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Abstract—The wings of large civil passenger aircrafts, which
are designed to withstand the loads occurring from atmospheric
gusts and turbulence to landing impacts, still demand further
research. This goal will be achieved through investigating the
damping effect of sloshing on the dynamics of flexible wing-like
structures carrying liquid via the development of experimental
set-ups complemented by numerical models. The aim of this work
is to analyze the effect of sloshing in reducing the design loads
on aircraft structures using SPH as the main numerical tool.
The first step of this research was performed inside the Airbus
Protospace Lab in Filton (UK), where a scaled model of the
problem was tested. The wing is represented by a cantilever with
a liquid tank attached at its tip. The behaviour of the system once
deformed and released and the accelerations at the free end of
the beam were registered for different configurations.

In this work, a numerical model of a fully coupled fluid-
structure interaction problem is developed. In order to un-
derstand and analyse the damping mechanisms, the structure
is modelled through beam theory and solved by two different
methods: a mass-spring-damper system and modal analysis.
For the fluid, the δ-LES-SPH model is used, which has been
implemented for the boundary integrals methodology in order
to simulate complex geometries.

A set of cases are simulated in order to reproduce trends
noticed in the experiments, including different inner tank con-
figurations, for the two beam models tested. SPH as numerical
tool demonstrates that the presence of liquid in tanks attached
to flexible structures introduces a damping effect.

I. INTRODUCTION

Challenges in aerospace industry, especially linked to the
increase in passenger aircrafts size demands further research of
associated systems that might influence craft behaviour when
in operation. In particular, there is an interest in optimizing the
wings of large civil passenger aircrafts , which are designed to
withstand the loads occurring from atmospheric gusts and tur-
bulence to landing impacts. This goal is aimed to be achieved
through the investigation of the damping effect of sloshing
on the dynamics of such wings in which the fuel is normally
stored, through optimization of their inner configuration and
analysis of liquid filling level.

A controlled sloshing has been proved to be effective in
dampening movements in analogous structures, and examples

can be found in civil engineering, through the design of Tuned
Liquid Dampers (TLDs) that mitigate the motions in buildings
when earthquakes occur [6, 19] , and in the naval industry,
where anti-rolling tanks are widely used to minimize rolling
motion of ships [17, 18].

These ideas have lately been considered within the
aerospace industy for propellant rocket tanks, as it has been
noted in [3] or in preliminary studies on sloshing on aircraft
fuel tanks [12].

The present work aims to extend the knowledge on damping
effects due to sloshing on aircraft wing tanks, by analysing
the use of fuel slosh to reduce the design loads on aircraft
structures. SPH will be used as the main numerical tool to
reproduce sloshing. Previous analysis of this problem have
been carried out in [4, 5], where a dynamical system consisting
on an oscillating tank filled with fluid is studied. These works
focus on understanding energy dissipation mechanisms, and a
non-linear model for motion is used. Similarly, in this work
the SPH tool will be complemented by a set of numerical
models that reproduce wing motion, and are affected by the
SPH computed sloshing loads. Results will be compared to
experiments carried out inside the Airbus Protospace Lab in
Filton (UK), where a simplified scaled model of the problem
was tested. The simplified model arrangement can be seen
in Figure 1. The test consists on the wing represented by
a cantilever beam with a liquid tank attached at its tip.
The beam is preloaded and released, and the accelerations
at different points are recorded. Also the liquid motion is
visually recorded at high speed rates in order to understand
liquid slosh inside the tank. Different configurations were
used, including different liquids, inner baffled configurations
(both horizontally and vertically located) and filling levels are
tested.

In this work, a numerical model of a fully coupled fluid-
structure interaction problem is developed. In order to un-
derstand and analyse the damping mechanisms, the structure
is modelled through the Euler-Bernouilli beam theory and
solved by different means. Numerical methods such as finite
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Fig. 1. Set-up of the experiments carried out at Airbus Protospace Lab in
Filton (UK).

elements or SPH are avoided, and instead the beam is mod-
elled by a simple mass-spring-damper system and by modal
analysis [13]. For the fluid, the δ-LES-SPH model is used
[11, 14, 15], which has been implemented for the boundary
integrals methodology developed in [7].

The paper is structured as follows: first, the δ-LES-SPH
model and the numerical models used for the beam are
presented. The energy balance within the fluid and the beam is
also presented in this Section. Second, both static and dynamic
tests are performed with the different methods, and the results
are compared with experiments. Similarities and differences
found between both approaches, as well as the kindness of
the numerical model when compared to the experiments are
discussed. Finally, conclusions are drawn, and future work
lines are established.

II. NUMERICAL MODEL

A. SPH model

The Navier-Stokes equations for a weakly-compressible and
barotropic fluid can be written in Lagrangian form as:





Dρ

Dt
= −ρ∇ · u, p = f(ρ)

Du

Dt
=

1

ρ
∇p+

1

ρ
∇ · V+ g ,

(1)

where ρ and u are respectively the density and velocity of the
fluid, V is the viscous stress-tensor and p and g represent the
pressure and body forces respectively.

Based on the weakly-compressible assumption, pressure is
determined as a function of density fluctuations through an
Equation of State (EOS). In particular, in this work a simple
linearised EOS is chosen, such that:

p = c20 (ρ− ρ0) . (2)

Viscous stress-tensor, for a Newtonian fluid, can be rewritten
in the form:

V = λ tr(D) I+ 2µD , (3)

where D is the strain rate tensor, D = (∇u+∇uT )/2, I the
Identity tensor and λ and µ the bulk and dynamic viscosity
coefficients respectively.

In SPH, the δ-SPH model proposed by [2], has been
revisited in [11] from a LES-perspective. The δ-LES-SPH
model has been later extended in [14] and [15] and is the
one used in this work. The set of Equations in (1) turn into:

Dρi
Dt

= −ρi
�

j

(uj − ui) ·∇WijVj

+hcs
�

j

δijDij ·∇WijVj ,

Dui

Dt
= g − 1

ρi

�

j

(pi + pj)∇WijVj

+hcs
ρ0
ρi

�

j

αijΠij∇WijVj ,

(4)

where Dij is the diffusive term added to the continuity
equation in the standard δ-SPH model [2] and Πij the viscous
part of the momentum equation, which are expressed as:

Dij = 2 [(ρj − ρi)

−1

2

�
�∇ρ�Lj + �∇ρ�Li

�
· (rj − ri)

�
(rj − ri)

�rj − ri�2,

Πij =
(uj − ui) · (rj − ri)

(rj − ri)2
,

(5)

where �∇ρ�Li represents the renormalized density gradient, as
defined in [16].

Actually, the main difference of the δ-LES-SPH model
comes from the fact that diffusive coefficients δ and α acting in
each equation are no longer considered as constants, but being
computed on each particle and having physical meaning. The
new δij quantity is computed as:

δij = 2
δi δj

δi + δj
, (6)

where,

δi =
νδi
csh

, (7)

and
νδi = (CδLLES)

2�D�i , (8)

in which Cδ is a constant equal to 1.5 and LLES is a reference
length for the SPH filtering procedure, that is set equal to the
SPH kernel radius, in our case LLES = 2h. The quantity �D�i
is given by:

�D�i =
�

2Di : Di, (9)

that is computed as:

Di =
1

2

�

j

[(uj − ui)⊗ (Li ·∇Wij)

+(Li ·∇Wij)⊗ (uj − ui)]Vj ,

(10)

where Li is the is the tensor for correcting the kernel gradient
in order to recover the first-order completeness [16].
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Analogously, the viscous coefficient αij becomes a function
of the interacting particles. It can be expressed in the following
form:

αij = α+ 2
αiαj

αi + αj
, (11)

where α is the contribution due to real viscosity, whilst αi

accounts for a turbulent viscosity contribution:

αi = α+
Kναi
cshρ0

, (12)

where K is a constant that is set to 8 or 10 depending on the
simulation being 2-D or 3-D respectively, and,

ναi = (CαLLES)
2�D�i , (13)

in which Cα is the Smagorinsky constant, which takes the
value of 0.12.

Regarding the boundary treatment, numerical boundary in-
tegrals [10] are used for the problems tested, implemented
according to [7]. In the boundary integrals formulation, the
differential operators from (1) are defined in the presence of
a boundary as:

�∇f�i =
1

γi

�

j

fj ·∇WijVj +
�

j

fj · njWijsj , (14)

where fj is a generic field function, nj the normal to the
surface, pointing outwards, sj the area of the surface element
and γi the Shepard renormalization factor, that in this case is
computed according to the procedure described in [7].

B. Beam model

The equation for a beam is given by the Euler-Bernoulli
beam theory as:

m(x)
∂2w(x, t)

∂t2
+c

∂w(x, t)

∂t
+EI

∂4w(x, t)

∂x4
= f(x, t) , (15)

where x is the spatial coordinate whilst t the time. m(x) is the
distributed mass of the beam (in the future the mass will be
assumed as a constant distribution m(x) = m), w the vertical
displacement, c accounts for the internal damping of the beam,
EI is the structural rigidity and f(x, t) a generalized force.

There are several possibilities to model such a problem.
Although numerical solutions, such as finite-differences, finite-
element or even SPH are a popular standard, as in this
case we are not so much interested in computing accurately
physical phenomena, such as stress or elongations within the
beam, but to analyse the influence of the external loading on
the beam movement, and how this modifies fluid behaviour
inside the tank, a more simple solution is sought. Therefore,
two possibilities have been chosen. The most simplest model
consists on modelling the beam as a mass-spring-damper
system. Therefore, equation (15) can be written as:

mẅ + cẇ +Kw = f(t) , (16)

where m and c have been already defined, and K is the
stiffness. This way, the solution now only depends on the
temporal discretization. For a cantilever beam, the stiffness due

to vertical motion takes the form K = 3E I/L3. To obtain
the damping, the system can be rearranged as:

ẅ + 2ξωẇ + ω2w = f(t) , (17)

where ω is the natural frequency of the system ω =
�
K/m

and ξ is the damping coefficient. Identifying terms between
Eqs. (16) and (17), the value of c can be established.

This solution, although simple and robust, considers the
beam as an only moving point, and therefore no local dis-
placements are considered. This implies that rolling motion is
not included in the model, which might be relevant for the
sloshing flow in some conditions.

Another possibility for the solution to Equation (15) can be
given according to the following expression:

w(x, t) =

n�

i

φi(x)qi(t) , (18)

which means that the problem can be split up into two different
problems, one to solve the spatial discretization and another
to solve the temporal evolution. Substituting Eq. (18) into Eq.
(15), and considering the homogeneous solution, one gets:

mφ(x)q̈(t) + cφ(x)q̇(t) + EI φIV (x)q(t) = 0. (19)

Equation (19) can be split into two different problems, given
by:

EI

m

φIV (x)

φ(x)
=

c

m

q̇(t)

q(t)
+

q̈(t)

q(t)
= λ2. (20)

This implies that the two differential equations to be solved
are:

φIV (x)− k4nφ(x) = 0

q̈(t) +
c

m
q̇(t) + λ2q(t) = 0 ,

(21)

where k4n = λ2

a2 and a2 = EI
m .

Regarding the spatial discretization from Eq. (21), we
assume a solution of the form [13]:

φ(x) = C1cosh(kx)+C2cos(kx)+C3sinh(kx)+C4sin(kx).
(22)

To solve this equation four boundary conditions are needed.
For a cantilever beam (fixed end at x = 0 and free end at
x = L), these take the following form:

w(0, t) = X(0) = 0
∂w(0, t)

∂x
=

∂X(0)

∂x
= 0

∂2w(L, t)

∂x2
=

∂2X(L)

∂x2
= 0

∂3w(L, t)

∂x3
=

∂3X(L)

∂x3
= 0 .

(23)
Applying Eq. (23) to the expression in Eq. (22), the general

solution is:
φi(x) = cosh(kix)− cos(kix)

−βi (sinh(kix)− sin(kix)) ,
(24)

with
βi =

cosh(kiL)− cos(kiL)

sinh(kiL)− sin(kiL)
. (25)
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As it has been mentioned, ki is a function of the natural
frequency. For a cantilever beam, it can be known from the
solutions of the following expression:

cos(knx)cosh(knx) = −1. (26)

The solution for the first five modes for ki and αi can be
found in Table I.

TABLE I
SOLUTION FOR THE FIRST FIVE MODES OF ki AND αi

Mode 1 2 3 4 5
ki 1.875 4.694 7.854 10.995 14.137
αi 0.734 1.018 0.999 1.000 0.999

Once the spatial solution has been found, and the eigen-
modes and their corresponding natural frequencies are known,
the time-dependant solution can be sought from the second
Equation in (21).

The force term can be added at this point. The general force
considered in this work is a set of concentrated forces acting
at determined points along the beam.

f(x, t) =
m�

k

Fkδ(x− ck)δ(t− t0) =

m�

k

n�

i

φi(x)Fkφi(ck)(t− t0).

(27)

The complete system in (21) can now be solved and the
total displacement at each time step computed. In this work,
a 4th-order Runge-Kutta algorithm in time is used.

C. Coupling

As it has been seen in previous sections, to obtain dis-
placements, velocities and accelerations in the beam, an input
force is needed. This force is actually the fluid force acting
on the tank and being transmitted to the beam. The forces
are obtained from the SPH solver according to Fbody/fluid =
F p
body/fluid + FV

body/fluid, where:




F p
body/fluid :=

�

∂ΩB

dF p , �dF
p
: = −pn dS,

FV
body/fluid :=

�

∂ΩB

dF V , �dF
V
: = 2µD · n dS,

(28)
with Fbody/fluid being the total force applied by the body
on the fluid and F p

body/fluid, F V
body/fluid the corresponding

pressure and viscous components.
According to the boundary integrals formulation, these

forces can be expressed in the SPH model as:

F p
body/fluid = −

�

i

�

j

Vi Sj (pj + pi)njWij ,

FV
body/fluid =

�

i

�

j

Vi Sjµπij · njWij .
(29)

In order to simplify the process, the tank is assumed to be
perfectly attached to the beam, and therefore forces can only

Fig. 2. Forces equilibrium diagram. Fx, Fy and M are the forces and
moment coming out from the fluid, and H , V1 and V2 the reactions.

be transmitted through two supports located at the bottom ends
of the tank, as it is depicted in Figure 2.

Forces and reactions are set according to:
�

F = mtẅ ,

�
M = Itα ,

(30)

where mt is the mass of the tank, ẅ the acceleration of the
system, It the inertia of the tank and α its angular acceleration.

D. Energy Analysis

In this section, an analysis of the sources of energy dissi-
pation of the numerical fluid system is discussed. The First
Law of Thermodynamics, i.e. the conservation of energy, can
be stated as follows [8]:

dεI
dt

+
dεM
dt

= Pbody/fluid , (31)

where εI and εM are respectively the internal and mechanical
energies of the fluid, while Pbody/fluid is the power delivered
by the solid boundary ∂ΩB to the fluid. The power Pbody/fluid

can be obtained by integrating the elementary power acting on
each surface element of ∂ΩB :

Pbody/fluid =

�

∂ΩB

(T · n) · uB dS, (32)

where T is the stress tensor and uB is the velocity of the body.
For a Newtonian fluid, the stress tensor reads:

T = (−p + λ tr (D)) I+ 2µD . (33)

Using equation (33), we can split Pbody/fluid in two com-
ponents, one associated to the pressure field and the other to
the viscous forces, as it has already been done, where:





Pp
body/fluid :=

�

∂ΩB

uB · dF p ,

PV
body/fluid :=

�

∂ΩB

uB · dF V ,

(34)

with dF p and dF V being the elementary pressure and viscous
forces of the body surfaces acting on the fluid, which have
already been defined in previous section.

On the left hand side of Equation (31), there is the mechan-
ical energy �M , which can be split as the sum of kinetic and
potential energies. Each of these can be expressed in the SPH
framework for the particle system as:

�k =
1

2

�

i

mi�ui�2 �p = −
�

i

mig · ri . (35)
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Under the assumption of weakly-compressibility, the con-
stitutive equation for the internal energy εI is:

dεI
dt

=
dεC
dt

− PV , (36)

where PV is the viscous dissipation rate of the fluid (which
is always negative in the theoretical model, consistently with
the Second Law of Thermodynamics), and where εC is the
elastic energy of the fluid due to the compressibility, i.e.:

dεC
dt

=
�

i

Vi
pi
ρi

dρi
dt

, (37)

On the other hand, the viscous dissipation rate of the
fluid PV can be split as the sum of the different sources of
dissipation in the model, this is, dissipation due to δ term,
dissipation due to α term, and the dissipation due to the
boundaries. Both δ and α dissipation terms can be expressed
as:

Pδ = −hc
�

i

pi
ρi

�

j

DijVjVi

Pα = hcρ0
�

i

�

j

Πij(uj − ui)∇WijViVj .
(38)

Finally, the dissipation term due to the boundaries Ps,
as discussed in [1], depends on the technique used at the
boundaries. In [9] the different solutions are drafted. For
the boundary integrals technique proposed here, this term
becomes:

Ps =
1

γi

�

i

�

j

Vi [µΠijui + (pi + pj)ui

+pi(uj − ui)] · njWijsj .

(39)

Rearranging the terms derived in the two previous subsec-
tions, the rate of variation of the total internal energy of the
fluid can be written as follows:

dεM
dt

+
dεC
dt

− (Pδ + Pα + Ps) = PV
body/fluid + Pp

body/fluid.

(40)

III. PRELIMINARY RESULTS

A. Static test

In order to test the two beam models presented above and
to set the different constants to model appropriately the beam,
a static test is performed at first. For this test the beam is
set at rest and is loaded with different masses until a steady
value of deflection is reached. Figure 3 presents results of both
models presented in previous Section versus the experimental
values. Values for the models are chosen to set the same
rigidity found out in experiments, meaning E = 210GPa,
I = 5.57e−7 m4 and an effective length Lb = 2.48m. From
measurements, it is found that the linear mass of the beam is
ρb = 13.04 kg/m, and therefore the total mass is 32.34 kg.
As it can be appreciated, both models reproduce accurately
the results from the experiment for the static test.
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�
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�����
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Fig. 3. Displacement at the tip for the static test.

Fig. 4. Geometry of the two configurations tested: rectangular tank (top)
and baffled tank (bottom).

B. Dynamic Tests

Once the beam parameters are known, a set of dynamic tests
is performed.

For the dynamic tests, the tank is attached to the beam,
therefore modifying the properties of the system. Two con-
figurations for the tank are tested: a rectangular tank and a
baffled tank. Geometries for both configurations can be seen in
Figure 4. The total length of the tank is L = 0.7m and height
H = 0.06m. Baffled tank is composed by 7 compartments
with length Li = 0.1m. The total length of the tank in this
case is extended to L = 0.73m, so both configuration have
the same amount of fluid for a determined filling level. Filling
level h can be varied, although in this work only results for
filling level h = 50%H will be presented.

The beam is pre-loaded and let oscillate freely, and motion,
velocity and acceleration is measured. In this set of cases,
the initial displacement at the tip is always the same, corre-
sponding to wtip = 0.04m In order to establish a comparison
reference, first a preliminary test without liquid is carried out.
Instead of liquid, a solid mass with a weight corresponding
to a 80% filling condition (the maximum tested) is attached
inside the tank. All tests carried out in this work have the same
total nominal mass, which is the corresponding to the sum of
the different systems. Therefore, a ballast mass is added for
the 50% filling level, corresponding to the remaining mass.

Figure 5 shows raw acceleration data obtained from the
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experiments, and those calculated with the model. Damping
coefficient in the model has been set to 1.5%, which is a
standard value found out in the computation of structural
models, such as bridges. From this Figure it can be observed
that although the model response decays homogeneously,
contrary to the experiment register where a more chaotic signal
is obtained, both results show that accelerations lie in the same
order of magnitude, and that their behaviour is similar.

� � � � � � �

�������
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Fig. 5. Acceleration registered for the modelled beam and the experimental
beam for the solid mass test case without liquid.

Once the model with a solid mass is tested, some tests to
compare the behaviour of sloshing fluid for the two inner con-
figurations are shown. In these cases presented, tank motion
is purely vertical, and no angle is induced on the tank, but the
effect of fluid force on the response can be drafted. Results
for the sloshing fluid are shown in Figures 6 and 7. In these
Figures, the evolution of the turbulent kinetic energy in log
scale at five different relevant moments of the simulation is
shown. Resolution in Figure 6 is set as L/dr = 2000 and
in Figure 7 as Li/dr = 360. Compact support and speed of
sound are chosen the same for both tests, such that h/dr = 2
and cs = 20m/s. As the tank motion is purely vertical, fluid
behaviour is pretty similar at the first stages of the simulation
for both tests. However, as the motion dampens, a wave is
generated in the horizontal direction, and the vertical baffles
play a role as they do not allow the wave to propagate.
Nonetheless, there is not a noticeable influence on the turbulent
kinetic energy field values.

Similarly to Figure 5, in Figure 8, accelerations registered in
the experiments are compared to the numerical results obtained
from the 50% filling level case for the baffled configuration.
At first stages experimental data values do not match very
well with numerical obtained solution, reaching values over
11 g, the maximum theoretically predicted. However, then the
signals tend to similar accelerations when the motion starts to
dampen.

Motion damping due to fluid force is one of the key aspects
to analyse in this work. In order to find a clearer comparison

Fig. 6. Evolution of the turbulent intensity in the fluid at five different
moments of the simulation with the δ-LES-SPH model. Rectangular tank
with 50% filling level.

Fig. 7. Evolution of the turbulent intensity in the fluid at five different
moments of the simulation with the δ-LES-SPH model. Baffled tank with
50% filling level.

between the solid mass and the fluid sloshing tests regarding
damping, in Figure 9 the non-dimensional motion time history
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Fig. 8. Acceleration registered for the modelled beam and the experimental
beam for the 50% filling level baffled case.

for both the solid mass case and the fluid case obtained
from the simulations is shown. As it can be seen, damping
is stronger when the fluid sloshes, reaching first a stationary
motion.
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Fig. 9. Non-dimensional motion for the beam: red dashed line represents
the solid mass motion, blue solid line represents the 50% fill fluid motion.
x0 = x(t = 0).

In Figure 10 this effect is emphasized. It shows the envelope
of the acceleration register amplitude for the two cases pre-
sented in Figure 9. Damping can be obtained from the slope
of the curves. At first stages, this damping is bigger for the
fluid sloshing case, and then, once the motion is sufficiently
damped, both curves follow approximately the same trend,
showing that fluid sloshing role loses importance and is the
damping of the beam that mainly contributes to the decay in
motion. This is in accordance with the fluid evolution observed
in Figures 6 and 7.

Another important analysis is how the energy in the fluid
evolves during the simulation. In Figure 11 the different energy
components at the tank for the simulation with 50% filling
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Fig. 10. Envelope of the acceleration register for the solid mass motion test
(red dashed line) and the 50% filling fluid test (blue solid line).

Fig. 11. Energy analysis: green line represents the evolution of mechanical
energy, red line corresponds to the evolution of dissipation terms, whilst blue
line is the external work contribution.

level is shown. As it can be appreciated, in the same fashion
as what is observed from previous results, there exist sharp
increases in the forces and dissipation terms every time the
fluid hits a wall. This can be also appreciated in variations of
mechanical energy. Once motion is dampened, contributions
remain stable, keeping the energy terms constant. Energy is
therefore conserved.

IV. CONCLUSIONS

In this work, a numerical model of a fully coupled fluid-
structure interaction problem is developed. The aim is to
analyze damping effects due to liquid sloshing inside fuel tank
of aircraft wings. In order to reproduce experimental results,
fluid is simulated through the δ-LES-SPH model, implemented
in the boundary integrals methodology framework. The struc-
ture is modelled through beam theory. Two different models
based on this theory have been presented From the results
presented, the main conclusions from this work are: first, that

112



14th international SPHERIC workshop Exeter, United Kingdom, June, 24-27 2019

SPH as numerical tool is able to confirm that the presence of
liquid in the tanks attached to flexible structures introduces
a damping effect that can be numerically measured in terms
of motion and compared to the experiments. Second, that
SPH is able to model complex baffled geometries involving
several phenomena at the same time through the boundary
integrals approach, and finally, that the coupled system is able
to capture the energy mechanisms and transfers involved in
the phenomenon.

Despite the promising results, there are still efforts to be
made in several directions. Models are limited to 1-D, for the
case of the mass-spring-damper system, and 2-D for the modal
solution. More degrees of freedom can be added in order to
set accurately the motions in complex situations. Although a
considerable resolution has been used, there is still a need
for further refinement in order to capture as much turbulent
phenomena as possible. The current work relies mainly on 2-D
simulations. However, it has been previously assessed that 3-D
effects may play a role in the damping mechanisms, especially
when inner baffled configurations are introduced.
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