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SUMMARY
The second order solution of the disc impact problem is derived for the initial stage of the disc motion. The disc is of
circular shape and is originally floating on the free surface, then it suddenly starts to penetrate the water with a constant
entry velocity. The boundary value problem for the second order velocity potential is of mixed type with a Dirichlet
condition being imposed on the free surface and a Neumann boundary condition on the disc surface. Both conditions
are given in terms of the first order solution derived in a previous paper. The second order problem is complicated by
singular behavior of the velocity potential on the free surface. For this reason the solution is presented as the sum of three
different contributions. The first two terms are introduced to match the singular behavior of the velocity potential on the
free surface whereas the third one, which is regular at the disc edge, provides the complete satisfaction of the boundary
conditions both over the free surface and on the body.

1. INTRODUCTION

The sudden vertical motion of a circular disc initially float-
ing on a still liquid surface is considered. It is assumed that
no air is entrained at the plate-liquid interface, and that
the liquid flow is axisymmetric and potential. Both surface
tension and the gravity are not taken into account.

In [1] the hydrodynamic loads generated during the early
stage after the sudden start of the disc have been derived
through a small time expansion procedure. Therein the first
order velocity potential was obtained and used to derive the
boundary value problem for the second order velocity po-
tential. Differently from the two-dimensional case [2], in
the corresponding axisymmetric problem the second order
solution cannot be analytically derived. The solution of
the corresponding boundary value problem is made further
complicated by the singularity of the second order velocity
potential about the disc edge. Owing to this singularity, in
[1] only the most divergent part of the second order veloc-
ity potential was used to derive an asymptotic estimate of
the hydrodynamic loads acting on the disc. However, the
comparison with the fully nonlinear numerical results estab-
lished in [3] revealed that the incompleteness of the second
order outer solution in the axisymmetric problem makes the
asymptotic estimate valid for a much shorter time interval
with respect to that found in the two-dimensional case.

On the basis of the above considerations, complete sec-
ond order velocity potential is derived here. Due to the sin-
gularity of the velocity potential, the solution is presented
as the sum of three contributions. The first two terms are
introduced to match the singular behavior of the velocity
potential at the edge of the disc and the third one, which is
regular, is aimed at satisfying the boundary conditions all
over both the free surface and the body surface.

2. BOUNDARY VALUE PROBLEM FOR THE
SECOND ORDER VELOCITY POTENTIAL

In [1] the early stage after the sudden vertical start of a cir-
cular disc was investigated through a small time expansion
procedure. The velocity potential ϕ and the free surface
elevation η were presented in the forms

ϕ(r, z, t) = ḣ(t)ϕ0(r, z) + ϕ̃1(r, z, t) , (1)

η(r, t) = h(t)η0(r) + η̃1(r, t) , (2)

where r, z are the non-dimensional radial and vertical coor-
dinates and h(t) is the penetration depth of the disc. As
t → +0, the leading order terms in (1) and (2) satisfy the
boundary value problem with mixed boundary conditions

∆ϕ0 = 0 , (z < 0)
∂ϕ0

∂z
= −1 , (z = 0, r < 1)

ϕ0 = 0 , (z = 0, r > 1) (3)

η0 =
∂ϕ0

∂z
, (z = 0, r > 1)

ϕ0 → 0 , (r2 + z2 →∞)

which is well known as the pressure-impulse problem [4].
The solution to the BVP (3) can be derived by using the
oblate spheroidal variables which are defined as

r = (1− µ2)1/2(1 + ξ2)1/2 , z = µξ, (4)

where µ varies from −1 to +1 with its extreme values repre-
senting the negative and positive z-axis, respectively. The
variable µ is zero over the portion of the z = 0 plane
with r > 1 (i.e. the undisturbed free surface), whereas
the variable ξ is zero over the disc surface. Within the
oblate spheroidal variables the solution of the boundary
value problem (3) is

ϕ0(µ, ξ) =
2
π

µ
(
1− ξ arctan

(
ξ−1

))
. (5)

It is known that in a small time expansion procedure the
first order velocity potential provides the boundary condi-
tions for the second order potential. For the circular disc im-
pact problem, it was shown in [1] that the dynamic bound-
ary condition on the free surface reads

∂ϕ̃1

∂t
= −1

2
ḣ2 [ϕ0,z]

2 + o(1) (r > 1, z = 0) , (6)

whereas the body boundary condition takes the form

∂ϕ̃1

∂z
= −hḣ

1
r

∂

∂r

(
r
∂ϕ0

∂r

)
+ o(h) (r < 1, z = 0) . (7)



Equations (6) and (7) indicate that the velocity potential
ϕ̃1 can be decomposed as

ϕ̃1 = ḣhϕ1(r, z) +D(t)ϕe(r, z) + ϕ̃2(r, z, t), (8)

where ϕ1(r, z) satisfies equations

∆ϕ1 = 0 (z < 0)

ϕ1 = −1
2

[
∂ϕ0

∂z

]2

(z = 0, r > 1) (9)

∂ϕ1

∂z
= −1

r

∂

∂r

[
r
∂ϕ0

∂r

]
(z = 0, r < 1)

and ϕe(r, z) is the eigensolution of the boundary value prob-
lem (9) with the least singularity at the disc edge. In equa-
tion (8), the function D(t) should be obtained by matching
the outer and inner solutions.

By substituting the velocity potential ϕ0 given by equa-
tion (5) into the free surface and body boundary conditions
of the boundary value problem (9) we obtain

ϕ1(r, 0) = − 2
π2

[
1√

r2 − 1
− arcsin

(
1
r

)]2

(r > 1) (10)

and

∂ϕ1

∂z
(r, 0) = − 2

π

[
2√

1− r2
+

r2

(1− r2)
3
2

]
(r < 1). (11)

The singularity of these conditions about the edge of the
disc makes the solution of the boundary value problem (9)
rather complicated. A way to overcome the difficulty is to
present the solution as the sum of three different contribu-
tions. The first two are aimed at representing the singular
part of the free surface boundary condition and the third
one is designed to satisfy the boundary conditions all over
the free surface and the body surface.

3. DIVERGENT CONTRIBUTIONS TO THE SEC-
OND ORDER VELOCITY POTENTIAL

From equation (10) it can be seen that approaching the edge
of the disc, r → 1 + 0, the velocity potential behaves as

ϕ1(r, 0) ∼ − 2
π2

1
r2 − 1

+
4
π2

arcsin(1/r)√
r2 − 1

. (12)

Such a behavior can be represented by a 3D dipole of in-
tensity A distributed along the circle r = 1. This dipole
distribution induces a velocity potential given by

φD(r, z) = −A

π

1
(δ2 + 4r)3/2

[
rnr

(
E(γ)
1− γ2

(
2
γ2
− 1

)

− 2
γ2

F (γ)
)

+
E(γ)
1− γ2

(−nr + znz)
]

,

where

δ2 = (r − 1)2 + z2 , γ2 =
4r

δ2 + 4r
,

nr and nz specify the dipole orientation,

F (γ) =
∫ π/2

0

dα√
1− γ2 cos2 α

,

E(γ) =
∫ π/2

0

√
1− γ2 cos2 α dα

are the first and second complete elliptic integrals, respec-
tively [5]. Intensity and orientation of the dipole can be
properly chosen to reproduce the singular behavior of the
second order velocity potential about the edge of the disc.
If we assume the dipoles along the unit circle are oriented
in the horizontal direction and normal to the circle, i.e.
nr = 1, nz = 0, we obtain

φD(r, z) = −A

π

1
(δ2 + 4r)3/2

[
r

(
E(γ)
1− γ2

(
2
γ2
− 1

)

− 2
γ2

F (γ)
)
− E(γ)

1− γ2

]
. (13)

If we take z = 0 and let r → 1 + 0, we find

φD(r, 0) ∼ −A

π

1
43/2

[
r

(
E(γ)
1− γ2

(2− 1)− 2F (γ)
)
− E(γ)

1− γ2

]
where γ → 1 and E(γ)→ 1, whereas F (γ) has a logarithmic
singularity. Therefore

φD(r, 0) ∼ − A

8π

[
1

1− γ2
(r − 1)− 2F (γ)

]
as r → 1+0.

From the definitions, as r → 1+0 we have that 1/(γ2−1) ∼
4/(r − 1)2 and thus

φD(r, 0) ∼ − A

8π

[
4

r − 1
− 2F (γ)

]
as r → 1+0 . (14)

The comparison of the leading order term in (14) with equa-
tion (12) indicates that these two equations match each
other in the leading order as r → 1 + 0 if A = 2/π.

Although the dipole distribution allowed us to represent
the most divergent part of the second order velocity poten-
tial, it introduces another low-order singularity due to the
logarithmic singularity of the function F (γ) as γ → 1. Such
a singularity can be removed by adding the velocity poten-
tial induced by a circular source located at (1, 0), which is
given by

φS(r, z) = −B

π

1
(δ2 + 4r)1/2

F (γ) . (15)

If we take B = A/2 = 1/π, then such a velocity potential
compensates the singular behavior of the second term in
equation (14).

On the basis of the above considerations, the combina-
tion of the dipole (13) and source (15) velocity potentials

φA(r, z) = − 2
π2

1
(δ2 + 4r)3/2

[
r

(
E(γ)
1− γ2

(
2
γ2
− 1

)
− 2

γ2
F (γ)

)
− E(γ)

1− γ2

]
− 1

π2

1
(δ2 + 4r)1/2

F (γ) (16)



correctly matches the most divergent part of the second or-
der velocity potential given by equation (10).

The velocity potential φA derived above, only fits the
most divergent contribution in equation (12). In order to
derive a harmonic function that matches the square root
singularity at the edge of the disc, we can use the fact that
if ϕ(r, z) is a harmonic function, then its z-derivative is also
harmonic function. Hence, if we differentiate with respect
to z the velocity potential ϕ0(r, z) given by equation (5), we
obtain that

ϕ0,z(µ, ξ) =
2
π

[(
1− ξ arctan

1
ξ

)
ξ

(1− µ2)
(µ2 + ξ2)

+µ

(
− arctan

1
ξ

+
ξ

(ξ2 + 1)

)
µ

(1 + ξ2)
(µ2 + ξ2)

]
(17)

where the relations

ξz = µ
(1 + ξ2)
(µ2 + ξ2)

ξr = ξ
(1− µ2)1/2(1 + ξ2)1/2

(µ2 + ξ2)

µz = ξ
(1− µ2)
(µ2 + ξ2)

µr = −µ
(1− µ2)1/2(1 + ξ2)1/2

(µ2 + ξ2)

were used. Equation (17) can be further simplified thus
obtaining

φB(µ, ξ) =
2
π

(
− arctan

1
ξ

+
ξ

ξ2 + µ2

)
, (18)

which along the free surface, z = 0, µ = 0, behaves as

φB =
2
π

(
1
ξ
− arctan

1
ξ

)
=

2
π

(
1√

r2 − 1
− arcsin

1
r

)
.

4. REGULAR CONTRIBUTION

The velocity potentials φA and φB , although matching the
singular behavior of ϕ1 about the edge of the disc, do not
satisfy the free surface boundary condition (10). Moreover,
contributions of these potential to the body boundary con-
dition (11) is not clear sofar. However, we can assume from
now on that the second order velocity potential ϕ1 can be
represented in the form:

ϕ1 = φA + φB + φC .

If we substitute this decomposition into the free surface con-
dition (10) and the body boundary condition (11), we obtain
the corresponding boundary conditions for the velocity po-
tential φC . After some mathematics we obtain that on the
free surface, z = 0, r > 1, the velocity potential φC has to
satisfy the condition

φC(r, 0) = − 2
π2

[
1

ξ(r)
− arctan

1
ξ(r)

]2

− 2
π

[
1

ξ(r)
− arctan

1
ξ(r)

]
+

1
π2

E(γ)
r − 1

(19)

which, as r → 1 + 0, approaches the limit value

φC(1, 0) =
1
2
− 4

π2
+

1
2π2

= 0.14537586 .

The graph of the function φC(r, 0) for r > 1 is drawn in
Fig.1.
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Figure 1: Velocity potential on the free surface, r > 1.

On the body surface, z = 0, r < 1, the velocity potential φC

has to satisfy the condition

∂φC

∂z
(r, 0) = − 4

π

(
1

(1− r2)1/2
+

r2

2
1

(1− r2)3/2

)

− ∂φA

∂z
(r, 0)− ∂φB

∂z
(r, 0) (20)

From the definition of φA it can be shown that

∂φA

∂z
(r, 0) ≡ 0 (r < 1)

whereas from equation (18) we obtain that

∂φB

∂z
(r, 0) =

2
π

(
1
µ

+
1
µ3

)
= − 2

π

(
1

(1− r2)1/2
+

1
(1− r2)3/2

)
.

where µ = −
√

1− r2 has been used for the lower side of the
disc surface. With the help of these results, it can be shown
that equation (20) provides

∂φC

∂z
(r, 0) = 0 (r < 1) . (21)

Hence, in order to completely determine the second or-
der velocity potential, we need to find the velocity potential
φC that satisfies the free surface boundary condition (19)
and the body boundary condition (21). Such a boundary
value problem can be solved numerically using the second
Green’s identity, as it is done in [3] for the fully nonlinear
solution of the time domain problem. However, for the pur-
pose of estimating the hydrodynamic loads acting on the
disc during the early stage, the second order velocity po-
tential is only needed on the disc surface. In this case the
Sneddon’s equation [6]

φC(r, 0) =
2
π

∫ ∞

0

φC [
√

(1− r2)τ2 + 1, 0]
dτ

τ2 + 1

can be used. This equation provides the velocity potential
on the disc as an integral of the velocity potential on the flat



surface outside the disc in the case the normal derivative of
the potential is zero over the disc.

In order to make a cross comparison of the results, in
Fig.2 the velocity potential φC(r, 0) for r < 1 obtained
both by the BEM approach and by the Sneddon formula
are shown. The two curves are essentially overlapped.
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Figure 2: Velocity potential on the disc surface ob-
tained by the Sneddon formula (solid) and by the BEM
approach (dash), the two results being essentially over-
lapped.

5. CONCLUSIONS

The second order velocity potential of the sudden vertical
motion of a disc initially floating on the free surface has
been derived for the early stage of the impact. Owing to
the singularities in the boundary conditions, the solution is
presented as the sum of three different terms. The first one
is a combination of circular dipole and source. This term fits
the most divergent part of the free surface boundary condi-
tion. The second term is proportional to the z-derivative of
the first order velocity potential and is introduced to repre-
sent the square root singularity in the free surface boundary
condition. The third contribution, which is regular on the
whole boundary and has a zero normal derivative on the disc
surface, has been derived by using both a BEM approach
and the Sneddon formula, the latter providing the velocity
potential on the disc as an integral of the velocity potential
on the free surface.

The second order velocity potential can now be used to
derive the third order correction term in the asymptotics of
the hydrodynamic loads acting on the disc during the early
stage after the sudden start of the disc. Such asymptotic es-
timates and comparisons with corresponding fully nonlinear
numerical calculations will be presented at the Workshop.
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