
detailed view of the frequency content of a signal, allowing to
observe the temporal patterns and frequency modulations of
dolphin whistles. On spectrograms, dolphin whistles appear
as continuous, curved lines that vary in frequency over time.

Recent advancements in artificial intelligence (AI) have
significantly enhanced the capabilities of automated whistle
detection. AI approaches, particularly deep learning meth-
ods, have shown great promise in identifying and classifying
dolphin whistles with high accuracy. The specific shape
of the whistle in the spectrogram, indeed, appears to be
particularly suitable for automatic identification by an AI
architecture. These methods typically involve training neural
networks on large datasets of spectrograms, enabling the
networks to learn the distinctive patterns and features of
dolphin whistles. Numerous studies in literature highlighted
the potential of AI models for monitoring cetaceans and
identifying dolphin presence through whistles. It has been
reported, indeed, that whistle-detection performance could be
improved over classical approaches adopting convolutional
neural networks [10], [11], even in presence of relevant
environmental noise [12]. A further study highlighted that
the semantic segmentation of whistle by neural networks
could contribute to this virtuous process [13]. Furthermore,
deep learning techniques have also been successfully applied
to the traditional task of classifying whistles into various
classes [14], [15].

Despite these promising studies, several challenges must
be still addressed. Different factors should be taken into
account, including variability in environmental conditions,
complexity of dolphin vocalizations, and differences in
datasets. Marine environments are highly dynamic, with

factors such as water depth, temperature, salinity, sea cur-
rents, and background noise varying significantly across
different locations and times. These variations can affect
the quality and characteristics of recorded whistle sounds,
making the detection task challenging for AI models [16].
A further significant challenge is posed by the complexity
of this dolphin vocalization. Dolphin whistles, indeed, can
vary not only between species but also among individuals of
the same species. Dolphins can also modify their whistles in
response to social interactions, environmental changes, and
other stimuli. Furthermore, it is well-known that dolphins
often move in pods, so it frequently happens that recordings
contain overlapping whistles from different dolphins [1], [7],
[9]. Moreover, differences in datasets used for training and
testing the model can lead to inconsistent results. The avail-
ability of large, standardized, and diverse datasets is crucial
for developing robust AI models capable of performing reli-
ably in different environments.

The current study is designed to test the performance
of a convolutional neural network (CNN) in detecting bot-
tlenose dolphin whistles in underwater recordings with a
high density of whistles over time. Specifically, this analysis
intends to determine whether a properly trained CNN can
recognize a single whistle even when multiple dolphins are
vocalizing simultaneously, emitting whistles that may have
different meanings and purposes. To this aim, underwater
sound recording procedure was performed in a series of inter-
connected pools of a dolphin park where seven free-to-swim
bottlenose dolphins were engaged in their daily activities,
which included playing, eating, and exercising.

II. MATERIALS AND METHODS
A. SIGNAL RECORDING AND PROCESSING
Recording trials were performed at the Oltremare the-
matic marine park in Riccione, Italy. Acquisition started at
10:22 in the morning of November 20, 2021, and stopped
after slightly more than 22 hours. Underwater acoustic sig-
nals were recorded submerging the recording systems in a
series of interconnected pools with seven bottlenose dol-
phins (T. truncatus). The recording system was composed
of the SQ26-05 hydrophone (Sensor Technology) associ-
ated with the UREC 384K autonomous underwater recorder
(Dodotronic and Nauta). The sensitivity of the hydrophone
is −193.5 dB re 1 V/µPa @ 20 ◦C between at least 1 Hz
and 28 kHz [17]. Acquisition characteristics are: sampling
frequency = 192 kHz and resolution = 16 bit. Signals were
stored as wave files lasting 5 minutes each.

Stored signals were min-max normalized, scaling the val-
ues to the [0–1] range, and then appropriately processed using
a band-pass filter between 3 and 24 kHz. Each 5-minute
signal block was analyzed using the spectrogram visualiza-
tion of the open-source software Audacity. A trained PAM
expert reviewed the spectrograms with the aim of visually
inspecting and labeling the dolphin whistles. The spectro-
grams were then segmented into parts of 0.8 seconds and the
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whistle was centered within each segment. The spectrograms
were converted in jpeg images. The segment length was set
0.8 seconds since this value statistically allows to contain
almost all the whistles [18]. If the labeled signal is longer
than 0.8 seconds, it was split into 0.8-second segments, with
a 50% overlap, until the whole signal is covered. The size of
each spectrogram was 300 × 150 pixels. The release of the
whistle-labelled dataset is still in preparation. Nonetheless,
the data could be already available by contacting the authors
of the current study.

B. TRAINING THE MODEL
Convolutional neural network (CNN) has been largely
adopted for speech recognition and for audio-related studies,
including studies on dolphins [10], [11], [12], [13], [14], [15],
[19]. In the current study, CNN is employed [20], consisting
of three convolutional layers with 32, 64, and 128 filters,
respectively, with kernel size of 6 × 3. General practice for
CNN design, indeed, suggests that simple tasks with small
datasets might require 2-3 layers with 32-128 filters. The
rectified linear unit (ReLU) activation function is applied
to every layer. Following the convolutional layer is a max
pooling layer with a 2 × 2 window, which decreases the
spatial dimensionality of the output, thereby lessening the
calculation complexity and contributing to avert the risk
of overfitting. The output of the convolutional and pooling
layers is flattened into a one-dimensional vector, which is
then processed by a dense layer with 128 units and ReLU
activation. The final dense layer comprises a single neuron
utilizing sigmoid activation for binary classification. The
above-described CNN model was trained and tested on spec-
trograms described in the paragraph II-A. The whole dataset
includes 6000 labelled spectrograms. To ensure balance dur-
ing training, an equal number of spectrograms labeled ‘‘1’’
and ‘‘0’’ were used.

Then, thewhole dataset was separated into 10 folds, includ-
ing the same number of whistles. The spectrograms from
9 out of the 10 foldswere utilized to train themodel. The spec-
trograms from the remaining fold were employed to test the
model performance. Ten different trainings were performed,
following the 10-fold cross-validation depicted in Figure 1.

C. PERFORMANCE MEASUREMENTS
Global confusion matrix and mean values over the ten folds
of accuracy, precision, recall, and F1-score were adopted to
quantify CNN performances. The computation of confusion
matrix is based on the values achieved for true negatives (TN),
false negatives (FN) true positives (TP), and false positives
(FP). The other performance metrics are defined as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)

FIGURE 1. The 10-fold cross-validation procedure.

F1 − score = 2·
Precision · Recall
Precision + Recall

(4)

III. RESULTS
Figure 2 depicts an example of a colored spectrogram identi-
fied by the PAM expert and included in the dataset used for
this study. As evident from Figure 2, the whistle becomes rec-
ognizable around 0.2 s and ends around 0.6 s. Approximately
0.3 s after the start of the spectrogram, other underwater
sounds overlap with the whistle. These further signals could
represent either other types of dolphin vocalizations (such as
echolocation clicks or burst pulse sounds) or ambient noise.
Both are considered noise for the purposes of this analysis.

FIGURE 2. An example of 0.8s spectrogram of a representative whistle
recorded during the acquisition trials.
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FIGURE 3. Density of whistle occurrences over time. Every blue bar represents the number of whistles detected by the
PAM expert in the correspondent 5-minute segment. Time 00:00 on the x-axis indicates the starting event of the 22-hour
recording session.

The present dataset contains dolphin whistles of variable
duration ranging from a minimum of 0.053 s to a maximum
of 4.98 s. In order to quantify the density of whistle occur-
rences over time, Figure 3 reports, in the y-axis, the number
of whistles identified by the PAM expert in each 5-minute
interval into which the 22 hours of recording were split. It is
worth noting that after 20 hours and 20minutes of recordings,
the graph reported two consecutive peaks of 86 and 85 whis-
tles, respectively. This means that in 10 minutes a total of
171 whistle were detected, indicating a very high density of
whistle occurrence in this part of the recording signal.

Confusion matrix is depicted in Figure 4, reporting
grey-scale normalized values of TN, FN, TP, and FP. Pro-
gressively darker colors indicate progressively higher values,
up to 1 that is represented by black color.

The darkest square in the confusion matrix indicates that
the CNN correctly identifies 92.7% of the spectrograms that
do not contain whistles. Similarly, the bottom-right square
shows that the CNN correctly identifies 81.3% of the spec-
trograms containing whistles. Detailed percentage values of
the classification performances in each one of the ten folds
are shown in Table 1.

Table 1 shows as each metric presented small variability
within ten folds. Indeed, accuracy is between 83.0% and
90.2%; precision is between 86.8% and 95.0%; recall is
between 77.8% and 84.8; and F1–score is between 82.1%
and 89.6%. The last two rows of the table indicate the aver-
age values an SDs over ten folds. Mean accuracy indicates
that the model provides 87.0 ± 2.4% correct predictions
(both true positives and true negatives) out of all predictions
made. Average precision indicates that the percentage of
correctly predicted whistles out of all predicted whistles is
91.7 ± 2.9%. Average recall shows that the percentage of
actual whistles that were correctly identified by the model is

FIGURE 4. A Confusion matrix. Data are reported as mean value over ten
folds and normalized between 0 (white) and 1 (black).

81.3 ± 2.3%. It is worth noting that, despite the complexity
of the analyzed dataset, the mean percentage value of the
synthetic metric F1-score is still above 86% and detailed
values never drop below 82%.

The present outcomes have been achieved using a Vivo-
book Pro 15 N580GD laptop, equipped with an Intel
Core™ i7-8750H processor clocked at 2.2 GHz. The installed
RAM is 16 GB, and the operating system is Windows 11
64-bit. The GPU utilized is an NVIDIA GeForce GTX
1050 with refresh rate of 60 KHz.

IV. DISCUSSION
One of themost challenging factors affecting the performance
of a neural network trained to identify dolphin whistles from
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TABLE 1. Average percentage performance metrics over ten folds.

underwater recordings is the overlap of sounds from multiple
dolphins vocalizing simultaneously [21]. Additionally, the
fact that each individual dolphin is characterized by a differ-
ent signature whistle in terms of waveform, frequency, and
duration [22] and that dolphins can modulate their whistles
depending on intentions [23], further complicate the auto-
matic classification of these vocalizations. This study aimed
to evaluate the performance of a convolutional neural network
on a dataset that, by its nature, presents both aforementioned
challenges. To pursue this aim, the experimental recordings
were conducted in a controlled environment where seven
dolphins shared all the activities that are typically carried out
daily in a thematic marine park, such as playing, eating, and
exercising. This resulted in the recording of a very high num-
ber of whistles with different characteristics, as highlighted
in Figure 3.

Each bar in this figure represents the number of whistles
identified within a 5-minute interval by a PAM expert trained
for this purpose, regardless of which dolphin the whistle came
from or what activity the dolphin was engaged in during
that period. A very intense vocalization activity was recorded
during the first eight hours of recording. As reported in
Section II-A, the recording started at 10:22 a.m. onNovember
20, 2021. Therefore, the intense vocalization activity corre-
sponded to the daytime period when all the seven dolphins
engaged in their typical daily activities, frequently interacting
with each other andwith the trainers. At the end of this period,
there is a noticeable decrease in activity between the eighth
and nineteenth hours, which corresponds to the nighttime
period (06:22 p.m. to around 5 a.m. of the following day).
This is followed by a new increase in vocalizations due to the
resumption of the dolphin daily activities. Furthermore, it is
worth noting that the whistles included in the present dataset
exhibit a large variability also in duration, ranging from
0.053 s (very short whistles) to 4.98 s (very long whistles).

As highlighted by the analysis of vocalization timing and
duration, the adopted CNN had to work under challenging
conditions, characterized by high variability of whistles and
frequent interconnections and overlapping among them. Nev-
ertheless, the CNN still managed to identify 93% of the
spectrogram with ‘‘no whistle’’ labelled by the PAM expert,
as reported in the confusion matrix (Figure 4). Lower values,
but still above 80%, were achieved in the task of whistle
detection where percentage TPs are 81.3%. This lower value
is likely due to the overlapping among whistles from different
dolphins and to the superimposition with further dolphin
vocalization, such as clicks and burst pulse sounds, as for
example in Figure 2. The detailed classification performances
reported in Table 1 also seem to support what emerged
from the confusion matrix. Encouraging average values were,
indeed, achieved for both classification accuracy (87.0%)
and average F1-score (86.2%). The low standard deviations
associated with the mean values of accuracy and F1-score
across the 10 folds (approximately 2.5%) indicate that the
model performed consistently across different subsets. This
indicated that the observed performance is a true reflection
of the model capabilities rather than being influenced by ran-
dom variations in the data, thus suggesting high consistency
and reliability of the model performance. These promising
results are also supported by comparisons with what, to the
best of our knowledge, are the only two other studies in the
literature that adopt similar approaches [12], [13]. Average
accuracy, precision, recall, and F1-score are, indeed, in line
with what was reported in the recent study by Jin et al. [13],
who indicated a mean accuracy of 89%, precision of 96%,
recall lower than 80%, and an F1-score of 86% achieved
in the attempt to use a CNN-based semantic segmentation
model for whistle profile extraction. Moreover, the current
performances in Table 1 are not far off from those reported by
Nur Korkmaz et al. [12], who tested and compared the perfor-
mance achieved by a vanilla CNN and by a pre-trained CNN
based on the VGG16 architecture. In particular, the CNN
experimented here shows a higher average precision (91.7 ±

2.9% vs. 90.5%), whereas the performances reported in [12]
are better in terms of accuracy (87.0 ± 2.4% vs. 92.3%)
and especially recall (81.3 ± 2.3% vs. 89.6%), although the
average F1-score was not reported. One of the main reasons
for these differences could be ascribed to the fact that Nur
Korkmaz et al. systematically excluded from analysis all
whistles longer than 0.78 s, whereas in the present study,
no long whistle was discarded, as indicated in Section II-A
and in the ‘‘Results’’. Longer whistles, indeed, are more com-
plex to identify correctly because, exceeding the observation
window in duration, they may not be uniquely identifiable
and can lead to various false positives that undermine per-
formance. On the other hand, their length increases the risk
of overlap with whistles from other dolphins, thereby leading
to potential false negatives. Moreover, in [12] raw data were
strongly processed to remove sporadic cut-offs and extensive
noise periods. In this current study, the decision was made
not to preprocess the data in order to preserve the integrity
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of the research, which focuses on testing the capabilities of
a CNN on a dataset characterized by high variability. This
variability arises because the dataset includes vocalizations
from multiple dolphins, sometimes vocalizing together, and
is associated with various dolphin activities. Preprocessing
could potentially distort or simplify this natural variability,
which is crucial for accurately evaluating the CNN perfor-
mance in real-world, complex scenarios involving diverse
dolphin behaviors and interactions.

Although this study provided encouraging indications for
the employment of artificial intelligence systems to identify
dolphin whistles even in complex environmental conditions,
some limitations must be discussed. The present model has
been trained with data recorded form seven bottlenose dol-
phins ranging in interconnected pools within a marine park.
and validated in this dataset with these specific characteristics
of the animals and their surrounding environment. Variations
among individual dolphins and different species can affect the
model ability to generalize. Additionally, variability in envi-
ronmental conditions and environmental noise can introduce
distortions, leading to potential inaccuracies and deterioration
of model performances.

However, further approaches can be explored in the effort
to improve and generalize the robustness of the current
method. From this perspective, it could be useful to test signal
processing techniques capable of highlighting the morpho-
logical characteristics of whistles and minimizing the effect
of other vocalizations or ambient noise on the whistle iden-
tification process, such as edge detection algorithms [24].
As previously noted, whistles are generally studied through
spectrograms, which visually represent the frequency spec-
trum of a signal over time [25]. The spectrogram offers a
detailed perspective on signal frequency content, enabling
the analysis of temporal patterns and frequency modula-
tion of dolphin whistles. In spectrograms, dolphin whis-
tles display characteristics that resemble edges in images,
often appearing as distinct, continuous lines. This resem-
blance implies that edge detection techniques commonly
used in image processing could be advantageous also in
enhancing spectrograms for CNN-based detection of dolphin
whistles.

Moreover, in the vast majority of cases, dolphin whis-
tles overlap with other vocalizations such as echolocation
clicks and burst pulse sounds, making it even more chal-
lenging to identify individual vocalizations. Further specific
pre-processing of the audio signal or the spectrogram image
could help isolate the individual vocalization, improving the
ability to uniquely identify it, and consequently enhancing the
model performance. Further studies will focus on identifying
the most suitable digital signal processing technique, includ-
ing edge detection, to generalize to different dolphin species
and/or in different marine environments the promising find-
ings achieved in the present study. All of this should be done
without flattening the natural variability that characterizes
the unique acoustic behavior of each individual dolphin, both
alone and in pods.

V. CONCLUSION
This research highlighted the potential of integrating deep
learning with acoustic monitoring to address complex envi-
ronmental challenges. The current results suggest that arti-
ficial intelligence techniques can significantly contribute to
dolphin monitoring, even under challenging conditions like
those in the open sea. Advancements in AI andmachine learn-
ing, indeed, have the potential to revolutionize how marine
ecosystems are studied and monitored. The automatic identi-
fication of whistles through artificial intelligence also opens
novel possibilities for dolphin conservation in the marine
environment; the identification of a trigger could be associ-
ated with the development of new and more efficient pingers,
the creation of alarm systems (for example, in port areas),
and so on. Further studies are nonetheless needed, focusing
on refining the CNN model, improving the data preparation,
expanding the dataset, and exploring the application of simi-
lar techniques to other marine species and environments.
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