
IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 72, 2023 9600808
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Abstract— Recently, acoustic tweezers based on an array of
ultrasonic transducers have been reported taking inspiration
from holographic optical tweezers. In the latter technique, the
calibration of the optical trap is an essential procedure to obtain
the trap stiffnesses. On the contrary, in the case of acoustic
tweezers the calibration of the acoustic forces is seldom carried
out. To cover this gap, in this work, we adapt the calibration
protocols employed in optical tweezers to acoustic tweezers based
on arrays of ultrasonic transducers. We measure trap stiffnesses
in the mN/m range that are consistent with theoretical estimates
obtained by calculations of the acoustic radiation forces based on
the Gor’kov potential. This work gives a common framework to
the optical and acoustic manipulation communities, paving the
way to a consistent calibration of hybrid acoustooptical setups.

Index Terms— Acoustic forces, acoustic levitation, acoustic
tweezers, force calibration, phased arrays, ultrasonics.

I. INTRODUCTION

THERE are different ways to trap and manipulate particles:
for instance, it is possible to use light [1], but also

magnetic [2] and electric fields [3] or a sound wave [4].
In optical trapping, dielectric particles with sizes varying from
tens of nanometers to a few micrometers can be studied;
however, its applicability is limited in the case of light
absorbing materials, due to increased scattering force or parti-
cle heating [5]. Magnetic and electrostatic trapping can be
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used only with magnetic or charged particles, respectively.
On the other hand, acoustic trapping requires less stringent
conditions on both the size and the type of particle that can
be trapped, allowing interesting applications in biomedical
research [6], life sciences [7], [8], physics of liquids [9] and
soft-matter [10], [11].

In acoustic trapping sound waves in the ultrasonic range are
used to confine and manipulate millimeter and submillimeter
particles in air [12], [13], [14] or a fluid [15], [16], [17].
The simplest way to obtain particle trapping is the realiza-
tion of an acoustic standing wave. To this purpose, either
an ultrasound source and a reflector [18], or two sources
facing each other [19], can be used. With these experimen-
tal configurations, both liquid and solid particles have been
trapped, even with very large densities (Hg and Ir, respec-
tively) [20]. However, these apparatuses have the disadvantage
of being expensive and bulky, requiring potentially dangerous
high voltages and losing efficiency after prolonged operation.
To overcome these drawbacks, it has been recently reported
the possibility of using arrays of commercial ultrasonic trans-
ducers both in the standing wave configuration [21] and in a
single-sided array configuration [22], [23]. In the latter case,
the shaping of the pressure field is achieved by controlling
the phase of the signal emitted by each transducer. This
method gets inspiration from holographic optical tweezers,
in which an optical diffractive element (typically a Spatial
Light Modulator) is used to shape an incoming light beam [5].
With the holographic acoustic tweezers [22], [24] different
acoustic pressure field distributions have been obtained, giving
twin traps (two close finger-shaped regions among which the
particles are trapped), vortex traps, and bottle traps [22], which
enable the full 3-D manipulation of single [22] or multiple [24]
millimetric particles. The advantage of this configuration with
respect to other techniques of acoustic beam shaping [25]
is that the acoustic trap is computer-controlled [23], [26],
allowing to change the trap coordinates on demand and in
real-time.

In optical tweezers, a routine procedure that enables quanti-
tative force measurements is the calibration of the trap, namely
the measurement of its stiffness when a standard size spherical
particle is trapped in a medium of known viscosity, and the
re-scaling in length units of the particle dynamics by means
of appropriate calibration factors [5]. Many different protocols
have been proposed [27], [28], [29], [30], [31], [32], and
a comparison between them can be done [33], aiming at
individuating the best method to calibrate the particular system
under study. On the contrary, in the case of acoustic tweezers,
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Fig. 1. (a) Scheme of the experimental set-up; (b) CCD shadow image of a trapped polystyrene sphere; and (c) 8 × 8 transducers array (colored elements)
and map of the produced pressure field (in Pa). The trap reference frame is also represented. The trap is focused at (x f , y f , z f ) = (0, 0, 2 cm).

few examples are found in [34], [35], and [36], treating quite
small (tens of µm) particles in a microfluidic environment.
However, in these cases, the full spatial localization of the
particles is obtained close to a surface, which may affect the
estimate of the trap stiffness.

In this work, we tailor two well-assessed calibration
methodologies developed in optical tweezers to acoustic
tweezers setups. After a brief introduction to the methods used
to trap and manipulate the particles, we show the results of the
calibration of holographic acoustic tweezers [22] obtained by
both static and dynamic measurements. Finally, we compare
these results with acoustic trapping forces calculated on the
basis of the Gor’kov potential [37].

II. METHODS

In this section, after some details on the hardware used for
the trap calibration (Section II-A), we discuss the model used
for the acoustic trap (Section II-B) and the calculation of the
acoustic force (Section II-C).

A. Experimental Setup

The calibration methodologies employ both video
microscopy and a position-sensitive 4-quadrant photodetector
to track the fluctuations from the equilibrium position of
acoustically trapped particles. The experimental setup is
sketched in Fig. 1. The space above an 8 × 8 array of

ultrasonic transducers [22] is crossed by two perpendicular
optical paths. In the first one, a diode laser (785 nm,
Thorlabs, DL7140-201S), whose beam is made circular by a
couple of anamorphic prisms, is directed toward a levitated
millimeter sphere. The shadow of the acoustically trapped
particle is imaged, through a mirror (Thorlabs, BB1-E03) and
two lenses (Thorlabs, N-BK7, -B coated) in a telescope 3:1
configuration, onto a 4-quadrant photodetector (QPD, RS with
home-made analog circuit) that records the axial (z axis) or
transversal (x or y, depending on the orientation of the trap
with respect to the detector) particle position fluctuations.
The voltage signal acquired by the QPD is analyzed by
custom-made LabView codes. The second optical path is
perpendicular to the first one and consists of two lenses in
a 2:1 telescope configuration and a CCD camera (Thorlabs
Zelux CS165MU/M). Two lamps provide front and back
illumination. The shadow of the levitated particle is imaged
by the CCD, recording movies of the trapped particle with
a sampling rate of approximately 100 Hz, after cropping the
image. It is worth noting that (see Supplementary Fig. 1)
whereas in optical tweezers the laser beam allows both
particle illumination and trapping (through a high numerical
aperture objective), in our case the laser beam (and lamps
in the perpendicular detection path) are used only for the
particle illumination, aiming at detecting its fluctuations on
QPD (or CCD). The trapping of the particle is carried out
by the acoustic pressure field produced by the transducers
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array. Tracking of the particle is obtained with Python-based
home-made codes, giving the trajectory of the particle center
and the mean particle radius R. The array of transducers
has been assembled following the instructions provided
in Marzo et al. [23] and in the corresponding GitHub
repository [26]. The transducers (Murata MA40S4S), emitting
at f = 40 kHz, are controlled by a suitably programmed
Arduino Mega 2560 Rev3 board generating 64 digital
periodic signals and a printed circuit mounting 32 TC4427
MOSFET [23] to amplify these signals. The phase of each
transducer is changed, according to the chosen shape and
focus position of the trap, by means of a Java software [26].
The circuits are powered by a dc power supply, with voltages
ranging from 16 V to a maximum of 20 V.

B. Modeling of the Acoustic Trap

To realize the acoustic trap, each j th transducer is modeled
as a circular piston, whose far-field acoustic pressure p j at a
target point A(x, y, z) is given by the following equation:

p j = eiφ j M j (1)

with φ j the initial phase of each transducer and

M j = P0Vpp
2J1(κ a sinθ j )

κ a sinθ j

1
d j

eiκd j . (2)

Here, d j is the generic distance of the j th transducer from
the A point, κ = (2π f /c0) is the wave vector, f is the
frequency of the signal emitted by the transducer (40 kHz),
c0 = 346 m/s is the velocity of sound in air, a is the transducer
radius, θ j is the angle between d j and the normal to the array,
J1 is the Bessel function of the first kind, P0 = 0.17 is a power
constant typical of the transducers and Vpp is the voltage sent
by the power supply.

The initial phase angle φ j is chosen in such a way that
all the pressure fields p j are in phase at the same point, the
trap focus, at (x f , y f , z f ) = (0, 0, 2 cm); additional phase
contributions need to be taken in account for the generation
of twin, vortex or bottle traps [22]. In the case of a twin trap
oriented along the x direction [see Fig. 1(c)], an additional π

shift between the initial phases of transducers having x j > x f

and x j < x f , respectively, is used. Once defined all the phases
give a trapping point at the focus, the total pressure field p is
calculated by summing the p j from each transducer, that is,
p =

∑
j p j .

C. Calculation of the Acoustic Force

In the case of spherical particles with radius R smaller than
the acoustic wavelength λ (in our case, λ = c0/ f = 8.65 mm),
a good approximation of the acoustic potential is given by the
Gor’kov potential U [37], [38]

U =
4
3
π R3

[
b1

1
2c2

0ρ0
⟨(p)2

⟩ − b2
3
4
ρ0⟨
(
u⃗
)2

⟩

]
(3)

where p and u⃗ are the incident acoustic pressure and the
velocity fields at the location of the particle. The factors b1 and
b2 are given by the following equation:

b1 = 1 −
c2

0ρ0

c2
pρp

(4)

with c0 and ρ0 the sound velocity and the density in the
medium, cp and ρp the sound velocity and the density in the
particle, and

b2 =

2
(

ρp

ρ0
− 1

)
2
ρp

ρ0
+ 1

. (5)

In the case of harmonic p and u⃗ fields and taking into
account the relation (see (25) in [38])

ρ0
∂ u⃗
∂t

= −∇ p (6)

the Gor’kov potential can be expressed only in terms of the
pressure field and its spatial derivatives

U = K1|p|
2
− K2

(∣∣∣∣∂p
∂x

∣∣∣∣2 +

∣∣∣∣∂p
∂y

∣∣∣∣2 +

∣∣∣∣∂p
∂z

∣∣∣∣2
)

(7)

with

K1 =
1
4

V

(
1

ρ0c2
0

−
1

ρpc2
p

)
(8)

and

K2 =
3
4

V
1

ρ0ω2

ρp − ρ0(
2ρp + ρ0

) (9)

with V = (4/3)π R3 the particle volume and ω the angular
frequency of the pressure wave.

Finally, the acoustic force is obtained as follows:

F⃗ = −∇U. (10)

III. RESULTS AND DISCUSSION

An optical trap is characterized by studying the Brownian
motion of the trapped particle in the confining optical poten-
tial [5], which for small displacements from equilibrium can
be considered harmonic.

The dynamics of the trapped particle are described by the
Langevin equation

m
d2

dt2 x(t) = −kx x − γ
d
dt

x(t) + χ(t) (11)

where m is the mass of the particle, kx is the trap spring
constant, γ is the drag coefficient and χ is a white noise.
For clarity, we have considered only the x direction, but
analogous equations can be written for y and z directions, and
consequently different trap spring constants ky and kz must be
considered. At a low Reynolds number, that is, when viscous
forces on the particles are larger than inertial forces, the inertial
term in (11) can be neglected, giving the overdamped Langevin
equation

dx(t)
dt

= −
kx

γ
x(t) +

√
2D Wx (t) (12)

where D = (kB T /γ) is the diffusion coefficient and Wx (t) is
the white noise term.

The calibration of the trap is obtained by tracking the
trapped particle fluctuations around the trap equilibrium posi-
tion by means of a CCD camera or by means of a 4-quadrant
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photodiode. With both devices, the trap spring constants ki

(i = x, y, z) can be estimated by fitting the signal power
spectra (PS) [5], [27], [28]. The fitting of PS gives also the
pixels to meters (in the case of the CCD detector) or the Volts
to meters (in the case of the QPD detector) calibration factors.

Inspired by the optical tweezers calibration protocols,
we study the dynamics of a levitated spherical particle by using
both video microscopy and the QPD device and then analyze
the obtained trajectories by means of the PS approach. In all
measurements, we used a twin trap. The trap reference frame
[see Fig. 1(c)], is chosen in such a way that the x direction
is the one connecting the two pressure maxima of the twin
trap. The y direction is perpendicular to x and parallel to the
array of transducers, while z is the direction perpendicular to
the array. As already outlined in Section II-A of the methods,
our CCD and QPD detectors are perpendicular to each other,
allowing us to study, for the same twin trap, both the x and
y direction. If we want to choose which direction is observed
on each detector, we can rotate the orientation of the trap by
90◦. Fluctuations in the z direction can be observed with both
devices.

Calibration measurements consist in the study of the posi-
tion fluctuations of the particle while it is levitating in the
trap [39]. We study how the particle position fluctuates around
the trap equilibrium point when subject to a random perturba-
tion. Moreover, we can also displace in a controlled manner
the particle from the trap focus, thanks to the 3-D manipulation
capability of the setup, and study the damped oscillations of
the particle position. In such a way, we are able to measure
both the trap spring constants and provide also an estimation
of the air drag coefficient γ.

For our measurements, we use styrofoam millimeter
spheres. These particles are not sold as laboratory standards,
and their physical properties are not provided by the producer.
However, to calibrate the acoustic trap we need the density of
the material. To this aim, we weighed twenty similar beads on
an analytical balance with a sensitivity of 0.1 mg. By averaging
on all the particles, we estimate a density of ρ = 36±6 kg/m3,
which is compatible with the values reported by other authors
[40], [41], [42].

A. Random Perturbations

In Fig. 2, the PS is calculated by tracking the trajectory of
a trapped bead by means of the QPD detector [Fig. 2(a)] and
the CCD camera [Fig. 2(b)] are shown. PS approach is a very
useful tool for the analysis of the tracking signals because
a periodic motion of the particle appears as a peak in the
spectrum [28].

Here, we show the PS along x (yellow curve), y (red curve),
and z (black curve) directions obtained by tracking a levitated
particle in a twin trap with focus at (x f , y f , z f = 0, 0, 2 cm).
To obtain the PS along x or y on the same detector, the trap
is rotated by changing the signal phases on the transducers.

Peaks at approximately 8 Hz ( fz), 18.5 Hz ( fy), and 32.4 Hz
( fx ) are clearly observed on both devices. In the case of the
QPD detector, in x and y power spectra a small peak at fz

is also observed, probably due to a small asymmetry of the

Fig. 2. Power spectra of spontaneous oscillations of a levitated particle
along the trap reference frame xyz. (a) PS of the signal registered with
QPD and (b) PS of the signal registered with the video camera. Data are
shown both in original units (V2 s in the QPD case and pixel2 s in the
CCD case, left axes) and in calibrated units (m2 s, right axes). Dashed lines
point out correspondence between similar peaks. From data and the harmonic
oscillator model, the trap stiffnesses are calculated as kx = 16 ± 2 mN/m,
ky = 5.2 ± 0.7 mN/m, and kz = 0.97 ± 0.13 mN/m.

bead, inducing a tilt on the particle fluctuations and therefore,
a crosstalk [5] between QPD channels. A similar effect is not
observed in the signals obtained by the CCD device because
the tracking software fits a circle to the particle image and,
thus, any particle asymmetry cannot affect the reconstruction
of the particle trajectory. Due to the limited sampling rate
of CCD (100 Hz) with respect to the QPD (5 kHz), the PS
calculated with CCD signals are in a shorter frequency range,
but retain the most important information, i.e., the frequency
peaks fx , fy , and fz . From these peaks and considering a
simple harmonic oscillator model, ki = 4π2 f 2

i m (i = x, y, z),
the spring constants are obtained as kx = 16 ± 2 mN/m, ky =

5.2 ± 0.7 mN/m and kz = 0.97 ± 0.13 mN/m, as the particle
mass is m = 0.39 ± 0.05 mg. Finally, the PS obtained with
the QPD signals have peaks at frequencies higher than 50 Hz.
As these features are observed also without the particle in
the trap, or even without laser illumination on the QPD, it is
understood that they are periodic spurious signals likely due
to electronic noise.

In Fig. 3(a) the power spectra obtained for particle fluctua-
tions along Y direction are shown at increasing input voltages.
As outlined by the black arrow, an increase of the peak
frequency fy with increasing Vpp is clearly observed. A similar
behavior has been found also for fx and fz . The corresponding
trap spring constants kx , ky , and kz as a function of Vpp are
shown in Fig. 3(b). In the voltage range used, a linear depen-
dence of the ki on Vpp is found, even if a quadratic dependence
of the trap stiffness on Vpp should be observed [37], due to
the p2 term in the Gor’kov potential. It is worth noting that
the voltage range accessible in these measurements is limited
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Fig. 3. (a) Power spectra measured at input voltage ranging from 16 to 20 V for the same trap and particle shown in Fig. 2. The fy oscillation shifts toward
higher values at increasing Vpp. Similar behavior is observed for fx and fz (not shown). The power spectra have been displaced vertically for clarity. The
black arrow is a guide for the eye. (b) Trap stiffnesses kx , ky , and kz as a function of Vpp. A linear dependence on the input voltage is observed in the voltage
range used for measurements. (c) Trap parameters kp and kas as a function of Vpp. While the transversal asymmetry pointed out by kp is approximately
constant at increasing Vpp (orange circles), the trap aspect ratio, pointed out by kas (red squares), increases at increasing Vpp. (d) Distributions of the trapped
particle position. For clarity, they are shown only at the two extreme voltages 16 and 20 V. The red dashed lines highlight the shift (approx. 1 mm) in the
trap equilibrium position at increasing voltage.

by the maximum working voltage of the transducers (20 V)
and by the minimum voltage required to stably trap these
millimetric styrofoam particles (approximately 15–16 V). Due
to this short voltage range, the quadratic dependence of the trap
spring constants cannot be observed, whereas an “effective”
linear dependence is found.

As in optical trapping [43], [44], the symmetry properties of
the trap can be studied by using parameters connected to the
trap spring constants. The parameter kp = 1 − (kx/ky) can be
used to estimate the symmetry on the xy plane. If the acoustic
trap was completely isotropic in this plane, kp should be zero.
We find that this parameter is close to −2, indicating a strong
transversal anisotropy of the trap, due to a corresponding
anisotropy in the confining potential. The trap aspect ratio can
be studied by means of the kas = ((kx + ky)/2kz) parameter.
In our case, we find a quite large value, indicating a prolate
shape of the confining potential and of the trapping region
in the axial direction, which further becomes more prolate at
increasing Vpp [see Fig. 3(c) and (d)]. Note that at increasing
Vpp the acoustic force increases while the particle weight
remains constant. Thus, the trap equilibrium point changes
and, in particular, is located at higher z [Fig. 3(d)].

The Gor’kov potential (7)–(9) shows a dependence on the
third power of the radius. Thus, a correspondent dependence
is also expected on the trap spring constants. To verify this,

we trapped four different particles in the same experimental
conditions (Vpp = 16 V, trap focus at x f , y f , z f = 0, 0, 2 cm)
and measured their fluctuations in the trap. The analysis of
the PS of the particle fluctuations in the trap allowed the
estimation of the trap spring constants, which are shown
in Fig. 4 as a function of R in log-log scale. The depen-
dence of the ki on the third power of the particle radius is
recognized.

B. Induced Perturbations

We induced particle position perturbations by periodically
changing the position of the trap focus. We shifted the focus
by 0.5 mm along x , y, and z directions at 5 s time intervals
and we acquired the consequent damped oscillations of the
particle position.

In the insets of Fig. 5 the tracking signals registered on
the QPD (x direction) and CCD (y and z directions) are
shown.

Note that the faster oscillation is sent on the high acquisition
rate detector (the QPD). The signals are characterized by steps,
whose initial part (approximately 1 s) is an oscillation with
a damped amplitude. After this, the signal becomes similar
to what is observed in the random perturbation case. Thus,
we decided to focus on the first part of the signal and to fit it
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Fig. 4. Dependence of trap spring constants on particle radius. kx , ky , and
kz are shown as a function of R for four different particles. To highlight the
ki functional dependence on the radius R, different models (black solid line
for R3, dashed gray lines for R2 and R4) are plotted as guides to the eye.
The R3 dependence of the spring constants is recognized.

with the damped harmonic oscillator model

y(t) = y0 + A exp
[
−

00

2
(t − t0)

]
cos[ω(t − t0) + ϕ] (13)

where A is the amplitude, 00 = (γ/m) the damping coeffi-
cient, γ the viscous drag coefficient, m the mass of the particle,
ω the angular frequency of the oscillator, t0 the initial time,
ϕ a phase constant and y0 a signal offset. Here, ω is related
to the oscillator natural angular frequency �0 = (k/m)1/2 by
the following relation:

�2
0 = ω2

+
02

0

4
. (14)

By fitting the particle damped oscillations in x , y, and
z directions we can calculate both the trap spring constants
ki = �2

0,i m and also estimate the medium (air) viscous drag
coefficient γ.

In the insets of Fig. 5(a)–(c) the whole signals recorded
along the three x , y, and z directions are shown. The step
structure of the signals is easily recognized. One of the
steps along with its fit (red curve) is also shown for each
direction. The frequency of oscillation, and thus the trap spring
constant, decreases from x to z, in agreement with the results
obtained with random perturbations analysis. By averaging on
the 00 and ω values obtained from the fit of many different
steps, the calculated trap spring constants are kx = 19 ±

3 mN/m, ky = 6 ± 1 mN/m, kz = 1.2 ± 0.2 mN/m, which
are consistent with results obtained by analyzing only the
random perturbations. Moreover, the values of 00 obtained for
each direction can be used to estimate also the average drag
coefficient γ = (2.9 ± 0.8) · 10−6 N·s/m, which has the same
order of magnitude and is 6 times larger than the theoretical
value γ0 = 0.47 · 10−6 N·s/m expected for air at 25 ◦C. Note
that, by averaging γ on the three directions, we model the
particle as a perfect sphere, even if we know that some small
asymmetries are present. This could explain the discrepancy
between our result and the expected value for a perfect sphere.

Fig. 5. Damped harmonic oscillations of an acoustically trapped bead along
(a) x , (b) y, and (c) z directions. The oscillations are induced by periodically
changing the particle position along the same directions. The whole traces
obtained are shown in the insets. In (a) QPD detector is used, while in (b) and
(c) data are acquired with the CCD camera. The steps are fit with a damped
harmonic oscillator model (13) to estimate the oscillator frequency ω and the
damping term 00. An example of the fitting is given (red curve) for each
direction. Note that the time scale is reduced to t − t0 aiming at a comparison
between different step traces. Note also that, going from x to z, ω decreases,
pointing out, respectively, a lower k.

C. Simulation of the Acoustic Trap

To verify the agreement between experimental and theoret-
ical results, we calculated the total pressure field, the Gor’kov
potential, the force fields, the components of the acoustic
forces along the three spatial directions and the trap spring
constants for our 8 × 8 array of transducers.

For the calculations, we consider a particle with radius R =

1.36 ± 0.02 mm, as in our measurements, and we use ρ0 =

1.18 kg/m3 as the density of the medium, ρp = 36 kg/m3 as
the density of the particle material, and cp = 900 m/s as
the sound velocity in the particle. Finally, we used a voltage
supply of Vpp = 18 V.

In Fig. 6(a), a xy map of the Gor’kov potential in the z f =

2 cm plane is shown. The potential shows an elongated shape
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Fig. 6. Calculation of (a) Gor’kov potential and (b)–(d) correspondent maps of the acoustic force for a R = 1.36±0.02 mm bead. The twin trap has been
considered in the calculation. Focus has been set at x f = 0, y f = 0, and z f = 2 cm above the 8 × 8 array. (e)–(g) Calculation of the (e) x , (f) y, and (g) z
components of the acoustic force for the same bead. The trap spring constants kx , ky , and kz have been calculated by a linear fit of the force in the trapping
region. Note that in (g) also the weight of the particle and the buoyancy have been taken in account. For this reason, the trapping point height is below z f
and located at approximately 1.5 cm.

which explains the anisotropy found in the transversal trap
spring constants. The most stable point is at the focus.

By calculating the gradient of the Gor’kov potential, it is
possible to obtain the maps [Fig. 6(b)–(d)] of the acoustic force
in the x , y, and z direction. In the case of the z direction,
we have calculated the total axial force, which takes into
account also the gravity and the buoyancy of the particle. From
the maps, it is clear the anisotropic character of the force field,
which has a different structure both in the transversal and axial
plane.

The origin of the anisotropic trapping in holographic acous-
tic tweezers is in the anisotropic shape of the pressure
field [22]. Forces along the x-direction are due to gradients of
the pressure field, whereas forces along y and z directions are
due to gradients of the velocity field [22], with velocity itself
obtained as the gradient of the pressure field (6). Moreover,
along z also gravity and buoyancy control the trap equilibrium
position. Thus, anisotropy in the trapping forces along the
three spatial directions is expected and confirmed by the
anisotropy of the trapping potential [see Fig. 6(a)].

To individuate the trap equilibrium point and to calculate
the trap spring constants, we can plot the Fx , Fy , and Fz

components of the acoustic force along x , y, and z directions,
respectively. The point where the force vanishes with a nega-
tive slope is a stable equilibrium point and corresponds to the
trap position. By linearly fitting the curves at the trap position
we can determine the trap spring constants. In Figs. 6(e)–(g)
the forces (red curves), the linear fits (dashed black lines), and
the trap spring constants calculated (insets) are shown. The
values obtained agree fairly well with the measured values,
confirming that the Gor’kov potential approximation can be
used to model the acoustic trapping of millimetric particles in
the air with this setup.

IV. CONCLUSION

In this work, we have presented a calibration procedure for
an acoustic tweezers set-up based on a flat array of transducers.
The procedure is inspired by protocols used for optical tweez-
ers. The trap spring constants and the medium drag coefficient
have been measured by using both random perturbations
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and controlled displacements from the equilibrium position.
We have shown that the Gor’kov potential and the acoustic
force calculated from it are a good approximation to acoustic
forces that come into play in real setups. We think that these
protocols, sharing the same tools used for optical tweezers,
may bridge the gap between the two optical and acoustic
trapping communities, paving the way to the realization of
hybrid setups where both light and sound can be used to trap
particles in the air.
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