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Abstract 23 

With the advent of the Global Precipitation Measurement (GPM) mission and the associated 24 

Ground Validation campaigns, there has been a strong development of studies related to dual-25 

frequency and more recently to triple-frequency radar. In this context, one requirement is that at 26 

least one of the radar frequencies operates in the Rayleigh regime while the others have to ensure a 27 

measurable difference in reflectivities. A common radar coupling for triple frequency systems is the 28 

Ku-, Ka-, and W-band. 29 

Multi-frequency radars, in addition to the classic single-frequency reflectivity (SFR) 30 

measurement for each frequency, allow a further parameter, the dual-frequency ratio (DFR) 31 

defined as the ratio between two reflectivities at two frequencies. Referring to the same 32 

measurement volume, and for a fixed microphysical ice particle model, SFR and DFR allow to 33 

better constraint parameters of the particle size distribution, such as the mass-weighted mean 34 

diameter (Dm) and the normalized intercept parameter (Nw) when a normalized gamma distribution 35 

is assumed. 36 

This paper deals with various topics with the preliminary purpose of assessing the accuracy 37 

of the ice water content (IWC) estimate obtained using SFR and DFR methods to evaluate the 38 

improvements brought by the use of DFR. To pursue this goal, a simple microphysical model was 39 

used to choose the form of the SFR and DFR estimation algorithms and to evaluate their 40 

performances in a simulated framework. 41 

The most important aspect revealed by the study is that the cloud water content (CWC) plays 42 

a very important role both in the mass vs. diameter relationship as well as in the IWC estimation. 43 

The combined use of specific radar algorithms according to the different CWC values has shown 44 

notable improvements for the IWC estimation. Since CWC is not an operational measure, a 45 

substitute parameter was sought in the (DFRaou, DFRwoa) domain defined by the Ka- and Ku-band 46 

and by the W- and Ka-band measurements. This new parameter provides improvements similar to 47 

those obtained with the use of CWC.  48 
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Data from the OLYMPEX field campaign that include an airborne triple-frequency radar at 49 

Ku-, Ka-, and W-band, as well as airborne measurements of in-situ bulk microphysics and 50 

meteorological parameters were used to validate the robustness of the methodology. 51 

  52 
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1. Introduction 53 

Upper-tropospheric ice clouds play an important role in affecting the global radiation budget 54 

and climate system, as shown by satellite observations and general circulation models. Ice 55 

microphysical processes are an important part of cloud and precipitation formation and then of the 56 

water cycle since most surface precipitation begins as ice particles (Field and Heymsfield, 2015). In 57 

light of these considerations, the importance of accurately estimating ice water content (IWC), 58 

which is a central parameter for cloud microphysical studies and for understanding the effects of 59 

clouds on the global radiation budget and climate system (Stephens, 2005), appears evident. 60 

IWC is defined as the ice mass per unit volume of atmospheric air and it is generally 61 

estimated as the particle’s mass weighted integral of measured particle size distributions (PSDs). An 62 

ice crystal model expressing the crystal mass as a function of the particle’s diameter is usually 63 

assumed, in which the particle’s diameter is the diameter of an equivalent sphere that describes the 64 

volume occupied by air and ice. 65 

In the last decade, several measurement campaigns aimed at characterizing the global 66 

atmospheric ice mass were carried out in different climatological regions. In these campaigns [i.e. 67 

MC3E (Jensen et al., 2016), GCPEX (Skofronick-Jackson et al., 2015), IPHEx (Barros et al., 2014), 68 

OLYMPEX (Houze et al. 2017)], aircrafts were used as platforms for remote sensing instruments 69 

and for in-situ measurements of the microphysical, thermodynamic, and kinematic properties of ice 70 

crystals. In this way, the characterization of the number and size of ice particles within clouds can 71 

be performed both directly with in-situ aircraft probe observations and indirectly with active 72 

remote-sensing instrumentation. Near-coincident and near-simultaneous recordings of radar 73 

observations in conjunction with in-situ probes sampling of ice crystals form an ideal framework for 74 

testing combined retrieval techniques that make use of cloud radar observations. 75 

Due to their short wavelengths, cloud radars can be quite sensitive to ice crystals and can be 76 

designed to have high temporal and spatial resolutions operating with antennas that have narrow 77 

beam widths while maintaining a reasonable size. For this reason, especially for airborne and space-78 
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borne platforms, millimeter-wave radar has emerged as an important tool in the identification and 79 

characterization of cloud ice crystals as well as their quantification in terms of IWC and snowfall 80 

rate estimations. 81 

The strong variability in the shape, density, and size of ice crystals contributed to 82 

investigating an approach that makes use of dual-frequency radars, which in principle offer one 83 

more measurement in the same visited resolution volume than in the single-frequency reflectivity 84 

(SFR) approach (Matrosov et al. 2005). For the dual-frequency ratio (DFR) approach, the choice of 85 

the two frequencies is made in such a way that for one, scattering is in the Rayleigh regime in terms 86 

of the monotonic increase of backscatter efficiency with particle size while for the other it is in the 87 

Mie regime. In this context, it is possible to define the DFR as the ratio of the equivalent radar 88 

reflectivity factors at two different selected frequencies (Matrosov et al., 2005; Liao et al. 2016). 89 

This new parameter can be used in rain to estimate Dm, which is defined as the ratio of 4th moment 90 

to 3rd moment of the PSD expressed in terms of the liquid equivalent median mass diameter (Liao 91 

et al. 2016).  92 

The DFR technique represents an important step forward in realistically assessing ice cloud 93 

parameterization and has greater potential for estimating IWC. Nevertheless, the limit determined 94 

by the fact that the equivalent reflectivity factor depends on the backscattering cross-section of the 95 

ensemble of the particles inside the resolution volume, and only indirectly on their mass through the 96 

particle’s dielectric constant, remains unavoidable. Consequently, any IWC estimates based on 97 

radar reflectivity factors will show high uncertainty, thus making it difficult to choose a single ice 98 

model to represent the actual population of ice particles. 99 

The problem would be relieved, as is the case for raindrops, if there were an appropriate 100 

particle habit that well represents the majority of the ice particle population. Unfortunately, in-situ 101 

observations of ice cloud particles have consistently shown both their complex geometry and the 102 

presence of different habits in the same sampling volume. The size of ice cloud particles ranges 103 

from microns to centimeters and their habits vary from simple pristine ice crystals to extremely 104 
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irregular aggregates (Heymsfield et al., 2002; Heymsfield, 2003). This variability, due to changing 105 

growth regimes in different temperature conditions, generates significantly different microwave 106 

scattering properties, and no reliable method yet exists to directly estimate ice habits from 107 

microwave remote sensing. 108 

To quantify scattering properties, assumptions about ice habits must be made that can result 109 

in large uncertainties in derived estimates of IWC. Consequently, in recent years many studies have 110 

been devoted to investigating the scattering properties of ice crystal shapes using more realistic 111 

modelling. In some cases, this has allowed the creation of databases providing scattering parameters 112 

such as backscatter cross-section and extinction coefficient as a function of particle size for various 113 

ice types (Tyynelä et al., 2011; Leinonen et al., 2012; Hogan and Westbrook, 2014; Ori et al., 2014; 114 

Leinonen and Szyrmer, 2015; Kuo et al., 2016). 115 

Both scattering simulations using soft spheroid particle models and databases for different 116 

ice habits have shown that the combination of Ku-, Ka-, and W-band frequencies could be of 117 

particular relevance for discriminating between different ice habits (Petty and Huang, 2010; Kneifel 118 

et al., 2011; Leinonen et al., 2012; Kulie et al., 2014; Tyynelä and Chandrasekar, 2014; Leinonen 119 

and Moisseev, 2015; Leinonen and Szyrmer, 2015). The domain defined by the DFRs between Ka- 120 

and Ku-reflectivity (DFRaou) versus the DFRs between W- and Ka-reflectivity (DFRwoa) revealed a 121 

separation between the aggregate and the spheroid particle models. Therefore, thanks to the ability 122 

of classifying various ice types, the combined use of the triple-frequency radar reflectivity 123 

signatures is expected to provide more accurate quantitative estimations of ice water content. 124 

However, it is worth noting that DFRaou vs. DFRwoa  trend for dendrites and needle aggregates has 125 

shown a highly non-monotonic behavior, leading to have two values of DFRaou for a fixed DFRwoa 126 

(Petty and Huang, 2010). 127 

This study is aimed at developing IWC algorithms based on DFR methods and evaluating 128 

their accuracy compared to SFR algorithms. A very important result of the study is to highlight the 129 

benefit that the knowledge of cloud water content (CWC) has both in determining the mass-size 130 



7 

 

relationship and in estimating IWC. The combination of several estimation algorithms, each of them 131 

tuned according to some CWC intervals, shows a better performance than using a single algorithm. 132 

As CWC is usually unavailable in operational contexts, a replacement parameter in the DFR 133 

domain was identified, making the proposed methodology independent of the availability of 134 

ancillary information. Data from the OLYMPEX field campaign that include an airborne triple-135 

frequency radar at Ku-, Ka-, and W-band, as well as airborne measurements of in-situ bulk 136 

microphysics and meteorological parameters, were used to validate the results. 137 

The paper is organized as follows: Section 2 describes the equations governing the scattering 138 

properties and the bulk cloud microphysics of ice particles. Section 3 gives an overview of the field 139 

measurement campaign from which the in-situ data were extracted for algorithm validation. Section 140 

4 provides a summary of the most common empirical mass-size relationships for deriving IWC and 141 

the relative results obtained by applying them to the field measurements. Section 5 shows 142 

algorithms found relating IWC measurements to the coincidental PSD measurements from the field 143 

campaign without assuming any predetermined relation. Section 6 describes IWC algorithms based 144 

on the reflectivity measurements and in combination with the DFRs. Section 7 evaluates the 145 

behavior of algorithms using both simulated and experimental measurements of collocated triple-146 

frequency radar observations and in-situ microphysical measurements of IWC. Section 8 describes 147 

a new way of looking at the DFR domain and, more precisely, how use it to obtain improved 148 

estimates of bulk parameter such as the IWC. Finally, the summary and conclusions are drawn in 149 

Section 9.  150 

 151 

 152 

2. Bulk cloud microphysics and scattering properties of ice particles 153 

Basically, a single-frequency weather radar observes any liquid or solid hydrometeor 154 

through the backscattered power it receives after transmitting electromagnetic radiation in the 155 
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atmosphere. The received power P(r), which is a function of the distance between the radar and the 156 

ensemble of hydrometeors (r), is proportional to the measured radar reflectivity factor ξm(r) through 157 

 ( )rL
r
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rP mξ

2
)( =  (1) 158 

where C is the radar constant characterized by the radar system properties and L is the loss factor 159 

that take into account the attenuation of signal propagating through a medium filled by 160 

hydrometeors. An equivalent radar reflectivity factor ξe(r) is defined as: 161 
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where N(D) is the particle size distribution (PSD), σ(D) is the backscattering radar cross-section of 163 

particles with diameter D, Kw is the complex dielectric factor of water, and λ is the radar 164 

wavelength. One key element in (2) is the PSD, which is defined as the number of particles per unit 165 

volume per unit size interval (D to D+ΔD). A gamma distribution model has been successfully used 166 

to adequately describe many of the natural variations in rain of the particle size distribution (Ulbrich 167 

1983). In nature, N(D) is characterized by a wide variability. To avoid a statistical dependence of 168 

the gamma distribution parameters, Testud et al. (2001) proposed scaling the raindrop size D and 169 

N(D) in such a way that PSDs are independent of the mass-weighted mean diameter (Dm) relation 170 

and liquid water content (LWC). Delanoë et al. (2005) extended this concept to ice particle size 171 

distribution. Therefore, a normalized gamma function is described in terms of three physical 172 

quantities: the normalized intercept (Nw), which is a function of the LWC; the mass-weighted mean 173 

diameter (Dm); and the shape factor µ . The relation is represented by the equation 174 
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and Dm for liquid is the ratio between of the fourth to the third moment of the PSD 179 
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where ρw is the density of water and LWC is proportional to the third moment of the PSD as follows 183 
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Therefore, the statistical distribution of the cloud particle size in the radar-sampled volume is 185 

characterized by the two parameters Nw and Dm if µ  is obtained through some assumptions. 186 

Williams et al. (2014) showed that for rain µ  is not totally independent by Nw and Dm, and it can be 187 

related to them through an empirical relationship. More recently, Borque et al. (2019) found a 188 

similar relationship for ice crystals. Hence, using a statistically µ-Dm relationship for ice phase, the 189 

unknown parameters characterizing the PSD can be reduced to two and therefore they can be found 190 

solving a system of two independent equations. Moreover, atmospheric attenuation from 191 

hydrometeors, cloud water, and water vapor generally increases with radar frequency. However, 192 

analysis on different ice types show that attenuation is quite small at the Ku- and Ka-bands but can 193 

be significant at W-band. Thus, ξe in general must take the attenuation into account: 194 

 ( ) me rA ξξ =  (9)  195 
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where A(r) is the two-way path attenuation of the wave at distance r. 196 

IWC is a central parameter for cloud microphysical studies for its fundamental implications 197 

with regard to the effects on the global radiation budget and climate system. IWC is defined as the 198 

cloud mass of ice per unit volume of atmospheric air 199 

 )()()(
3

0

−
∞

∫= mgdDDNDmIWC  (10)  200 

where m(D) is the mass of ice crystals having diameter D. In light of what has been argued above, 201 

equation (10) can be represented as a function of at least three variables, Nw, Dm, and ρe, which is 202 

the density of the mixture (or effective density) of the ice particle. Therefore, to describe ice cloud 203 

integral properties one needs to know at least three parameters or know relations among some of 204 

these parameters to decrease the degree of freedom. Unfortunately, no reliable relationship between 205 

ice crystals’ size and particle density is known. 206 

An appropriate formulation of hydrometeor microphysics is a prerequisite for modeling 207 

radiative properties. In recent years, a suitable formulation to approximate more realistic ice crystals 208 

when computing their microwave-scattering properties was proposed in the Discrete Dipole 209 

Approximation (DDA) (Liu 2008; Kulie et al., 2010; Tyynelä et al., 2011; Botta et al., 2011; 210 

Leinonen et al., 2012). From a practical point of view, within the same cloud, the structure of each 211 

single ice crystal is random and unpredictable, as well as the ice crystals’ habits, which occur in a 212 

virtually limitless variety of geometries. This behavior arises from the fact that an ice crystal is 213 

affected by different environmental conditions as it travels through the cloud, leading to the 214 

conclusion that it seems unrealistic to assume that only a single crystal shape is present within a 215 

cloud. It follows that the scattering properties of a radar measurement volume containing an ice 216 

crystal ensemble will be the result of individual backscattering from different ice shapes. 217 

Unfortunately, there is no single parameter that can give comprehensive information about the 218 

particles’ microphysical properties. 219 
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An alternative approach is the soft sphere approximation, i.e. those particles that thanks to 220 

their irregular low density, are optically “soft”, namely their equivalent refractive indices are close 221 

to 1, that provides a means to compute the scattering properties of a single ice particle having the 222 

shape of a sphere or a spheroid. This simplified method is computationally very efficient. In this 223 

approach, the soft particle is assumed to consist of a homogeneous ice and air mixture where its 224 

effective density ρe, is less than the density of pure ice (Matrosov, 1998). It is worth noting that 225 

while the soft spheroid assumption is acceptable for Ku-band and possibly even for Ka-band, it is 226 

not always appropriate for W-band because can lead to a crude approximation. 227 

With the advent of the GPM era, these retrieval methods have been applied to dual-228 

frequency space-borne radars that made possible to infer the microphysical and radiative properties 229 

of ice clouds (Ni et al. 2019), avoiding the uncertainty related to effect on the radar signal due to the 230 

melting layer experienced by ground-based observations. The use of two radar frequencies is 231 

appealing because it allows defining a dual Dual Frequency Ratio (DFR) as the ratio between the 232 

two reflectivity factors ξ1 and ξ2, where 2 and 1 represent the lowest and the highest frequency, 233 

respectively, 234 
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 (11) 235 

that shows a predictable relation with Dm and has the advantage of being quite immune to variations 236 

of particle density ρe, Nw, and µ. Consequently, the use of DFR can give independent estimates of 237 

hydrometeor effective size with a greater precision with respect to more established radar methods 238 

(Matrosov 1998; Liao et al., 2016).  239 

From (2) and (3), it would seem that DFR is independent of Nw and, once µ  is fixed, it is a function 240 

of Dm alone. However, in practice, equation (11) is the result of different effects due to the 241 
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polydisperse ensemble of ice particle habits and masses, and therefore the quantity Dm can be 242 

considered a statistical parameter (Sy et al., 2020). 243 

In recent years, modeling studies based on monodisperse hydrometeor habits have observed 244 

that, since backscattering cross-sections are a function of frequency, by combining DFRs computed 245 

using different pairs of frequencies, it may be possible to define a domain in which the different 246 

hydrometeor classes occupy distinct regions (Liu 2008; Kneifel et al., 2011). More specifically, 247 

such domain is usually defined by the DFR computed using Ka and Ku bands and the DFR 248 

computed using W and Ka band, represented along the ordinate and abscissa, respectively. More 249 

recently, although in qualitative form, verification studies have been conducted using airborne radar 250 

observations with coincident airborne microphysical measurements that have confirmed the 251 

theoretical results obtained from the simulation models (Kulie et al., 2014; Chase et al., 2018). 252 

 253 

 254 

3. The OLYMPEX field measurement campaign 255 

In order to pursue the goals of this study, an extensive use was made of the data collected 256 

during the Olympic Mountains Experiment (OLYMPEX). This measurement campaign, part of the 257 

Global Precipitation Measurement (GPM) Mission Ground Validation program, took place between 258 

November, 2015, and January, 2016, and was focused on the characterization of mid-latitude frontal 259 

rain and snow over the complex terrain of the Olympic Peninsula region of Washington State 260 

(Houze et al. 2017). 261 

During OLYMPEX, two aircrafts were used: the University of North Dakota (UND) 262 

Citation and the National Aeronautics and Space Administration (NASA) DC-8. The UND Citation 263 

was equipped with state-of-the-art instrumentation to give the best possible representation of the 264 

cloud microphysical conditions. The instruments include, among others, the NCAR Particle Probes 265 

(NPP), providing in-situ PSDs over the size range from about 50 µm to 3 cm; the Nevzorov (NEV) 266 
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probe, providing both the total water content (TWC) and the liquid water content (LWC); the King 267 

Probe giving a further measure of the liquid water content (KLWC); the Rosemount ice detector 268 

(RID) and the Cloud Droplet Probe (CDP), giving the cloud liquid water content (CWC) by 269 

measuring the concentration and size distribution of cloud droplets in the size range from 2-50 µm. 270 

Actually, NPP combines spectra obtained from two optical array probes: the array of a 2-271 

Dimensional Stereo (2DS) probe (Lawson et al., 2006) and the High Volume Precipitation 272 

Spectrometer Version 3 (HVPS3) probe (Heymsfield et al., 2015; Giangrande et al., 2016) both 273 

equipped with antishattering tips and processed using the technique described in Field et al. (2006). 274 

The Nevzorov probe (Korolev et al., 1998) is a constant-temperature hot-wire probe and consists of 275 

two separate sensors, one for measuring LWC and the other for TWC. The King probe is an 276 

additional wire-based probe that alters its resistance as the encountered liquid water evaporates 277 

whose variation provides the KLWC. The RID is an oscillation probe whose operating principle is 278 

determined by the decrease of the vibration frequency caused by the ice accumulation above the tip 279 

of the sensor providing atmospheric icing rates and cloud liquid water contents. The CDP is a 280 

forward-scattering optical spectrometer in which cloud droplets passing through a focused beam of 281 

a diode laser can be detected allowing to evaluate the effective droplet radius, the total droplet 282 

number concentration and the cloud water content. 283 

The DC-8 carried the Airborne Precipitation Radar Third Generation (APR3). APR3 is a 284 

triple-frequency radar operating at Ku-, Ka-, and W-band obtained as an enhanced version of the 285 

APR2 radar (Sadowy et al., 2003) with the addition of the W-band channel. The radar looks 286 

downward and scans its antenna across track from 25° to the left and right of nadir once every 2 287 

seconds and with the range gates 30 m apart (Tanelli et al., 2006). 288 

Validation of the reflectivity calibration was performed against the ocean surface return 289 

(Tanelli et al., 2006). Moreover, in the highest part of the cloud, where there are usually very small 290 

ice particles for which it is possible to hypothesize a Rayleigh scattering for all the three radar 291 
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frequencies, the reflectivities were compared with each other and showing a spread of about 1 dB. 292 

Furthermore, with these reflectivity measurements, the distribution as a function of the bin position 293 

was found for determining the minimum detectable signal at each frequency and verified the 294 

absence of bias in the multifrequency radar observations, i.e. the power ratios between the bands 295 

Ku/Ka, Ka/W, and Ku/W. 296 

During the OLYMPEX campaign, the DC-8 aircraft flew above the clouds at mostly 297 

constant altitude (10 km) while the Citation flew at lower altitudes, performing constant altitude 298 

flights through the clouds. The flight plans ensured that the APR3 intersected the Citation to allow  299 

near-coincident measurements of radar and microphysical data. 300 

In this study, for a more accurate and in-depth investigation of cloud ice microphysical 301 

conditions the combined measurements of the NPP, the Nevzorov, the King probes, the RID and 302 

CDP are used to evaluate the contribution of the triple-frequency radar to the knowledge of the bulk 303 

cloud properties with particular attention to the ice water content estimation. 304 

 305 

 306 

4. Ice water content and particle size distribution 307 

Equation (10) shows that the IWC can be derived from the distribution of ice particle sizes 308 

once the mass-size distribution within each particle size is known. In practice, depending on the 309 

instrumentation used, the hydrometeors are detectable within finite size intervals ranging from a 310 

minimum (Dmin) to a maximum diameter (Dmax). Then, (10) is practically obtained as a sum as 311 

 ∑ ∆=
max

min

)()(
D

D

DDmDNIWC . (12) 312 
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Due to the irregular shape of ice crystals, the definition of D, for which no standard convention 313 

exists, plays a critical role as it can change the bulk cloud properties when they are determined from 314 

observed PSDs. In this study, D is considered to be the diameter of the sphere that entirely contains 315 

the ice particle. This implies that, from a practical point of view, D is not directly related to the 316 

particle’s mass m and, consequently, it is necessary to use empirical m-D relations. 317 

In-situ measurements have indicated that the density of snowflakes commonly decreases 318 

with their size. The empirical expressions most frequently used to predict the mass for various types 319 

of ice crystal shapes are expressed through a power law (Heymsfield et al., 2004; McFarquhar et al., 320 

2007; Brandes et al., 2007) as 321 

 )(
6

3 gaDDm b

e == ρπ
 (13)  322 

where m is again in grams, D is in centimeters, ρe is the particle effective density, a is the pre-factor 323 

coefficient (in cgs units), and b is the exponent of the power law. The ice hydrometeor mass usually 324 

increases with size more slowly than its volume, thus requiring the density ρe to be inversely 325 

proportional to the diameter D and therefore, the exponent b generally is less than 3. The 326 

coefficients in (13) on average depend on the ice crystal habits, temperatures, and particle sizes that 327 

are present in the cloud, contributing to a wide set of different mass-diameter relationships. Specific 328 

relations for each distinct habit could not find an effective application in the retrieval of the mass 329 

because, in a cloud, the habits of the ice crystals are not known a priori and, in reality, they are of 330 

mixed and complex types as they arise from the multiple meteorological conditions that exist in 331 

clouds. 332 

For a general characterization of the in-situ measurements collected from the Citation 333 

aircraft during the OLYMPEX campaign, an appropriate way is to start by observing to what extent 334 

the classical m-D relationships are able to describe the bulk property behavior. For this purpose, it 335 

was convenient to choose a set of m-D relationships that are general enough to encompass the 336 

widest spectrum of weather conditions. Because of its ability to represent a wide range of habits 337 



16 

 

such as aggregates of unrimed bullets, columns, side planes, and quasi-spherical particles, the 338 

extensively used Brown and Francis (1995) relationship (hereafter BF95) was selected. In addition, 339 

the two parametrizations put forth by Heymsfield et al. (2004) were used because of their capability 340 

to describe the variability of the conditions encountered by ice crystals in convective and stratiform 341 

storms. The first of the two relations (hereafter H04syn) was found from synoptic systems that are 342 

typically responsible for winter snowfall, whereas the second one (hereafter H04cnv) was 343 

originated from convective clouds. A further algorithm by Heymsfield et al. (2010) was used in this 344 

analysis (hereafter H10all). The H10all algorithm was found by imposing the condition that it had 345 

the best performance regardless of values of the IWC and temperature present in the cloud. It was 346 

developed using a large dataset of PSD and IWC aircraft observations, obtained by merging six 347 

datasets collected during distinct campaigns conducted under different weather conditions. 348 

Eventually, the additional relationship for the unrimed or lightly rimed aggregate snowflakes 349 

obtained by Szyrmer and Zawadzki (2010) (hereafter SZ10ave) was used in this paper. In this case, 350 

the coefficients of (13) were found by averaging the coefficients a and b of nine snowflake events 351 

regardless of the ground temperature. The nine relationships were derived from a dataset of low-352 

density snow aggregate measurements collected by a ground-based optical disdrometer. Table I 353 

summarizes the coefficients a (in cgs units) and b of (13) corresponding to the selected m-D 354 

relations described above. Each entry in Table I represents a pair of parameters in (13) that we 355 

indicated with the vector pLI, where “p” and subscript “LI” stand for parameters and from the 356 

literature, respectively. As a result, when we put (13) into (12) we have an IWC(PSD, pLI) estimate 357 

that depends on a PSD and coefficients pLI. In general, the notation IWC(x, py) indicates the IWC 358 

estimate obtained using input data identified by the string x and the vector of coefficients py. 359 

The main problem to validate any ice microphysics parameterization is to verify the 360 

performance of its outputs with respect to the real environmental measurements keeping in mind 361 

that each measuring instrument has its limitations and sources of error. Unfortunately, this one still 362 
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remains a long-standing experimental problem exacerbated by the fact that ice is mostly present in 363 

mixed-phase and the separation of ice from water presents technical difficulties.  364 

Cloud IWC from airborne measurement is derived directly by bulk microphysical probes 365 

and during the OLYMPEX campaign, the Citation aircraft was provided with state-of-the-art 366 

instrumentation for making the most reliable cloud microphysical measurements. 367 

The cloud spectrometer and impactor (CSI) provides a good measure of IWC after 368 

separating cloud droplets and ice crystals from interstitial water vapor (Twohy et al., 1997). 369 

Unfortunately, it could not be used because during the campaign it was not trustworthy. 370 

In the context of the Olympic measurement campaign it was evaluated that the most suitable 371 

and trustworthy aircraft instruments to characterize the cloudy environmental physical conditions 372 

were the King probe for the liquid water content (KLWC) and the Nevzorov probe for the total 373 

water content (TWC). Therefore, in cloud regions with temperatures below the freezing point, the 374 

positive values of the differences 375 

 )()( KingKLWCNevzorovTWCEIWC −=  (14) 376 

were taken as measure of the environmental Equivalent Ice Water Content (EIWC). In this way, it 377 

was possible to overcome the lack of the IWC measure provided by the counterflow virtual 378 

impactor (CVI) that was not functioning properly during the OLYMPEX field campaign. It should 379 

be emphasized that EIWC will be affected by an error that depends on the errors of the King and 380 

Nevzorov probes that have unknown magnitudes as they depend on the environmental conditions 381 

encountered. In particular, these two errors are of opposite sign: in fact, the first is determined by an 382 

overestimation of the LWC provided by the King resulting from the interaction of ice crystals with 383 

hot wire (Cober et al., 2001), while the second results in an underestimate of the Nevzorov IWC by 384 

a non-negligible amount when ice particles are relatively large D>4 mm (Korolev et al. 2013). In 385 

fact, even with the deep dish probe, they can bounce out of the collection cone or can hit the edge of 386 
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the inlet and fragment, with the fragments not entering the inlet where they are sensed. This 387 

situation is such that underestimation is minimal at the lower IWCs and increases as the IWC 388 

increases reaching factors greater than 2 (Abel et al. 2014). Within the above mentioned caveat, 389 

considering the OLYMPEX dataset, we compared the calculation of IWC(PSD, pLI) using (12) with 390 

measurements of (14). For this comparison, only those samples collected at temperatures below 0 391 

°C were selected which, as shown in Figure 1, represent the condition under which the vast majority 392 

of airplane measurements were carried out. Besides, we considered only those PSDs that registered 393 

at least one count for three size bins larger than 137.5 microns (fifth bin) that is the bin closest to 394 

150 microns (Kingsmill et al. 2004). Following this selection procedure, we found a total of 100220 395 

of 1-s PSDs with a valid measure of EIWC.  396 

Table II depicts the error performance of the various m-D parameterizations of Table I with 397 

respect to the reference EIWC. To quantify the performance of each algorithm the following merit 398 

factors are considered: the normalized standard error (NSE) defined as the root mean square error 399 

normalized to the true mean value of the entire dataset, the normalized bias (NB) as the mean 400 

difference normalized to the true mean value, for which a negative value means an overestimation 401 

of the estimated value, and the Pearson correlation coefficient (ρ) as the measure of the strength of a 402 

linear relationship between the two variables being compared.  403 

The analysis shows a good behavior of ρ for all the algorithms ranging between the lower 404 

0.7582 of the H04cnv and the upper 0.8793 of the SZ10ave whereas NSE and the NB exhibit poor 405 

behavior for all the algorithms, with BF95 having the lowest values of NSE and NB equal to 1.36 406 

and -0.87, respectively. Figure 2 shows the 2-D histogram between the direct EIWC measurements 407 

versus the corresponding estimate IWC(PSD,BF95) for the entire dataset. 408 

These comparisons are mainly affected by the assumptions made regarding the ice crystal 409 

density and its habit, which are, among other things, influenced by temperature and by riming. 410 

Riming is a process involving the collection of supercooled water droplets of few microns in 411 
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diameter onto the ice surface. To get insights on the performance of the different algorithms with 412 

respect to the meteorological conditions, in situ ancillary measurements of temperature and CWC 413 

were taken into consideration.  414 

For each frequency group, a and b parameters in the m-D relation were found by minimizing 415 

the difference between the IWC obtained by (12) and the measured EIWC. By comparing the 416 

various a and b parameters obtained (not shown), we verified a substantial similarity among them 417 

with small differences among the respective merit factors. From this result, we deduced that the 418 

IWC measurements alone do not allow discriminating against the different ice conditions. 419 

The CDP provides a quantitative measurement of the liquid content and therefore it can 420 

facilitate a more precise partitioning. In this perspective, to evaluate the effect of riming on ice mass 421 

relations, the CDP was used as an independent measure of the CWC produced widely by the small 422 

supercooled drops (2-50 µm) that are present in very large numbers in mixed-phase clouds. These 423 

measurements are generally affected by underestimation due to non-sampling of the largest drops 424 

and by a bias that is strongly concentration-dependent, both of unknown magnitudes. 425 

Taking into account the distribution of the CWC measurements, an arbitrary subdivision was 426 

made into six class according the intervals: i) CWC≤10-5 g/m-3, ii) 10-5<CWC≤10-3 g/m-3, iii) 10-
427 

3<CWC≤10-2 g/m-3, iv) 10-2<CWC≤10-1 g/m-3, v) 10-1<CWC≤1 g/m-3, vi) CWC>1 g/m-3. The 428 

behavior of the mean difference between the in-situ measurements of EIWC with the respective 429 

estimates obtained by each pLI as a function of the cloud temperature and the CWC were analyzed. 430 

Figure 3a shows the trend of the mean differences between EIWC measurements and IWC(PSD, 431 

pLI) as a function of temperature. It is evident that for temperatures lower than -30 oC the 432 

performance of each algorithm is quite good and has almost negligible bias, with H04cnv 433 

presenting the best behavior. As the temperature increases, each algorithm has an increasing 434 

negative mean difference indicating an overestimation with respect to the corresponding in situ 435 

measurements. In this context H10all and BF95 have the least variation with temperature and the 436 



20 

 

latter shows the best performance. Figure 3b summarizes the analysis of the behavior of the five 437 

algorithms in the presence of cloud water described in terms of CWC. Moving from almost dry 438 

environments (10-5 g/m3) to increasing degrees of water content, the algorithms reveal different 439 

behaviors with the common tendency to overestimate EIWC, similarly to the increase in 440 

temperature of Fig. 3a. In addition, in this case BF95 performs better, presenting the lower 441 

overestimation. Furthermore, it should be stressed that for CWC>0.1 g/m3 the algorithms show a 442 

strong overestimation with the only exception for H04cnv. This overestimation could be because of 443 

the known Nevzorov probes deficiencies (Korolev et al. 2013; Abel et al. 2014). 444 

 445 

 446 

5. Tuned IWC algorithm for the OLYMPEX dataset  447 

For a more specific comparison between the IWC estimates and the EIWC measurements, it 448 

is convenient to tune the parameters of (13) by minimizing the differences between )ˆ IWC(PSD, ppp  449 

and EIWC, where the subscript pp indicates that parameters are obtained using experimental data 450 

from a particle probe. The estimated coefficients ppp̂  were obtained by considering coincident 451 

observations at all temperatures below 0 oC. 452 

For the OLYMPEX experimental dataset, the coefficients ppp̂  are a=1.92×10-3 and 453 

b=2.044, while the performance of )ˆ IWC(PSD, ppp  in terms of the merit factors is characterized by 454 

NSE=0.53, NB=0.13 and ρ=0.8735. 455 

Following the procedure used above, the a and b parameters were found for each of the 456 

considered CWC intervals, allowing computing )ˆ ,IWC(PSDci ci

ppp  where ci identifies one of the 457 

CWC class intervals defined above. Table III shows the parameters for the different CWC classes, 458 
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while Fig. 4a shows the exponent b as a function of the prefactor a (black star-ring) highlighting an 459 

evident relationship between the two parameters. This relationship can be expressed by 460 

interpolating the experimental parameters with a third-degree polynomial function as 461 

 24.2603010956.210239.5 2638 −+⋅−⋅= aaab . (15) 462 

On average, Fig. 4a depicts the influence of riming process on the m-D relation for the entire 463 

period when the OLYMPEX campaign took place. Although the relation shows a monotonically 464 

increasing behavior, three different trends can be observed. In the first stage (prefactor a<1.6 10-3), 465 

the exponent b has a decreasing growth rate to reach an inflection (second stage with 1.6 10-3<a<2 466 

10-3), to reach a faster growth rate for larger a (third stage with a>2 10-3). Fig. 4b displays the 467 

prefactor a versus the CWC mean value of the corresponding group from which the existence of a 468 

relation between the CWC and the prefactor a, and consequently, also with the exponent b through 469 

(15), can be inferred. Such a vs. CWC mean value can be expressed by means of a third-degree 470 

polynomial as 471 

 26.1269610969.1104.981 2638 −+⋅−⋅= aaaCWC . (16) 472 

From the joint analysis of Figs. 4, it is possible to infer that the different stages of the mass-size 473 

relationship correspond to different riming conditions, for which the first stage corresponds to a 474 

substantial dry environment (hereafter dry regime), followed by a second stage where CWC slowly 475 

begins to grow (hereafter moist regime) (Leinonen and Szyrmer, 2015), and by a third one with a 476 

rapid growth trend (hereafter wet regime). This tendency is partially in agreement with Tridon et al. 477 

(2019) and the three stages can be interpreted as follows. During the dry stage, ice crystals are 478 

allowed to clump together to form snowflakes changing their mass-size relation. Throughout the 479 

second stage the efficiency of dry growth decreases and, at the same time, with the beginning of the 480 

presence of water, the riming process described by the fill-in process (Heymsfield 1982) takes 481 

place. Both ice density and air temperature modulate this growth between filling internal crystal 482 
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interstices or supporting external growth. At the end, although it is not shown in Figs. 4, when the 483 

empty spaces inside the ice particles are full, the collection of the water from the environment is 484 

used entirely for modifying their shapes. 485 

Applying )ˆ ,IWC(PSDci ci

ppp  with the parameters reported in Table III for the corresponding 486 

CWC intervals, the performance of (12) was assessed in terms of the merit factors. Fig. 5a depicts 487 

NSE, NB absolute value, and correlation coefficient as a function of the CWC interval. NSE has 488 

quite similar values in the first four intervals, i.e. for CWC≤0.1 g/m3, with an average value of 0.47. 489 

For larger CWC, it has a jump that brings it to about 0.64 in the two wettest intervals. The absolute 490 

value of NB shows a trend fluctuating between 0.01 and 0.1. As far as ρ is concerned, it has a value 491 

of 0.845 in the first interval and takes increasing values up to the iv interval where it reaches the 492 

value of 0.888. Then, it decreases sharply until reaching 0.23 in the last interval indicating an 493 

increasing decorrelation between estimates obtained by (12) and measurements for CWC>0.1 g/m3. 494 

In practice, CWC is not usually known, and hence it would be necessary to use the general 495 

relation )ˆ IWC(PSD, ppp  instead of the CWC tuned ones. )ˆ IWC(PSD, ppp  presents different 496 

performances depending on CWC group as shown in Fig. 5b. The merit factor behaviors are 497 

modulated by the distribution of the mean square errors of ppp̂  with respect to the corresponding 498 

measurements in the different CWC groups. In general, except for ρ, which has a behavior similar 499 

to that shown by the )ˆ ,IWC(PSDci ci

ppp , NSE and NB show larger values. Both exhibit a decreasing 500 

trend until reaching a minimum for CWC≤0.1 g/m3 and then NSE grows again for larger CWC 501 

while NB remains small and constant. In the fourth group where they reach the minimum, the 502 

values of the merit factors are comparable to those obtained using the corresponding class-specific 503 

parameterization. 504 

 505 

 506 
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6. IWC retrieved from radar measurements 507 

Remote sensing methods have been used extensively to investigate ice cloud microphysical 508 

characteristics and, in the course of the past few years, have achieved further improvements by the 509 

millimeter-wave radars on board satellites. The most widely used radar variable for retrieving the 510 

cloud bulk parameters is the equivalent reflectivity factor that is connected to the ice particle size 511 

distribution and to the shape of each individual ice particle from which the resulting scattering 512 

properties are derived.  513 

Unfortunately, in the context of the radar frequencies used for ice particle studies, from 514 

channels above the Ku-band, there is less possibility of considering as true the condition that the 515 

particle size is much smaller compared with the incident wavelength, which is of primary concern 516 

for the application of Rayleigh scattering theory. Consequently, we cannot handle in an easy 517 

analytical way the radiative interactions between the incident power and the ice particles. This is 518 

even more true considering the impossibility of exactly knowing a parameter characterizing the ice 519 

particle size distribution such as Dm, or being informed of individual particles’ habits or of defining 520 

a habit able to represent all particles as well as by the lack of knowledge of the mass distribution 521 

inside every single crystal. This situation has led to the development of a plethora of algorithms 522 

aimed at estimating IWC according to the equivalent reflectivity factor (e.g., Heymsfield et al., 523 

2005; Hogan et al., 2006), giving rise to extensive discussions on the dependency of the accuracy of 524 

radar retrieved IWC with respect to the algorithm used. Uncertainties arise from the fact that both 525 

the size distribution and the particle scattering properties vary and are unknown in the in radar 526 

sample volume where IWC is retrieved. Consequently, some simplifying assumptions have to be 527 

made. Investigating the performance of retrievals considering the microphysical effects cannot be 528 

pursued only with the use of real data and an electromagnetic simulator of the radar response is an 529 

essential tool for performance evaluation, allowing sufficient detail to fully understand the 530 

contribution of each single effect on the processes involved. To simplify the complexity of the 531 
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problem, the main assumption made in this study is that the ice particles can be represented by soft 532 

spheroids obtained from a mixture of air and ice (Petty and Huang, 2010; Liu, 2004; Heymsfield et 533 

al., 2018). 534 

Concerning the m-D relation, the tuned parameters in )ˆ IWC(PSD, ppp  given in Section 5 535 

were used. The same 1-s PSDs used in the m-D relation tuning process were used to derive 536 

reflectivity factor and specific attenuation at the Ku-, Ka-, and W-band frequencies for an incident 537 

beam angle of 90o. The procedure was based on T-matrix and Mueller-matrix scattering models, 538 

and, for the dielectric relation, the traditional Bruggeman mixing formula was used. The shape of all 539 

particles is defined by horizontally-aligned oblate spheroids with axial ratio equal to 0.6. As is well 540 

known, such modeling is obviously not an optimal proxy for all radars, as it is not able to fully 541 

represent the Ka- and W-band (Kneifel et al., 2011). At the same time, it is believed that no model 542 

(Leinonen and Moiseev 2015; Leinonen and Szyrmer 2015; Kuo et al. 2016) can simultaneously 543 

represent all the habits and even more the composition of those contained in a radar measurement 544 

volume. 545 

The generic relationship between ice water content in unit of g/m3 and the equivalent 546 

reflectivity factor in mm6/m3 is usually expressed by a power law 547 

 
f

fffIWC
β

ξαξ =)(  (17) 548 

where αf and βf are constant coefficients for a given radar frequency (f). 549 

Using a nonlinear regression analysis, it was possible to find the coefficients αf and βf by 550 

minimizing the differences between the measured EIWC in (14) and IWC estimate in (17) where 551 

both of them are derived from the same PSD. The first three rows of Table IV report the values of 552 

the optimized coefficients of (17) for the Ku- (ue), Ka- (ae), and W-bands (we), respectively. It is to 553 

be noted, that while the parameters α are fairly similar each other, the value of the exponents β 554 

increases as a function of the frequency. 555 
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The IWC-ξ algorithms are then applied to the entire reflectivity measurement dataset 556 

simulated from the PSDs collected for temperatures below zero to obtain their performance in terms 557 

of merit factors, as shown in Table V. All the three algorithms present practically zero NB values 558 

while NSE decreases with increasing frequency. The increase of ρ with frequency confirms that 559 

radars with high frequency are more sensitive to small ice crystals than those with low frequency. 560 

For spherical raindrops, using DFR between two equivalent reflectivities as in (11), has 561 

allowed us to retrieve the drop median volume diameter that, together with the total raindrop 562 

concentration, and having fixed the shape parameter µ, univocally characterizes the DSD 563 

(Meneghini et al., 1997; Iguchi et al., 2000; Rose and Chandrasekar, 2006; Seto et al., 2013; 564 

Gorgucci and Baldini, 2016). In the presence of ice crystals it is not possible to unambiguously 565 

retrieve the size of the particles from DFR measurements because of the different habits that can 566 

exist in the cloud (e.g., Matrosov, 1998; Hogan et al., 2000; Liao et al., 2005). To this end, any 567 

assumption of habits in the radar sampling volume would be an arbitrary simplification. However, 568 

for particular conditions such as the case in which the habit does not present a wide variability, it 569 

remains valid that the DFR can be a suitable proxy of an average particle size contained in the radar 570 

sampling volume even if it is not possible to represent a relationship in a closed form. Bearing in 571 

mind of these considerations, DFR can be used as additional information for estimating IWC. 572 

Hence, the following relationship can be written 573 

 
γβαξ poqupoq DFRDFRIWC =)(  (18) 574 

where α, ß, and γ are constants and the subscript poq indicates that the reflectivity ratio is between 575 

reflectivities at the p- and the q-band, with the frequency of p greater than q. The following three 576 

reflectivity ratios were taken into account: DFRaou=ξa/ξu, DFRwoa=ξw/ξa, and DFRwou=ξw/ξu. 577 

With the same approach used to optimize the coefficients in (17), the coefficients α, ß, and γ 578 

of (18) were found for the three DFR relationships using the same tuned m-D algorithm. Table IV 579 
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gives also the values of α, ß, and γ for the three aou, woa, wou algorithms. It is immediate to note 580 

that the coefficients of aou and woa are quite similar and both very different from those of wou. 581 

Also in this case, to analyze the behavior of the different algorithms, they are applied to the 582 

simulated reflectivity measurements for which the temperature is below 0o C. The results are 583 

summarized in Table V. Also in this case, the merit factors are characterized by NBs close to zero. 584 

NSE of the aou algorithm takes a value close to those of ue and ae algorithms, while DFR 585 

algorithms using W-band measurements have the best performances. Again, it is evident that 586 

including W-band provides more precise information about IWC as highlighted by the ρ values. 587 

Gaussiat et al. (2003) suggested the use of a triple-frequency radar to allow the estimation of 588 

two differential attenuations from which, in the presence of ice particles, the liquid water content 589 

could be estimated more accurately with respect to a dual-frequency radar. More recently, progress 590 

in characterizing the scattering of more realistic ice crystal shapes at microwave frequencies 591 

generated new expectations for triple-frequency radars. In particular, it has been clearly shown that 592 

in the DFR domain, defined by DFRaou and DFRwoa, it is possible to obtain information capable of 593 

discriminating between different habits (Kulie et al., 2010; Kneifel et al., 2011; Leinonen et al., 594 

2012).  595 

An IWC algorithm that is a function of both DFRaou and DFRwoa can be written as 596 

 ( ) δ

γ
βαξ

woa

aou
u

DFR

DFR
DFRIWC =  (19) 597 

where α, ß, γ, and δ are the coefficients of the 2dfr parameterization whose values, obtained with the 598 

same approach previously used to find (17) and (18), are reported in the last row of Table IV. The 599 

behavior of this algorithm is quantified by its merit factors (Table V) that present the best 600 

performances both with respect to SFR algorithms (17) and those that use the different DFRs  as in 601 

(18). 602 
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The estimators defined by the equations (17), (18), and (19) can be written in compact form 603 

using the notation )ˆ IWC(SRM, rmp  where rmp̂  is the optimized vector of coefficients α, β, γ, and 604 

δ  obtained from simulated radar measurements (rs) which refer to the algorithms listed in Table IV, 605 

whereas SRM here means that the coefficients were applied to simulated radar measurements 606 

computed directly from measured PSDs. 607 

Section 5 has shown that )ˆ IWC(PSD, LIp  relations respond differently to the variation of 608 

both the ambient temperature and the CWC. In particular, it has been observed that also the 609 

)ˆ IWC(PSD, ppp  with the coefficients found by the optimization between IWC and EIWC is 610 

outperformed by the )ˆ ,IWC(PSDci ci

ppp  whose coefficients are optimized for the different CWC 611 

intervals (ci) and that the performances are different in the various CWC domains (Figs. 5). 612 

In light of this result, it may be interesting to observe whether the )ˆ IWC(SRM, rmp  613 

estimations obtained with relations based on reflectivity, shows a similar variability with the CWC. 614 

In this case, compatibly with the available data, new CWC class intervals have been defined as 1) 615 

CWC≤10-5 g/m-3, 2) 10-5<CWC≤10-3 g/m-3, 3) 10-3<CWC≤10-2 g/m-3, 4) 10-2<CWC≤10-1 g/m-3, 5) 616 

CWC>0.1 g/m-3 and for each ci class interval, the 
ci

rmp̂  parameters of (17), (18) and (19) were 617 

found. 618 

Figures 6 display NSE, NB, and ρ of )ˆ IWC(SRM,ci

rmp  and )ˆ ,IWC(SRMci ci

rmp
.
 In general, it is 619 

clear that the merit factors show better values as the number of parameter used by the IWC 620 

algorithm increases. An aspect to underline concerns )ˆ ,IWC(SRMci ci

rmp  (green lines) is that the 621 

classes with higher CWC have the worst merit factors. Another point to highlight is that among the 622 

multi-frequency algorithms, the one that uses DFRaou exhibits a behavior similar to those based on 623 

reflectivity alone such as ue and ae, perhaps determined by the low ice discriminating power of the 624 
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Ku-band compared to the Ka- and W-band, whereas we algorithm is comparable to the 625 

performances of woa, wou, and 2dfr. In conclusion, also in this case it appears that the merit factors 626 

of the algorithm obtained by composing the different )ˆ ,IWC(SRMci ci

rmp  (black line) are much better 627 

than those of )ˆ IWC(SRM, rmp  (magenta line) and also that the best algorithm for estimating IWC is 628 

2dfr although those based on W-band, namely: we, woa and wou, do not have too much worse 629 

performances. 630 

 631 

 632 

7. Experimental evaluation of IWC radar algorithms 633 

To evaluate the behavior of the )ˆ IWC(SRM, rmp  algorithms, collocated measurements from 634 

the APR3 triple frequency radar on board the DC-8 aircraft and in-situ microphysical measurements 635 

and EIWC measurements provided by the Citation aircraft were used. The APR-3 provides 636 

measured profiles of Zum, Zam, and Zwm (i.e., ξ10log10=Z ) at the Ku- (13 GHz), Ka- (35 GHz), 637 

and W-band (94 GHz) frequencies, respectively. Each profile consists of range gates spaced 30 m 638 

apart. 639 

In a rigorous way, the comparison between collocated measurements should be made when, 640 

for a fixed time, the measurements collected by the two aircrafts are referred ideally to the same, 641 

uniformly filled, sampling volume. However, imposing such a condition would result in a small 642 

number of coinciding measurements in time and space and the resulting data set would not be 643 

statistically significant. This limitation forces us to relax the definition of space-time collocation by 644 

expanding the search domain for the collocated matchings. Consequently, the measurements will 645 

not result exactly collocated and a decrease of the correlation coefficient, with respect to what was 646 

obtained using simulations, is expected. Following Heymsfield et al. (2018), the collocation rule we 647 
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applied defines the collocated measurement domain as made up of aircraft observations that are 648 

separated in a time of less than 300 s and terms of horizontal distance defined at the altitude of 649 

flight of the Citation of less than 2 km. Among the measurements satisfying these two conditions, 650 

the one with the smallest time shift was chosen for subsequent analysis. The remaining 651 

measurements that comply with the collocation rule mentioned above are used to quantify the 652 

measurements gradient within the colocation domain. For example, Fig. 7 shows the distribution of 653 

the reflectivity factor gradient at Ku band defined as the max-min values of Zum within each 654 

collocated domain for each matching found. The reflectivity factor gradient quantifies in some way 655 

the variability experienced in the collocation domain and gives an idea of the validity of the 656 

uniformity hypothesis of the observed field in that domain. 657 

The reflectivity measurements of a triple-frequency radar are relatively affected by path 658 

attenuation depending mainly on the frequency used. Past studies have shown that ice does not 659 

produce a significant attenuation up to the Ku-band; conversely, at Ka-band attenuation due to ice 660 

may be not negligible while at the W-band it can be noticeable. It follows that to assess the behavior 661 

of the different IWC algorithms, the cumulative attenuation needs to be accounted for. 662 

It is well known that attenuation correction with iterative methods is inherently unstable 663 

since any bias propagates through the propagation path, making it necessary to constrain somehow 664 

the total attenuation (Meneghini et al. 2000). This effect could be much more pronounced in the 665 

presence of ice particles because it is difficult to express a relationship for the attenuation correction 666 

due to its strong variability with the different types of habits present in clouds. To overcome this 667 

limitation in a reasonable way, we assume the Ku-band to be marginally affected by path 668 

attenuation in ice, so that we can assume Zue=Zum, where the subscript “e” indicates the effective 669 

refelectivity, and use it as a reference to compensate the attenuation effects for Zam and Zwm (Kulie 670 

et al. 2014; Leinonen et al., 2018). 671 
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The entire PSD dataset obtained from in-situ measurements was used to simulate Zu, Za, 672 

and Zw with the corresponding specific attenuations in dB/km. For the simulations of the 673 

reflectivity factor, particle density is needed instead of mass because the former drives the particle’s 674 

volume fraction of air and ice, thus modifying the particle’s refractive index, which in turns 675 

modifies the back-scattering cross-section properties that are strictly related to the reflectivity 676 

factor. However, particle’s mass and density are related through the particle’s volume, which in our 677 

simplified case coincides with that of an oblate spheroid. For each increment of 0.1 dB in Zu 678 

reflectivity, the corresponding mean values of the specific attenuations aa and aw, for Ka- and W-679 

band respectively, were found. 680 

Fig. 8 shows the resulting specific attenuations aa and aw as a function of Zu. With these 681 

values, it was possible from a given measured Zu profile to reconstruct the corresponding profile of 682 

cumulated attenuation at the Ka- and W-band to get Zae and Zwe from Zam and Zwm. The average 683 

attenuation correction of the collocated reflectivity measurements was 0.19 dB and 1.45 dB for the 684 

Ka- and W-bands, respectively. 685 

It was thus possible to create the collocated domain consisting of the EIWC measurements 686 

and radar measurements for performance evaluation of the different IWC radar algorithms, given in 687 

Table IV, with collected radar measurements (CRM). The behavior of the )ˆ IWC(SRM,rmp
 
merit 688 

factors for this dataset is shown in Fig. 9, and consists of both a generalized increase of NSE in 689 

comparison with Fig. 6a (magenta line), and a peculiar increasing trend, as the number of 690 

parameters used by the algorithms grows, that appears to contradict what is depicted in Fig. 6a. 691 

Considering the many assumptions made in deriving the algorithms, such as the hypothesis that ice 692 

crystals can be described by soft spheres and have a fixed temperature of -10o C, the NSE increase 693 

is not surprising. The trend can be explained by the fact that the reflectivity measurements are 694 

subject to independent measurement errors and consequently the increase in the number of 695 

parameters used by the algorithm increases the influence of measurement errors on the IWC 696 
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estimate. As far as NB is concerned, it does not present particular variations with respect to what 697 

shown in Fig. 6b, remaining almost close to zero. A significant reduction is also presented by ρ with 698 

a slightly decreasing trend passing from 0.39 of the algorithm ue to 0.26 of 2dfr presenting a 699 

maximum value for aou (0.46) and a minimum for woa (0.13). Obviously, the reduction can be 700 

influenced by how much the collocated measurements are affected by reflectivity gradients. About 701 

the low woa value, it must be underlined that it depends on two measurements that both undergo the 702 

correction for attenuation. 703 

With this significant increase of the measurement errors, along with the consequent decrease 704 

of the correlation between the )ˆ IWC(SRM,rmp  estimates and the EIWC, it can be interesting to 705 

check whether CWC is still able to discriminate between the different situations highlighted in the 706 

simulations, as illustrated above in Figs. 7. 707 

Using actual radar measurements to compute )ˆ ,IWC(CRMci ci

rmp  with coefficients derived in 708 

simulations optimized to CWC class intervals, merit factors for each single class ci and the 709 

composition of )ˆ ,IWC(SRMci ci

rmp  were found. Although NSE (Fig. 10a), NB (Fig. 10b), and ρ (Fig. 710 

10c) show a strong variability between the different CWC intervals, the composition of 711 

)ˆ ,IWC(SRMci ci

rmp  has better performances than the single algorithm )ˆ IWC(SRM,rmp . 712 

Although an operational measure of the CWC is not currently possible and therefore it is 713 

unrealistic to use the IWC algorithms optimized to its value, the analysis highlights that using CWC 714 

allow to provide better estimates than those obtained with a single algorithm, regardless of CWC, 715 

even in the presence of significant measurement errors. 716 

 717 

 718 
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8. A new look at the DFR domain 719 

The comparison of merit factors of Figs. 10, obtained using the reflectivity data collected by 720 

the APR3, and those shown in Figs. 6, obtained using the simulated reflectivities, clearly shows that 721 

the DFR measurements are affected by measurement errors to such an extent that nullify the 722 

benefits brought by using multiparametric algorithms. Actually, if Figs. 6 show the better 723 

performance of the multiparametric algorithms in a synthetic error-free scenario, Figs. 10 depict, in 724 

a more realistic case, worse performances as the number of parameters used in algorithms increases.  725 

For this reason, we need to analyze more deeply the characteristics of the DFR domain and 726 

its behavior for varying meteorological and microphysical parameters. Considering the DFR 727 

domain defined by the dual frequency ratio pairs (DFRwoa, DFRaou) in logarithmic scale, Fig. 11 728 

shows the scatterplot obtained by reflectivity measurements collected by the APR3 with 729 

temperatures below the freezing level for which the collocated CWC, relative humidity, and 730 

dewpoint measurements are also available (10021 observations). Moreover, in Fig. 11, overlaid for 731 

reference, some curves obtained by the triple-frequency calculations for various ice particle 732 

scattering models by Kulie et al. (2014) are displayed. Readers can refer to this paper for more 733 

details about the definitions of the acronyms of each model and on the various ice particle scattering 734 

involved. 735 

The main information that can be obtained from Fig. 11 is related to the large variability that 736 

affects the DFR measurements, that depends mainly on measurement errors (signal fluctuations, 737 

attenuation, radar calibration, reflectivity gradients) and the large variety of ice crystal habits into 738 

the radar volume. This large spread does not allow to identify any particular specific model trends 739 

except the large cluster of points in the low part of the domain that is common to all the models. 740 

This is experimentally supported by the large amount of in situ measurements performed with the 741 

cloud particle imager (CPI) habit observations (Bailey and Hallett, 2009) which reports the wide 742 

variety of the ice crystal habits that is further enriched with their many irregularities and 743 
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imperfections making, somewhat unlikely, that a radar volume can be filled exclusively with a 744 

single type of ice crystal habit. It follows that the corresponding scattered signal cannot be 745 

described using a single particle-backscattering model. Therefore, although different ice habits in 746 

the cloud have contributed to the composition of the resulting reflectivity, using experimental 747 

measurements to recognizing them from specific DFR signatures appears quite difficult. 748 

In the previous sections it was found that the quantity of supercooled drops plays an 749 

important role in the characterization of ice crystals as it modulates the degree of riming. To explore 750 

whether this feature can be revealed in the DFR domain, one can look at the domain from another 751 

point of view by considering the following approach. The entire variability range of CWC values 752 

has been divided into three class intervals such as they roughly represent the dry (d), the moist (m) 753 

and the wet (w) environment that are bounded by the following thresholds: d) <10-4 g/m-3, m) from 754 

10-4 to 10-2 g/m-3 and w) > 10-2 g/m-3. These thresholds generate three DFR classes such that all the 755 

(DFRaou, DFRwoa) pairs of a class have a corresponding CWC value belonging to only one of the 756 

three intervals. The classes are quite consistent in that they contain a sufficient number of DFR 757 

pairs equal to 3028 (d), 4073 (m), and 2920 (w). Their scatterplots are characterized by having the 758 

slopes of the least squares regression line through origin of 0.469, 0.424, and 0.361 with correlation 759 

coefficients of 0.1077, 0.1664, and 0.2380, respectively. These results lead to two immediate 760 

considerations regarding the relationship between the DFRwoa and DFRaou. The first one is that these 761 

scatterplots, although subjected to a high degree of variability, allow to observe a decreasing trend 762 

of the slope as the CWC increases. The second one, despite being supported by very small values, 763 

refers to the increasing trend of the correlation coefficient as the CWC increases. 764 

The contradictory nature of the results depicted in Figs. 10 with respect to those in Figs. 6 765 

can be linked to the fact that the latter was obtained using measurements obtained from the same 766 

electromagnetic and microphysical models on which the algorithms were found while Fig. 10 was 767 

obtained by applying the aforementioned algorithms to the real radar measurements. 768 
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The limitations associated with the assumption of a predefined electromagnetic and 769 

microphysical model can be partially overcome by using the algorithm parameters (11), (12), and 770 

(13) directly obtained from a nonlinear regression analysis applied to the collected radar 771 

measurements, in the framework of the DFR domain. 772 

If we want to take advantage of the improvements made possible by the use of the CWC on 773 

the estimate of the IWC, it is necessary to replace it with a parameter that can be obtained directly 774 

from the radar measurements. For this purpose, the slopes of the two external classes dry and wet 775 

were used to generate three classes of (DFRaou, DFRwoa) pairs, corresponding to the three CWC 776 

classes. By considering the slope parameter Sl defined as 777 

 
( )
( )
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aou

DFR

DFR
Sl

10

10

log

log=  (20)  778 

each DFR pair will be associated with a value of Sl and will, therefore, be assigned to one of the 779 

three slope class intervals - dry (>0.469), moist (from 0.469 to 0.361) and wet (<0.361). In this 780 

framework, the )ˆ IWC(CRM, dfrp  relations for the entire DFR domain and the )ˆ ,IWC(CRM slpslp  

dfrp , 781 

where the superscript slp refers to the radar measurements generating DFR pairs belonging to the 782 

class slp, were found by the optimization between IWC estimates and EIWC. The vector 783 

coefficients dfrp̂  and 
slˆ
dfrp  are given in Table VI and Tables VII, VIII, IX, respectively. 784 

The result of the analysis is summarized in Figs. 12 where the merit factors related to the 785 

dry, moist, and wet classes are depicted versus the different algorithms. The NSE of Fig. 12a shows 786 

a noticeable improvement compared to the correspondent of Fig. 10a as expected, along with the 787 

non-increasing trends of NSE with the number of used parameters. However, the really important 788 

result achieved is that starting from CWC intervals, it is possible to obtain thresholds in the DFR 789 

domain such that for each (DFRaou, DFRwoa) pair it is possible to calculate the slope parameter Sl 790 

that selects one between the dry, moist, or wet class and then the corresponding algorithm to get. 791 
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This method allows us to obtain from the composition of )ˆ ,IWC(CRM slpslp  

dfrp  relations an NSE 792 

which is definitely better for all the algorithms than that obtained using )ˆ IWC(CRM, dfrp , a result 793 

that could be obtained by knowing the CWC. This surprising result is further confirmed by Fig 12c, 794 

where ρ of the composite function are much better, albeit overall lower, for all the multi-frequency 795 

algorithms, than the ρ showed by the single relationship. 796 

 797 

 798 

9. Summary and conclusions 799 

The main objective of this study was to analyze the IWC estimate in a context of single and 800 

multiple frequency radars to examine at what extent multi-frequency radar contributes to its 801 

improvement. The study was performed by extracting from the high-quality dataset acquired during 802 

the OLYMPEX campaign, a selected dataset composed of airborne triple-frequency radar 803 

observations (Ku-, Ka-, and W-band) in combination with in-situ microphysical and meteorological 804 

measurements. 805 

In the absence of reliable CSI measurements, a first problem to solve was to establish how to 806 

obtain trustworthy IWC measurements in cloud to be compared with different radar estimates. The 807 

best choice, among the measurements available, was the joint use of the TWC collected by the 808 

Nevzorov probe with the LWC measured by the King probe whose difference (named EIWC) was 809 

assumed as the reference IWC. For a comprehensive characterization of the cloud environment, 810 

meteorological measurements such as air temperature, relative humidity, and frost point 811 

temperature were used, while the condition for riming were related to CWC measurements. 812 

The performance of the )p IWC(PSD, LI
 estimators and their variability with temperature 813 

and CWC suggested to develop an algorithm )ˆ IWC(PSD, ppp  tuned on the whole campaign data 814 
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and a set of specific algorithms )ˆ ,IWC(PSD ci

pp

ci p  tuned on the different CWC class intervals. By 815 

varying CWC class intervals the parameters defining the m-D relationship appeared to be related to 816 

each other and such relation was expressed with a third-degree polynomial function. 817 

Using a procedure based on T-matrix and Mueller-matrix scattering models, from the same 818 

PSD dataset, reflectivity factor and specific attenuation at the Ku-, Ka-, and W-band frequencies 819 

were simulated assuming horizontally-aligned oblate spheroids with axial ratio equal to 0.6. 820 

Employing a nonlinear regression analysis, IWC radar algorithms were obtained minimizing the 821 

differences between their estimates and the corresponding EIWC measurements. 822 

The algorithms examined are based both on the single parameter of reflectivity and the 823 

combined use of the Ku-band reflectivity with the dual frequency ratios DFRaou, DFRwoa, DFRwou, 824 

and DFRaou jointly with DFRwoa. The performance of the different algorithms improved as the 825 

number of parameters increase, except for DFRaou. However, the most interesting result was that the 826 

merit factors obtained by the composition of algorithms optimized for the different CWC class 827 

intervals are distinctly better than the corresponding ones of a single algorithm, applied regardless 828 

of the CWC value, both in terms of NSE and ρ. 829 

For an assessment in an operational context, collocated measurements collected by the 830 

APR3 radar were used jointly with microphysical and meteorological parameters. For each PSD 831 

measurement, the Ku reflectivity was simulated and the corresponding specific attenuations at the 832 

Ka- and W-band were simulated as well and a relationship allowing to obtain, for a fixed Ku 833 

reflectivity value, the average specific attenuations of the other two bands. Assuming the Ku-band  834 

reflectivity measurements as non-attenuated by ice particles, they were used for determining the 835 

relative specific attenuations to correct the reflectivity measurements of the other two bands. 836 

The analysis of the performance of the different algorithms, using collected radar 837 

measurements as input, was also carried out computing both )ˆ  IWC(SRM, rmp  and 838 
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)ˆ  ,IWC(SRM ci

rm

ci
p . The evaluation of the different algorithms highlighted two very interesting 839 

aspects. The first is that the merit factors - NSE, NB, and ρ - of )ˆ IWC(SRM, rmp  behaves worse than 840 

the ones obtained with the composition of )ˆ  ,IWC(SRM ci

rm

ci p  for all the different radar IWC 841 

algorithms. The second aspect is that all the merit factors are worse than the correspondents 842 

obtained using the simulated measurements. However, this was expected as the modeling 843 

hypotheses underlying the simulation could not correctly reproduce the reality. A further source of 844 

errors is determined by the space-time domain chosen to define collocated measurements and in 845 

particular by the reflectivity gradients present in it as well as by the measurement errors. However, 846 

an aspect to underline is that in general the correlation between the EIWC and its estimates 847 

decreases using the DFR algorithms, highlighting a not negligible variability of the DFR parameter. 848 

To focus on this aspect, the domain defined by the (DFRwoa, DFRaou) pairs was considered to 849 

find a substitute for CWC, being CWC not an operational measurement and, therefore, not 850 

practically usable. Compatibly with the sample size of (DFRaou, DFRwoa) pairs in the different 851 

regions of the domain, three CWC class intervals called dry, moist, and wet were chosen. It was 852 

observed that the scatter of the corresponding pairs in each class interval had the slope of least 853 

square line of increasing value with decreasing CWC. These values were taken to define three class 854 

intervals of the Sl parameter defined by the ratio between DFRaou and DFRwoa. 855 

For a more realistic analysis that does not require any a priori assumptions about the models 856 

needed for simulating reflectivity measurements, real radar measurements and in-situ microphysical 857 

observations were jointly used. The advantage of this approach lies in the fact that it does not 858 

involve assumptions about the particle size distributions, the statistical relationship between crystal 859 

mass and maximum dimension, or the wavelength-dependent backscatter cross-section variability. 860 

On the contrary, challenges are posed by the proper matching of radar and microphysical 861 

measurements in the space-time domain, along with attenuation corrections and calibration errors. 862 
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Using collocated radar and PSD measurements, parameterizations of radar IWC algorithms 863 

(17), (18), and (19) were found. The interesting result to be underlined is that from the comparative 864 

analysis of the merit factors of )ˆ IWC(CRM, dfrp , i.e. with parameters obtained using all the data 865 

available, and the IWC estimated by the composition of )p ,IWC(CRM slp

dfr

slp   
 with the parameters 866 

obtained for the three slope class intervals, the latter has much better merit factors of all the 867 

algorithms considered. Furthermore, the algorithms that use the DFR parameters do not present 868 

worse merit factors than SFR algorithm. This can mean that the major contribution to the error of 869 

the DFR-based algorithms, shown in Figs 11, are not DFR fluctuation measurements but also to 870 

systematic errors (radar calibration). 871 

In conclusion, the study highlighted that it is possible to divide the DFR domain into classes 872 

such that for a (DFRwoa, DFRaou) pair it is possible to find a slope value slp to select a set of 873 

)p ,IWC(CRM slp

dfr

slp   
 whose compositions present estimates with merit factors better than the ones 874 

get with )ˆ IWC(CRM, dfrp  for all the algorithms. Obviously, as the classes increase, better estimates 875 

will correspond anyway, but to obtain this further improvement it will be necessary to reduce 876 

measurement errors. 877 
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 1076 

 1077 

 1078 

TABLE I -  Coefficients a and b of the power law relation m-D (13). 
LIp  is the label that identifies 1079 

the different literature parametrizations. 1080 

 1081 

LIp  a (cgs) b 

BF95 2.94E-03 1.90 

H04syn 6.10E-03 2.05 

H04cnv 11.1E-03 2.40 

H10all 5.28E-03 2.01 

SZ10ave 4.34E-03 1.92 

 1082 

  1083 
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 1084 

 1085 

 1086 

TABLE II – Merit factor of the comparison between ) IWC(PSD, LIp  computed using the 
LIp  1087 

relations with the corresponding EIWC measurements. 1088 

 1089 

LIp  NSE NB ρ 

BF95 1.363 -0.872 0.8674 

H04syn 2.637 -1.888 0.8677 

H04cnv 2.768 -1.906 0.7582 

H10all 1.854 -1.293 0.8546 

SZ10ave 2.332 -1.620 0.8793 

 1090 

 1091 

 1092 

  1093 



50 

 

 1094 

 1095 

 1096 

TABLE III – Coefficients a and b of the m-D relation (13) as a function of the different CWC class 1097 

intervals 
ci

ppp̂ . 1098 

 1099 

ci

ppp̂  a (cgs) b 

i 1.24E-03 1.693 

ii 1.29E-03 1.736 

iii 1.36E-03 1.816 

iv 1.59E-03 1.977 

v 1.95E-03 2.167 

vi 2.59E-03 2.650 

 1100 

  1101 
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 1102 

 1103 

 1104 

TABLE IV – Parameters of )ˆ IWC(SRM, rmp  algorithms obtained using a nonlinear regression by 1105 

minimizing the differences between the measured EIWC and its estimates obtained using (17) an 1106 

(18). )ˆ IWC(PSD, rmp is the optimized vector of coefficients for the different algorithms. 1107 

 1108 

rmp̂  α ß γ Δ 

ue 7.77E-02 0.208 - - 

ae 2.25E-02 0.526 - - 

we 2.31E-02 0.825 - - 

aou 2.00E-02 0.648 1.184 - 

woa 3.88E-02 0.666 1.011 - 

wou 1.81E-02 0.849 0.768 - 

2dfr 2.60E-02 0.775 0.374 0.937 

 1109 

  1110 
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 1111 

 1112 

 1113 

TABLE V – Merit factors of the comparison between )ˆ IWC(PSD, rmp  estimates and the 1114 

corresponding EIWC measurements computed using all the  parameterizations of Table IV. 1115 

 1116 

rmp̂  NSE NB ρ 

ue 0.769 -0.004 0.3891 

ae 0.701 0.023 0.5453 

we 0.441 0.024 0.8498 

aou 0.664 0.021 0.6083 

woa 0.431 0.002 0.8562 

wou 0.432 0.021 0.8568 

2dfr 0.407 0.012 0.8735 

 1117 

 1118 

  1119 
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 1120 

 1121 

TABLE VI - Parameters of )ˆ IWC(CRM, dfrp  algorithms obtained using a nonlinear regression 1122 

analysis by minimizing the differences between the measured EIWC and its estimates obtained from 1123 

collocated radar measurements. 1124 

 1125 

dfrp̂  α ß γ δ 

ue 1.25E-01 0.112 - - 

ae 8.93E-02 0.213 - - 

we 1.09E-01 0.284 - - 

aou 7.74E-02 0.275 0.489 - 

woa 9.74E-02 0.156 0.017 - 

wou 9.00E-02 0.299 0.251 - 

2dfr 7.75E-02 0.303 0.499 0.075 

 1126 

  1127 
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 1128 

 1129 

 1130 

TABLE VII - Parameters of )ˆ ,IWC(CRM wet

dfr

 wet p  algorithms obtained using a nonlinear regression 1131 

analysis by minimizing the differences between the measured EIWC and its estimates obtained from 1132 

collocated radar measurements belonging to the wet slope class interval. 1133 

 1134 

wet

dfr
ˆ p  α ß γ δ 

ue 8.46E-02 0.233 - - 

ae 7.14E-02 0.292 - - 

we 1.16E-01 0.318 - - 

aou 6.52E-02 0.322 0.681 - 

woa 6.98E-02 0.347 0.245 - 

wou 6.63E-02 0.368 0.224 - 

2dfr 6.40E-02 0.371 0.481 0.157 

 1135 

  1136 
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 1137 

 1138 

 1139 

TABLE VIII – Parameters of )ˆ ,IWC(CRM moist

dfr

moist  p  algorithms obtained using a nonlinear 1140 

regression analysis by minimizing the differences between the measured EIWC and its estimates 1141 

obtained from collocated radar measurements belonging to the moist slope class interval.  1142 

 1143 

moist

dfrp̂  Α ß γ δ 

ue 1.01E-01 0.144 - - 

ae 9.96E-02 0.179 - - 

we 1.12E-02 0.251 - - 

aou 8.37E-02 0.244 0.339 - 

woa 8.49E-02 0.227 0.101 - 

wou 8.45E-02 0.233 0.081 - 

2dfr 8.27E-02 0.238 0.941 -0.270 

 1144 
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 1146 

 1147 

TABLE IX – Parameters of )ˆ ,IWC(CRM dry

dfr

dry p  algorithms obtained using a nonlinear regression 1148 

analysis by minimizing the differences between the measured EIWC and its estimates obtained from 1149 

collocated radar measurements belonging to the dry slope class interval. 1150 

 1151 

dry

dfrp̂  Α ß γ δ 

ue 1.06E-01 0.089 - - 

ae 9.75E-02 0.143 - - 

we 9.92E-02 0.230 - - 

aou 8.67E-02 0.230 0.371 - 

woa 8.08E-02 0.133 -0.057 - 

wou 8.17E-02 0.255 0.192 - 

2dfr 8.78E-02 0.207 0.382 -0.075 
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 1153 

 1154 

 1155 

 1156 

Figure 1 - Distribution of the air temperature recorded by the Citation aircraft during the 1157 

observing periods of the OLYMPEX field experiment. 1158 
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 1161 

 1162 

 1163 

 1164 

Figure 2 - 2-D histogram between the direct EIWC measurements versus the corresponding 1165 

IWC(PSD,BF95) for the entire OLYMPEX dataset.  1166 
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 1168 

 1169 

 1170 

 1171 

 1172 

 1173 

Figure 3 - Mean differences between EIWC measurements and ) IWC(PSD, LIp  as a function a) of 1174 

air temperature, and b) of cloud water content class intervals. 1175 
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 1178 

 1179 

 1180 

 1181 

 1182 

 1183 

Figure 4 – a) the exponent b versus the prefactor a (black star-ring) regarding the m-D relationship 1184 

for fixed CWC class intervals with the interpolation (dot red) line represented by a third-degree 1185 

polynomial function, and b) the same CWC values versus the prefactor a (black star-ring) with the 1186 

interpolation (dot red) line achieved by a third-degree polynomial function 1187 
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 1189 

 1190 

 1191 

 1192 

 1193 

 1194 

Figure 5 – NSE (blue), NB (red), and ρ (green) of: a) )ˆ ,IWC(PSDci ci

ppp  for the specific 
ci

ppp̂  1195 

parameterizations, and b) )ˆ IWC(PSD, ppp  versus the corresponding CWC class intervals. 1196 
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 1198 

 1199 

 1200 

Figure 6 - a) NSE, b) NB, and c) ρ of the comparison between )ˆ ,IWC(SRMci ci

rmp  (green lines), 1201 

)ˆ IWC(SRM, rmp  (magenta line), )ˆ ,IWC(SRMci ci

rmp  composition (black line) obtained from the 1202 

simulated reflectivities and EIWC for all the IWC radar algorithms. 1203 
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 1205 

 1206 

 1207 

 1208 

Figure 7 - Distribution of gradients contained in the space domain (2x2) km x 300 s. Gradients are 1209 

represented by the difference between the maximum and the minimum Ku reflectivity contained in 1210 

the domain. 1211 
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 1214 

 1215 

 1216 

 1217 

Figure 8 - Mean specific attenuations for the Ka- and W-band as a function of simulated Zu 1218 

reflectivity. 1219 
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 1222 

 1223 

 1224 

 1225 

Figure 9 – Behavior of the merit factors NSE (solid line), NB (dash line), and ρ (dot line) of the 1226 

comparison between )ˆ IWC(SRM,rmp  estimates for all the 
rmp̂  of Table IV applied to the collected 1227 

radar measurements with the corresponding EIWC. 1228 
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 1230 

 1231 

 1232 

Figure 10 - a) NSE, b) NB, and c) ρ of the comparison between )ˆ ,IWC(SRMci ci

rmp  (green line), 1233 

)ˆ IWC(SRM, rmp  (black line), )ˆ ,IWC(SRMci ci

rmp  composition (magenta line) estimates obtained 1234 

from the collocated radar measurements and EIWC for the considered IWC radar algorithms. 1235 
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 1237 

 1238 

 1239 

 1240 

Figure 11 – Scatterplot of the dual frequency ratios DFRwoa and DFRaou obtained from reflectivity 1241 

measurements collected by the APR3. Overlaid for reference, displayed are some curves obtained 1242 

by triple-frequency calculations for various ice particle scattering models by Kulie et al. (2014). 1243 
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 1245 

 1246 

 1247 

Figure 12 - a) NSE, b) NB, and c) ρ of the comparison between )ˆ ,IWC(CRM slpslp 

dfrp  (green line), 1248 

)ˆ IWC(CRM, dfrp  (black line), )ˆ ,IWC(CRM slpslp 

dfrp  composition (magenta line) estimates obtained 1249 

from reflectivity measurements collected by the APR3 and EIWC for all the considered IWC radar 1250 

algorithms. 1251 




