
Picture It In Your Mind: Generating High Level

Visual Representations From Textual

Descriptions∗

Fabio Carrara1 Andrea Esuli1 Tiziano Fagni2

Fabrizio Falchi1 Alejandro Moreo Fernández1

1ISTI-CNR, via G. Moruzzi, 1, 56124 Pisa, Italy
2IIT-CNR, via G. Moruzzi, 1, 56124 Pisa, Italy

Abstract

In this paper we tackle the problem of image search when the query
is a short textual description of the image the user is looking for. We
choose to implement the actual search process as a similarity search in a
visual feature space, by learning to translate a textual query into a visual
representation. Searching in the visual feature space has the advantage
that any update to the translation model does not require to reprocess the
(typically huge) image collection on which the search is performed. We
propose various neural network models of increasing complexity that learn
to generate, from a short descriptive text, a high level visual representation
in a visual feature space such as the pool5 layer of the ResNet-152 or the
fc6-fc7 layers of an AlexNet trained on ILSVRC12 and Places databases.
The Text2Vis models we explore include (i) a relatively simple regressor
network relying on a bag-of-words representation for the textual descrip-
tors, (ii) a deep recurrent network that is sensible to word order, and
(iii) a wide and deep model that combines a stacked LSTM deep network
with a wide regressor network. We compare the models we propose with
other search strategies, also including textual search methods that exploit
state-of-the-art caption generation models to index the image collection.

image retrieval; cross-media retrieval; text representation

1 Introduction

Using a textual query to retrieve images is a very common cross-media search
task, as text is the most efficient media to describe the kind of image the user is

∗This paper is a revised and largely extended version of a preliminary work presented
at the Neu-IR ’16 SIGIR Workshop on Neural Information Retrieval, uploaded to arXiv:
https://arxiv.org/abs/1606.07287v1
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searching for. Each media has its own representation space, which is modeled
on a collection of representative content for that media. For example, text
can be represented by means of a simple bag-of-words feature space, with the
feature space being defined by a dictionary of observed words; or by means of
more complex distributional semantic models, such as those based on neural
networks, e.g., Word2Vec [33]. Similarly, a visual space can be modeled by
identifying a set of relevant visual features in a collection on images, e.g., as
those extracted by the deeper layers of Convolutional Neural Networks (CNN)
[27].

In cross-media retrieval, the actual retrieval process can be implemented in a
number of ways, depending on how the two feature spaces are joined. The cross-
media search space can be a textual feature space, i.e., a space whose definition is
determined exclusively by observing textual content; a visual feature space, i.e.,
a space whose definition is determined exclusively by observing visual content;
or a common latent space in which textual and visual features are projected
into.

Using textual features is the most common solution. Each image is associated
with a set of textual features extracted from its context of use (e.g., the text
surrounding the image in the Web page, description fields in metadata), and
eventually enriched by means of classifiers that assign textual labels related to
the presence of certain relevant entities or abstract properties in the image. The
textual search space model can exploit the actual visual content of the image
only when classifiers for the concepts of interest are available, thus requiring a
relevant number of classifiers; this also requires to reprocess the entire image
collection whenever a new classifier is made available.

Searching in a common latent space requires learning two projections (i.e.,
from text-to-latent and from image-to-latent). The main advantage of searching
in a common latent space lies on the freedom the system has to jointly model
reciprocal relations between the two media, while other strategies can only learn
the relations from the source media to the target media, but not vice versa.
However, as in the textual space, projecting into a common latent space also
requires to reprocess all the images whenever the textual model is updated,
since the latent space where images are projected into is also influenced by the
textual model part. It also requires managing and storing the additional latent
representations that are used only for the cross-media search.

A last, less explored, possibility is to use a visual space to convert any
textual query into a visual representation. A key advantage of this model is
that the representation of images remains unaltered regardless of the projec-
tion model being developed. This means that any improvement in the projec-
tion model, e.g., in the underlying language model, has immediate effects on
the image retrieval process, without requiring to reprocess the (typically huge)
whole image collection, and to rebuild the similarity search data structures re-
quired for efficient retrieval. Another advantage is that, since the visual space is
language-independent, multiple models, e.g., for multiple languages or special-
ized on different domains, can be used independently on the same collection of
images, without requiring multiple instances of representations for the images
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and multiple instances of similarity search data structures.
In this paper we explore the use of a visual space for cross-media retrieval.

Methods that use a common space projection may be able to produce better
results because they can exploit cross-correlations between the two media, while
the other two approaches are constrained to leverage on correlations that come
from one single direction. However, we deem that the ability of using a single
static collection of visual representations for images, irrespectively to how many
text-to-visual projection models are used and how often they change, is a prac-
tical advantage of visual space-based methods that counters such possible loss
of quality in results.

We present Text2Vis, a family of neural network models that convert
textual descriptions into visual representations in the same space of those ex-
tracted from deep CNN such as the AlexNet [27] or ResNet-152 [17] trained on
ILSVRC12 [38] and Places [47] datasets. We first offer an overview of relevant
cross-media retrieval in section 2. We propose different neural network mod-
els of increasing complexity in section 3, including (i) S-Text2Vis, a simple
regressor network relying on sparse representations (bag-of-words and bag-of-
bigrams) for the textual descriptors; (ii) D-Text2Vis, a deep recurrent net-
work relying on a continuous dense representations (word embeddings); and
(iii) W&D-Text2Vis, a wide and deep architecture relying on both sparse
and dense representations. We report experimental results in section 4, com-
paring with other methods that use different projection approaches. Section 5
concludes and outlines possible directions for future research.

2 Related Work

Deep Learning and Deep Convolutional Neural Networks (DCNNs) in partic-
ular, have recently shown impressive performance on a number of multimedia
information retrieval tasks [27, 41, 17]. Deep Learning methods learn represen-
tations of data with multiple levels of abstraction. As a result, the activation
of the deeper hidden layers has been used in the context of transfer learning
and content-based image retrieval [9, 37] as high-level representations of the vi-
sual content. Somewhat similarly, distributional semantic models, such as those
produced by Word2Vec [33], or GloVe [36], have been found useful in modeling
semantic similarities among words by establishing a connection between word
meaning and position in a vector space.

In order to perform cross-media retrieval, the two feature spaces (text and
images in our case) should be made comparable, typically by learning how to
properly map the different media. This problem has been attempted in differ-
ent manners so far, which could be roughly grouped into three main variants,
depending on whether the mapping is performed into a common latent space
(Section 2.1), a textual space (Section 2.2), or a visual space (Section 2.3).
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2.1 Mapping Into a Common Space

The idea of comparing texts and images in a common latent space has been
investigated by means of Cross-modal Factor Analysis and (Kernel) Canonical
Correlation Analysis in [7, 15]. In a similar vein, Corr-AE was proposed for
cross-modal retrieval, allowing the search to be performed in both directions,
i.e., from text-to-image and vice versa [12]. The idea is to train two autoen-
coders, one for the image domain and another for the textual domain, imposing
restrictions between the two. Similarly, in [24] the authors propose an encoder-
decoder architecture, in which the encoder part, formed by a LSTM (for textual
input) and a CNN (for visual input), is trained to project both inputs into near
points in a common multimodal space, and the decoder part generates new text
from a point in this new space. As will be seen, one of the architectures we are
presenting in the following (S-Text2Vis, Section 3.2) bears resemblance to one
of the architectures investigated in [12], the so-called Correspondence full-modal
autoencoder (which is inspired by the multimodal deep learning method [34]).
However, the two networks have a fundamental difference, since the Correspon-
dence full-modal autoencoder takes examples from both media as the inputs.
The DeViSE [13] method jointly trains a pre-trained instance of the convolu-
tional neural network of [27] (with its last layer replaced with a linear mapping
into the final embedding space), and a textual embedding space pre-trained as
a skip-gram model [33]. Even though DeViSE uses a final space which is of the
same size of the textual space, the pre-trained word embeddings are only used
as initial parameters and then they are adapted jointly with visual embeddings
during the training. The training is made on image and label pairs, where the
labels are not a full description of the scene, indicating only the presence of
certain entities in the image.

2.2 Mapping Into the Textual Space

The BoWDNN method [1] trains a deep neural network to map images directly
into a bag-of-words (BoW) space, where the cosine similarity between BoWs
representations is used to generate the ranking. Somehow similarly, a dedicated
area of related research is focused on generating captions describing the salient
information of an image (see, e.g., [22, 11, 44]). The m-RNN method [31] trains
a multimodal recurrent neural network to generate a caption description for
a given image. The model consists of a recurrent sub-network (operating on
text data) and a convolutional sub-network (operating on image data) which
combine into a multimodal layer where the recurrent state interacts with the
image representation. In [30], authors propose m-CNN, a multimodal architec-
ture in which convolutions are used on both the image and textual inputs to
directly output a match score between them. Models like m-CNN, which do
not explicitly learn a projection but a distance function on a latent projection,
are not fit for retrieval on large collections. Given a query, such models need to
perform a forward pass through the network for every image in the collection in
order to compute the distances. This entails a much higher cost with respect to
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traditional metrics, such as the Euclidean distance or the cosine similarity. The
ConSE [35] method adopts a very simple approach, inspired by DeViSE, that
uses the classification labels of the convolutional neural network of [27] to select
and combine, by their classification probability, the set of textual embeddings
related to the top assigned labels.

2.3 Mapping Into the Visual Space

Our Text2Vis variants belong to this group where, to the best of our knowl-
edge, the only other proposal up to now is a method dubbed Word2VisualVec
[10], which was reported just very recently. There are some fundamental points
where their method and ours differ, though. Word2VisualVec takes combina-
tions of Word2Vec-like vectors as a starting point, thus reducing the dimen-
sionality of the input space, whereas we directly take the bag-of-words vec-
tor encoding of the textual space as the input (S-Text2Vis), or learn the
word embeddings (D-Text2Vis, Section 3.3) during the training process, as we
did not observe any improvement in pre-training the textual part. Moreover,
Word2VisualVec builds a deep regressor on top of the textual representation
that are aggregations of word embeddings, which thus discard word order in-
formation. Contrarily, we observed that, when disregarding word order, yet a
shallow regressor (S-Text2Vis) produces effective mappings of textual vectors
into the visual space. We also observed that taking word order into account
helps to improve results (D-Text2Vis and W&D-Text2Vis, Section 3.4).

3 Generating Visual Representations of Text

Our goal is to map textual descriptions to high-level visual representations.
As the visual space we used the pool5 layer of the ResNet-152 [17] trained
on ILSVRC121, and the fc6 and fc7 layers of the Hybrid network [47] (i.e.,
an AlexNet [27] trained on both ILSVRC12 and Places2 datasets). Principal
Component Analysis (PCA) and whitening are commonly used in retrieval pro-
cesses based on vector similarity to reduce the dimensionality and to improve
the retrieval effectiveness of visual features. Projecting the dataset onto the
eigenvectors results in no correlation between the components, while whitening
normalizes the vectors to have unit variance for all components. This is done by
simply dividing each component by the square root of its eigenvalue. Originally
proposed for local features aggregations such as VLAD [21], PCA and whitening
are also largely used for processing the activation of neurons [40, 14, 16]. As
reported in Section 4.6, we observed relevant improvement by applying PCA
and whitening to the visual features.

In this section we describe the experimental activities we have carried out
in order to achieve our goal. We take a simple feedforward regressor as a start-
ing point (Section 3.1) to then propose three different architectures of increas-

1http://image-net.org/challenges/LSVRC/2012
2http://places.csail.mit.edu/index.html
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Figure 1: Left: Architecture of a simple regressor model with one hidden layer
of size 1024. Right: The training and validation loss (on y-axis) in function of
the training iteration (on x-axis). Notice the model overfits in the early phase
of the training process.

ing complexity: a regressor learning from unordered sparse features, called S-
Text2Vis (Section 3.2); a deep recurrent network learning from ordered dense
features, called D-Text2Vis (Section 3.3); and a wide & deep neural network
which jointly learns from both types of representations, calledW&D-Text2Vis
(Section 3.4).

3.1 VisReg

As a reference baseline we started with a simple feedforward regressor model
with a hidden layer trained on the sparse one-hot representation of the textual
input to directly predict the visual representation of the image (Figure 1, left).
We observed a strong tendency to overfit (Figure 1, right), thus degrading the
applicability of the method to unseen images.

We explain this overfitting with the fact that a visual representation keeps
track of every element that appears in the image, regardless of their semantic
relevance within the image, while a (short) textual description is more likely
focused on the visually relevant information, disregarding the secondary content
of the image. For example, the relevant images for the query “a person doing
jogging” will likely share a subset of common features that denote the presence
of a person with a posture that is associated to the action of gentle running,
and then have many other features related the different compositions of colors,
perspective, background elements each image may contain. As the learning
iterations proceed, the simple regressor model starts capturing these secondary
elements of the images that are not relevant for the main represented concept,
but are somewhat characteristic to the specific set of images that compose the
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Figure 2: Left: Architecture of our proposed S-Text2Vis which controls over-
fitting by adding an autoencoding constraint on the hidden state. Right: The
training and validation loss (on y-axis) in function of the training iteration (on
x-axis).

training data.
This preliminary experiment suggests that text-to-image mapping must be

somehow regularized. In the following we propose various strategies aiming at
constraining the mapping to better model the textual part.

3.2 S-Text2Vis

The first model we propose, dubbed S-Text2Vis, is based on forcing the hidden
representation to be representative not only for the visual reconstruction, but
also for reconstructing the sparse textual signal.

S-Text2Vis thus contrasts the overfitting by adding a text-to-text autoen-
coding branch to the hidden layer (Figure 2, left), constraining the model to
jointly satisfy two different losses: one visual (text-to-visual regression) and one
linguistic (text-to-text autoencoder). The linguistic loss works at higher level of
abstraction than the visual one, acting as an additional constraint on the model,
and preventing (as confirmed by our experiments) overfitting on the visual loss
(Figure 2, right).

S-Text2Vis consists of two overlapped feedforward neural nets with a
shared hidden layer. The feedforward computation is described by the following
equations:

z = ReLU(W1tin + b1) (1)

t′ = ReLU(W2z + b2) (2)

v′ = ReLU(W3z + b3) (3)

where tin represents the sparse one-hot encoding for the textual descriptor given
as input to the net, z is the hidden representation, v′ and t′ are the visual and
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textual predictions, respectively, obtained from the hidden representation z,
Θ = {Wi, bi}i∈{1,2,3} are the model parameters to be learned, and ReLU is the
activation function, defined by ReLU(x) = max{0, x}.

Both predictions v′ and t′ are then compared with the expected outputs,
i.e., the visual embedding representation v, and a textual descriptor tout that is
either tin or semantically equivalent to tin (we expand on this below). We used
the mean squared error (MSE – Equation 4) as the loss function both for the
visual loss and the textual loss, denoted by Lv and Lt, respectively.

MSE(y, y′) =
1

n

n∑
i=1

(yi − y′i)
2 (4)

where y, y′ are a pair of target description and prediction either in the textual
(t, t′, left part of the network in Figure 2) or in the visual (v, v′, right part
of the network in Figure 2) space. The model is thus multi-objective, and
many alternative strategies could be followed at this point in order to set the
Θ parameters so that both criteria are jointly minimized. A simple strategy to
jointly optimize the two losses consists of defining a single loss as a parametrized
aggregation (Equation 5), with typically one single parameter controlling the
relative contribution of the losses [12]. We also add a regularization parameter
to further counter overfitting.

Θ̂ = argminΘ (Lt(tout, t
′) + αLv(v, v

′) + λ||Θ||2) (5)

Note that the net is fed with a triplet ⟨v, tin, tout⟩ at each iteration. When
tout = tin the text-to-text branch is an autoencoder. It is also possible to
have tin ̸= tout, with the two pieces of text being semantically equivalent (e.g.,
tin =“a woman cutting a pizza with a knife”, tout =“a woman holds a

knife to cut pizza”). The text-to-image branch is, in any case, a regressor.
Notwithstanding, since our final goal is to project the textual descriptor into the
visual space, the text-to-text branch might be though as an additional constraint
(of linguistic nature) to the visual reconstruction (and, more specifically, to its
internal encoding).

The main strength of S-Text2Vis regards its simplicity, specially in the
use of the most simple representation for the input (the sparse encoding); yet
it produces effective results (as discussed bellow). That being said, the model
presents some flaws too, i.e., (i) the sparse encoding results in a high dimension-
ality, thus constraining the net to optimize a large number of parameters, and
(ii) the model is agnostic to word order, thus losing relevant information from
text, e.g.: “a white cat and a black dog” vs “a black cat and a white

dog”.

3.3 D-Text2Vis

The second model we propose, dubbed D-Text2Vis, is meant to overcome the
limitations of S-Text2Vis.
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In order to reduce the amount of parameters of the net, we resort to dense
representations (i.e., word embeddings) for the terms in the description. Besides
the mere reduction in the number of dimensions, the main reason that motivates
operating in a dense embedding space concerns with the gain in generalization.
Words with similar meanings end up being represented by similar vectors (in
the sense of the inner product), which allows the model to better generalize,
i.e., the patterns discovered become descriptive for an embedding region (and
to the greater or lesser extent to words with nearby embeddings) rather than
descriptive for a single word.

In order to make the model become sensible to word order, we adopt an
LSTM [18] architecture, a special kind of recurrent neural network which is
particularly robust to learn from sequential data (such as textual data). Con-
cretely, we train an LSTM on the task of language modeling (that is, the task
of predicting the most likely following term given the sequence of preceding
terms – see e.g., [42]) with backpropagation through time [46]. We constrain
the internal memory state of the last memory cell to be a good representation
to predict the visual embedding (Figure 3).
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Figure 3: Architecture of D-Text2Vis.

The computation is described by the following equations:

weti = lookup(WE, ti) (6)
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oi, si = LSTMcell(weti , si−1) (7)

t′i = softmax(W1oi + b1) (8)

v′ = ReLU(W2sf + b2) (9)

where lookup() returns the word-embedding weti from the (trainable) matrix
WE for the ith word in the textual descriptor with index ti, LSTMcell is the
memory cell, oi and si represent the output and state signals produced after
processing weti and si−1 (the state signal produced in the precedent step), and
sf is the state of the last memory cell. The softmax function transforms the
output signal into a probability distribution on the vocabulary-length space.
Finally, v′ and t′i are the visual vector and term predictions, respectively.

Note that in addition to the parameters WE, W{1,2} and b{1,2}, the LSTM-
cell internally maintains an input, output, and forget gates with their own pa-
rameters; as the memory cell we used the implementation described in [39].

The sequence of term vectors predictions t′i and the visual prediction v′ are
then compared to the expected textual and visual outputs. For the visual loss
Lv we use the MSE (Equation 4), as before. Each predicted term t′i is a |V |-
dimensional vector that could be though as a probability distribution over the
term indexes, where V is the vocabulary. Analogously, each term w can be
codified as a one-hot vector, i.e., a |V |-dimensional vector with all zero values
except the dedicated dimension indexing ti, which is set to one. Note that
a one-hot encoding could be interpreted as a probability distribution as well.
(When not confusing, we use ti both to refer to the term symbol and to its
one-hot encoding.) The error between both distributions is compared via the
cross-entropy error (Equation 10). Given the sequence t of expected terms ti
and the sequence t′ of predicted signals t′i outputted by the net, the textual loss
is computed as the averaged cross-entropy (Equation 11).

CrossEntropy(y, y′) = −
n∑

i=1

y′i log(yi) (10)

Lt(t, t
′) =

1

n

n∑
i=1

CrossEntropy(ti, t
′
i) (11)

where y, y′ represent any pair of true and predicted distributions. As before, the
net is fed with a triple ⟨v, tin, tout⟩ where, given a caption [t0 . . . tL], the input ant
output textual sequences are defined as tin = [t0 . . . tL−1] and tout = [t1 . . . tL],
being tL = EOS a special symbol delimiting end of the sequence. That is, the
expected sequence corresponds to the input sequence shifted one position since
the LSTM part is trained to predict the next term in the sequence. As the
model is, again, multi-objective, we apply the weighted aggregation described
by equation 5 to set the optimization problem.

3.4 W&D-Text2Vis

Our last proposal, dubbed W&D-Text2Vis, combines the sparse and dense
representations by following the recently proposed Wide & Deep Learning strat-
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egy [4].
W&D-Text2Vis combines the deep LSTM (borrowed from D-Text2Vis)

with a wide regressor. Linear models with nonlinear feature transformations
are known to be useful for large-scale regression problems with sparse inputs
(as is the case for short text descriptions). This model emerged from the belief,
discussed in [4], that the deep part contributes to model generalization while
the wide part contributes to model memory and therefore their combination
might be beneficial.
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Figure 4: Architecture of W&D-Text2Vis.

The fundamental difference with respect to [4] is that we use a recurrent
neural network as the deep part (instead of a feedforward network) since LSTMs
are particularly fit to learn from sequential data such as our textual descriptions.

The computations reuse Equations 6–8 from D-Text2Vis and incorporate
the following set of equations for the wide part:

deep = W2sf + b2 (12)

wide = W3

(
L∑

i=0

onehot(ti)

)
+ b3 (13)

v′ = ReLU(wide+ deep) (14)

where onehot(ti) returns the one-hot encoding vector for term ti. As in D-
Text2Vis, we used the MSE (Equation 4) for the visual loss Lv and the av-
eraged cross-entropy (Equation 11) for the textual loss Lt. The optimization
problem is set as in equation 5.
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4 Experiments

In this section we describe the set of experiments we have carried out in order
to test our methods.

4.1 Datasets

We used the Microsoft COCO dataset (MsCOCO3 [29]). MsCOCO was orig-
inally proposed for image recognition, segmentation, and caption generation.
Although other datasets for image retrieval exist (e.g., the one proposed in
[19]), they are more oriented to keyword-based queries. We believe MsCOCO
to be more fit to the scenario we want to explore, since the captions associated
to the images are expressed in natural language, thus semantically richer than
a short list of keywords composing a query.

MsCOCO contains 82.783 training images (Train2014 ), 40.504 validation
images (Val2014 ), and about 40K and 80K test images corresponding to two
different competitions [3] (Test2014 and Test2015 ). Because MsCOCO was pro-
posed for caption generation, the captions are only accessible in the Train2014
and Val2014 sets, while they are not yet released for Test2014 and Test2015.
We have thus taken the Train2014 set for training, and randomly split the
Val2014 into two disjoint sets of 20K images each for validation and test.

Each image in MsCOCO has five different captions associated4, each of which
written by a different individual. Let ⟨I, C⟩ be any labeled instance in MsCOCO,
where I is an image and C = {c1..c5} is a set of captions describing the content
of I. Given a ⟨I, C⟩ pair, we define a training labeled instance in our model
as ⟨v, tin⟩ where v ∈ R2048 is the visual representation of the image I taken
from the pool5 layer, or v ∈ R4096 when the representation comes from the
fc6 or fc7 layer (each representation has been tested in distinct experiments),
and tin is a textual descriptor randomly chosen from C representing the input
descriptor for the model. In the exceptional case of S-Text2Vis a training label
instance is defined as ⟨v, tin, tout⟩, where tout is the output textual descriptor
randomly chosen from C (the meanings for v and tin remain untouched). Note
that, in this case, tin and tout are not imposed to be different, thus leading to a
total of 25 possible combinations of training instances one could extract from a
single pair ⟨I, C⟩; this increases the variability of the training set a lot along the
different epochs. The training triplet ⟨v, tin, tout⟩ for D-Text2Vis and W&D-
Text2Vis models are extracted from the instance ⟨I, C⟩ by randomly choosing
tin from C and then defining tout as tin shifted one position (as explained above,
see section 3.3).

3Publicly available at http://mscoco.org/
4Actually in the dataset there are few images with more than five captions available for

processing. In such cases we took the first five listed.
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4.2 Visual similarity search

We evaluated the visual similarity between any two images by comparing their
visual descriptions obtained as described in Section 3. In particular, given the
improvement in performance in Content-Based Image Retrieval task reported
in [40, 14, 16], the Euclidean distance is used to compare the vectors obtained
applying PCA and whitening [6] to the neurons activation. The resulting vectors
have components which are both not correlated and have unit variance. In our
experiments, we considered the first 256 components obtained after PCA (while
the original dimension was 2,048 in the pool5 layer, and 4,096 in fc6-fc7 layers).

4.3 Training

We tackle the optimization problems using the Adam optimizer [23] with default
parameters (learning rate 0.001, β1 = 0.9, β2 = 0.999, and ϵ = 1e−0.8) in all
cases.

We set the size of the training batch to 64 examples; each of which was
extracted from a different image. Each training example in the batch corre-
sponds to the visual features v of a different image I, and a textual descriptor
tin picked at random from the set C of captions associated to I in MsCOCO. As
explained above, S-Text2Vis requires an additional tout which is also picked
at random from C during training. (During test, we consider all captions as
different queries.) We set the maximum number of iterations to 300.000 in S-
Text2Vis, and to 50.000 in D-Text2Vis and W&D-Text2Vis, but apply
an early stop when the model starts overfitting (as reflected in the validation
error). The training set is shuffled each time a complete pass over all images is
performed.

The word embedding matrix for D-Text2Vis and W&D-Text2Vis has
been initialized at random according to an uniform distribution ranging from
−1.0 to 1.0. In preliminary experiments, we investigated on the use of pre-
trained word embeddings, i.e., representing the textual description as the av-
erage of the embeddings of the words composing the description (see Equation
1 in [10]), but we have not observed any improvement. Pre-training the word
embeddings is an additional cost, and the fitness of the embeddings for the task
depends on the type of documents they are learned from. For example, an 11%
improvement in MAP is reported in [2] from learning embeddings from Flickr
tags compared to learning them from Wikipedia pages.

The rest of the Θ parameters for all models (with the sole exception of
the word embedding matrix) have been initialized at random according to a
truncated normal distribution centered in zero with standard deviation of 1√

n
,

where n is the number of columns. The biases have all been initialized to 0.
Following previous approaches to multimodal learning [12, 34], we adopted

an aggregated loss which depends on one single parameter α (Equation 5). In
[12] it was found that unbalancing aggressively the loss pressure towards one
or the other extremes tends to degrade the performance. For the α hyperpa-
rameter we have tried the values {0.01, 0.1, 1.0, 10.0, 100.0}, choosing the best
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one for each visual embedding layer as reflected in the validation error. For the
parameter λ determining the impact of the L2 regularization we tried the values
10i, i ∈ {1,−2,−4,−6}.

For S-Text2Vis we tested two different vectorial representations of text: S-
Text2Vis-U uses a simple bag-of-words vectors that marks with a value of one
the positions that are relative to words that appear in the textual description
and leave to zero all the others; S-Text2Vis-N adds a little bit of information
on the text structure by considering also N-grams for a selection of part-of-
speech patterns5. The resulting vocabulary size is 10,358 for S-Text2Vis-U
after removing terms appearing in less than 5 captions. For S-Text2Vis-N we
considered the 23,968 uni-grams and N-grams appearing at least in 10 captions.
We set the number of nodes of the hidden layer to 1024 which was experimentally
confirmed as the best value among the candidates {256, 512, 1024, 2048}; we
omit those experiments for the sake of conciseness.

In order to efficiently train the LSTM part in D-Text2Vis and W&D-
Text2Vis we make use of padding and bucketing. That is, to avoid constructing
as many graphs as different caption lengths there are in the dataset, we fix a
number of buckets (i.e., sequences of fixed length – we considered {15, 20, 40}
in our experiments) and apply padding to the captions (i.e., repeatedly adding
the ‘PAD’ token at the beginning of the tokens sequence, and the special ‘EOS’
token announcing the end of the sequence) to fit in the corresponding bucket
(the smallest one that could allocate the caption).

For D-Text2Vis and W&D-Text2Vis we have also considered stacking
LSTM cells as a mean to give the model a greater expressive power. We denote
those variations by the suffix ‘-⟨n⟩’ where n indicates the height of the stack.
E.g.,D-Text2Vis−1 corresponds to the vanilla model in Figure 3, whileW&D-
Text2Vis−4 is the wide & deep approach with 4 LSTM cells stacked. In all
cases, we set the dimensionality of the embedding space to 100 and the size
of the internal LSTM nodes to 512; again, those values were chosen during
preliminary experiments run on the validation set.

A Tensorflow implementation of all our methods, and of all the compared
methods described in the next section, is available at https://github.com/

AlexMoreo/tensorflow-Tex2Vis.

4.4 Compared methods

We compare the performance of the various Text2Vis models against a selec-
tion of methods that perform search either in the visual space or in the textual
space. We define as the trivial lower bound baseline the method that produces
a random ranking of the images in the collection (dubbed RRank).

We define as VisSim the direct similarity method that computes the Eu-
clidean distances using the original pool5 (from the ResNet-152 [17]), and fc6
or fc7 features (from the AlexNet [47]) for the image that is associated to the

5We considered the part-of-speech patterns: ‘NOUN-VERB’, ‘NOUN-VERB-VERB’,
‘ADJ-NOUN’, ‘VERB-PRT’, ‘VERB-VERB’, ‘NUM-NOUN’, and ‘NOUN-NOUN’.
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query caption in MsCOCO. VisSim models the scenario in which the user sub-
mits the query using an image that is representative of the original textual
description. VisSim is thus not a real cross-media search model, but it allows
us to measure how a search-by-representative-image process compares with the
real cross-media search approaches. We also compare with VisReg, the text-
to-image sparse regressor described in section 3.1.

We use the caption generation methods presented in [22] (dubbed Neu-
ralTalk) and [44] (dubbed Show&Tell) to implement cross-media search methods
based on textual search. Given a caption generation method, we generate cap-
tions for all the 20K images in the test collection, and then we implement the
search process as a text similarity search process based on two retrieval mod-
els: one that used the same ROUGEL metric that is used for the evaluation
(dubbed CapRouge), and one that uses a more classic ranking by L2 norm of
the vectors resulting from text indexing based on bag-of-words or characters
3- and 4-grams (respectively dubbed CapBow and CapGrams). We used two
Show&Tell models, one trained for one million iterations (Show&Tell-1M ), and
another for two million iterations (Show&Tell-2M ). It is important to stress
that the CapRouge method is to be considered as a very strong but unrealistic
baseline, added for the sake of a richer comparison, and not a viable retrieval
method, for two reasons. First, it uses the same metric of the evaluation, so it
improperly overfits on it. Second, it has a computational cost that is quadratic
with the length of the compared string, making it not practically usable. For
example, computing the ranking of 20K captions from the test set against a
query caption required on average for all the queries, on the same hardware
and using efficient implementation, 0.046 seconds for CapBoW and CapGram
methods and 3.267 seconds for CapRouge, resulting two orders of magnitude
slower than the other methods.

We also compare our Text2Vis variants against Word2VisualVec [10],
a method that maps the text input into the visual space (as described in sec-
tion 2.3). We have reimplemented Word2VisualVec by following [10]. We
have pre-trained a 500-dimensional word embeddings space on the user tags
associated to 100M images in the YFCC100M dataset [43] using the skip-
gram model in Word2Vec [33]. We have experimented with two variants: short
(Word2VisualVec-S), which trains a feedforward network with two hidden
layers of [1000, 2000]; and long (Word2VisualVec-L), which considers three
hidden layers of [1000, 2000, 3000]. We have only experimented with the variant
that adopts the same MSE loss function as our model6. In order to carry out a
fair comparison, we have implemented the exact same retrieval forWord2VisualVec
as our method (i.e., euclidean distance after PCA and whitening – see section
3) instead of the originally proposed cosine similarity. The reason for doing
so is that we have observed a consistent improvement of about 3% in our
experiments, and verified similar improvements to be achieved in the case of

6They reported slightly better results with the Marginal Ranking Loss (MRL), a cost
function that takes two visual vectors for each example, one considered relevant, and another
irrelevant, to the textual description. However, relevance judgments to generate the training
triplets relied on the user-click logs available in their dataset.

15



Word2VisualVec as well; concretely, Word2VisualVec improved its DCG
average by 0.073 (with a standard deviation of ±4.8E-03) due to the use of this
retrieval method in place of the cosine similarity.

4.5 Evaluation Measures

We measure the retrieval effectiveness of the various methods we compare by
means of the Discounted Cumulative Gain (DCG [20]), defined as:

DCGp =

p∑
i=1

2reli − 1

log2(i+ 1)
(15)

where reli quantifies the relevance of the retrieved element at rank position i
with respect to the query, and p is the rank at which the metric is computed;
we set p = 25 in our experiments, as was done in related research [19, 10].

Given that some of the compared methods (e.g., text-based search) can pro-
duce rankings with ties, we actually use the Ties-aware Discounted Cumulative
Gain (TDCG [32]), defined as:

TDCGp =

m∑
i=1

 1

ni

ti+1∑
j=ti+1

2reli − 1

min(ti+1,k)∑
j=ti+1

1

log2(i+ 1)

 (16)

where m is the number of group of ties in the ranking of the first p results, ni

indicates the number of tied result in the i-th group, ti indicates the starting
position of each tied group. TDCGp is derived from DCGp by observing that
the average gain for a position in a group of tied results is the average of the
gain of such tied results. TDCGp is obviously equivalent to DCGp in the case
there are no ties in the results.

Because the rel values are not provided in the MsCOCO, we estimate them
by using the ROUGEL [28] metric, a measure often used for the evaluation of
the results of text summarization algorithms and one of the evaluation measures
for the MsCOCO caption generation competition7 [3]. This is a metric based on
finding the Longest Common Subsequence (LCS) between the two strings being
compared8 and then measuring a weighted harmonic mean (Fβ , with β = 1.2)
of the coverage ratios of the subsequence with the two strings. Using a β value
greater than one (β = 1.2 is the default value in the MsCOCO evaluation
software) gives a little more importance to producing a good coverage of the
gold standard caption. We compute reli = ROUGEL(tin, Ci), where tin is the
query caption, and Ci are the 5 captions associated to the retrieved image at
rank i. This caption-to-caption relevance model is thus aimed at measuring
how much the concepts expressed in the query appear as relevant parts of the
retrieved images.

7https://github.com/tylin/coco-caption
8LCS is a way to find a common exact sequence of words that is similar to matching word

n-grams but less stringent (i.e., inside the LCS sequence other words may appear).
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1K samples 5K samples
R@1 R@5 R@10 medR DCG R@1 R@5 R@10 medR DCG

mean 19.1 48.5 64.6 5.9 2.370 6.9 21.3 31.7 25.7 2.408
std 1.047 1.350 1.393 0.349 0.023 0.322 0.507 0.538 0.749 0.012
max 21.6 52.4 67.9 7 2.426 7.6 22.5 33.3 27 2.439
min 15.5 44.8 60.1 5 2.294 5.9 20.0 30.5 24 2.375

Table 1: Variance in evaluation metrics measured on 200 random test splits of
1K images vs. 5K images in MsCOCO. Results correspond to the S-Text2Vis-
U model projecting into the pool5 layer. The rank-centered metrics R@K and
medR present a higher dependency on the sampling size than the DCG.

As a final note on the evaluation, it is noteworthy that many related methods
so far [31, 30, 26, 22, 8, 25, 45] have been tested in MsCOCO as well. In doing
so, however, they have followed a different experimental protocol, involving one
random split of 1K test items (not standard across the experiments) and relying
on rank-based metrics, namely, recall at K (noted by R@K – the proportion
of queries whose expected image was found among the top-K retrieved items)
and medR (the median of the rank distribution). Despite the fact that this
protocol has become almost a standard practice in the literature, we argue it
might fail to reflect the scenario we are concerned with here, i.e., the fact that the
“prototypical” image one has in mind might be better described through a short
textual description of it than through a specific sample image accommodating
the textual description (and, unavoidably, much other irrelevant information).
Therefore, the rank of the specific test image might not necessarily be a good
estimator of the system’s ability to generalize well in text-to-image retrieval
task. That is, although it is clear that a well-performing system will deliver
competitive rank-based metrics, it is also true that an overfitted system will rank
a test image well whenever a very similar example is seen in the training phase.
Contrarily, a text-centered metric (as the DCG with ROUGEL) is not liable to
be likewise cheated. Figure 5 reports some examples, taken from actual results
from our methods, in which a good recall does not result in a good selection of
top ranked images, and examples in which a zero R@5 is obtained on rankings
that contain a good selection of relevant images.

Moreover, rank-based metrics are strongly biased towards the test set size
(where only 1K images might fail to represent the web-scale scenario) and very
unstable with respect to the particular split one could extract from MsCOCO.
To show this issue, Table 1, reports the variation of R@1, R@5, R@10, medR
and DCG at the variation of the test set size from 1K to 5K images. DCG is
the only measures whose value remain stable, while the other measures have
a significant drop. All other things being equal, we present additional results
we have obtained by following this protocol for the sake of comparability (see
below); we also report the MRR (meaning Mean Reciprocal Rank, i.e., the
average of the inverse ranks) as a possibly more reliable rank-centered metric.
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Rank 3

A woman holding a 
tennis racquet on top 

of a tennis court

There are three birds 
each standing on one 

leg on wet ground

Young children posing 
for photo while preparing 

food items in kitchen 

A man riding on 
top of a wave in 

the ocean 

4.028

1.122

1.266

3.816

Textual query Image query Rank 1 Rank 2 Rank 4 Rank 5 DCG

A pizza sitting
on top of a 
white plate

3.496

A baseball player 
prepares to hit 

the ball
3.397

 

Figure 5: Evaluation metrics through examples retrieved by our W&D-
Text2Vis-4 in the fc7 visual space. The first and second rows of results, despite
including the specific query image (ranked 4 and 3, respectively), are mostly un-
related to the textual query; yet they would have obtained a maximum R@5
score. The rest of the examples do not include the query image in the top-5 rank,
but are relevant to the query (and arguably, better prototypes of the description
than the query image itself). DCG successes to capture this phenomenon.

4.6 Results

Table 2 reports the average DCG scores obtained by the compared methods after
five runs with different seeds. These results show a significant improvement
of our Text2Vis variants with respect to the compared methods. The best
absolute result is obtained by W&D-Text2Vis when using 2 stacked LSTMs
in the visual space pool5, which represents the 8% of relative improvement with
respect to the baseline VisSim. In the fc6 and fc7 visual spaces, the W&D-
Text2Vis-4 obtained the best performance, with a relative improvement to
VisSim of 11.5% and 9.7%, respectively. The S-Text2Vismodel also improved,
yet by a smaller margin, over the VisReg model, showing that an auto-enconding
branch in the network is useful to avoid overfitting on visual features. The best
performing method in the textual space is CapRouge. As detailed in Section 4.4,
it cannot be considered a realistic retrieval method, given its computational cost
and also because it uses the same measure of the evaluation. We used it to have
a strong baseline against which to compare the visual-space based methods, as
we discuss in the following.

The Text2Vis methods all compare better by a large margin than the best
CapBoW and CapGram results. The worst Text2Vis result (D-Text2Vis-
1 in the fc6 layer) improves by 11.8% over the best CapGram result. The
best CapRouge result is in line with the average Text2Vis results, yet it is
affected by the computational issue mentioned before. The best Text2Vis
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Search space
# paramsTextual Visual

Method CapRouge CapBoW CapGram pool5 fc6 fc7
RRank 1.524 1.524 1.524 1.524 1.524 1.524 -
NeuralTalk 2.016 1.979 1.813 - - - 148.3M
Show&Tell-1M 2.290 2.032 2.062 - - - 37.6M
Show&Tell-2M 2.360 2.092 2.122 - - - 37.6M
VisSim - - - 2.266 2.150 2.180 -
VisReg - - - 2.349 2.317 2.359 14.8M
Word2VisualVec-Scos - - - 2.394 2.316 2.317 10.7M
Word2VisualVec-Lcos - - - 2.405 2.317 2.318 20.8M
Word2VisualVec-S - - - 2.433 2.389 2.386 10.7M
Word2VisualVec-L - - - 2.443 2.390 2.389 20.8M
S-Text2Vis-U - - - 2.428 2.381 2.387 25.4M
S-Text2Vis-N - - - 2.432 2.382 2.384 53.3M
D-Text2Vis-1 - - - 2.418 2.372 2.381 10.5M
D-Text2Vis-2 - - - 2.435 2.384 2.389 15.7M
D-Text2Vis-4 - - - 2.442 2.393 2.388 26.0M
W&D-Text2Vis-1 - - - 2.435 2.382 2.385 51.5M
W&D-Text2Vis-2 - - - 2.447 2.392 2.391 56.7M
W&D-Text2Vis-4 - - - 2.446 2.397 2.391 67.0M

Table 2: Performance comparison of the different methods in terms of average
DCG. The bold value highlights the best result in each of the search spaces.

result (W&D-Text2Vis-2 on pool5) shows a relative improvement of 3.7%
over the best CapRouge result, and of 15.3% of the best CapGram result.

When comparing the Text2Vis results among themselves it is not obvious
whether the use of sparse features leads to better or worse results than the use
of dense features. For example, the dense-based models (i.e., the D-Text2Vis
variants) improve over the sparse-based models (i.e., the S-Text2Vis variants)
only when resorting to stacking LSTM cells. In strict terms of effectiveness
(as measured by DCG), this blurs any conclusive remark on the preference of
either sparse or dense representations. Notwithstanding, this seemingly contra-
dictory result serves to reinforce another interesting insight, i.e., the fact that,
despite being unclear which representation mechanism is preferable, the wide
& deep architecture effectively takes advantage of the combination, consistently
producing better results.

In the table we report the results obtained by the implementation of Word2VisualVec
that uses the cosine similarity model originally adopted in [10] (dubbedWord2VisualVec-
Scos andWord2VisualVec-Lcos). Our implementation using PCA and whiten-
ing for the similarity search (dubbedWord2VisualVec-S andWord2VisualVec-
L) obtains an average 4.5% of improvement.

We found the following differences in performance between the best config-
uration of each variant to be statistically significant (two-tailored t-test): both
D-Text2Vis and W&D-Text2Vis are significantly better than S-Text2Vis
with a confidence p < 0.005, while W&D-Text2Vis could only be considered
better than Word2VisualVec at the smaller confidence of p < 0.05. Further-
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more, there are no statistically significant differences between W&D-Text2Vis
and D-Text2Vis, nor between D-Text2Vis and Word2VisualVec perfor-
mances.

In Table 3 we compare our methods against the results reported for other
state-of-the-art methods, using their evaluation measures (see section 4.5 for
a vaster discussion). The Text2Vis methods perform worse than the other
methods yet by a margin that we deem acceptable (a loss of 1-2 ranks in medR)
considering that all the other methods use a joint space projection, thus they
have the drawbacks on the image collection processing we discussed in Section 1.
The best performing method, m-CNN, is not even really suited for fast retrieval
on large collections, since its network models a distance function, not an explicit
projection model, and thus every time a query is given all the collection must
be processed by the network to compute the distances between the query and
each image.

Method DCG MRR R@1 R@5 R@10 medR
S-Text2Vis-U 2.341 0.339 20.1 48.9 64.2 6
D-Text2Vis-4 2.356 0.355 21.2 51.5 67.4 5
W&D-Text2Vis-4 2.367 0.367 22.8 52.4 67.6 5
W&D-Text2Vis-8 2.370 0.372 22.8 53.2 68.5 5
m-RNN [31] - - 29.0 42.2 77.0 3
m-CNN [30] - - 32.6 68.6 82.8 3
CCA [FV-HGLMM] [26] - - 25.6 60.4 76.8 4
DVSA / BRNN [22] - - 27.4 60.2 74.8 3
LRCN [8] - - 29.0 61.6 74.8 3
STV [25] - - 25.9 60.0 74.6 4

Table 3: Comparison of results on MsCOCO 1K test set for a selection of
Text2Vis methods projecting into pool5.

An interesting aspect that deserves attention concerns with the models com-
plexity, as measured by the amount of parameters to train. We have investigated
the trade-off between the model complexity and the results delivered (Figure 6).
The plot shows that the D-Text2Vis variants require a significantly reduced
number of parameters while still being competitive in performance, followed by
the S-Text2Vis variants, that however produce fluctuating results in terms of
DCG, and finally followed by the W&D-Text2Vis variants, that despite re-
quiring many parameters to train, consistently deliver good results in all visual
spaces.

As a final remark, we have investigated the convergence trends on the train-
ing loss of the different methods. We found the best performing Text2Vis
variants to also converge faster to their better solutions. Word2VisualVec
requires instead a much larger number of iterations to converge. Figure 7 shows
some selected representative trends; D-Text2Vis-1 converges approximately as
fast as S-Text2Vis; the error decreases faster when stacking LSTM cells, and
even faster when combining the wide and deep approach. We have also kept
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Figure 6: Performance vs number of parameters to learn per model for all
feature spaces (pool5, fc6, and fc7 from left to right). Prefix ‘S-’ denotes S-
Text2Vis, ‘D-’ denotes D-Text2Vis, ‘W&D-’ denotes W&D-Text2Vis, and
‘W2V-’ denotes Word2VisualVec.

track of the iteration in which the best solution (estimated in the validation
error) was found for each model. In average, the W&D-Text2Vis variants re-
quired 18K steps, followed by D-Text2Vis with 22K steps, S-Text2Vis with
25K steps, and finally by Word2VisualVec with 104K steps.

5 Conclusions

We have investigated various neural network model designed to learn a pro-
jection from a textual space to a visual space, in order to enable cross-media
similarity search without reprocessing the representation of the image collection
and the relative data structures one may have already produced to perform
image similarity search.

The experiments we conducted indicate that our methods produce better
results than those produced by performing similarity search directly on the
visual features of a query image. This is an indication that our text-to-image
mappings produce better prototypical representations of the desired scene than
the representation of a sample image itself. A simple explanation of this result
is that textual descriptions strictly emphasize the relevant aspects of the scene
the user has in mind, whereas the visual features, directly extracted from the
query image, are keeping track of all the information that is contained in that
image, causing the similarity search to be potentially confused by secondary
elements of the scene.

Our results also indicate that our methods produce better results than those
obtained by similarity search methods on the textual space where the images
are indexed by means of automatically generated captions. The better results
that visual-space based methods have produced over textual-space based ones
are not the only argument in favor of the former. We deem that a stronger
argument in favor of visual-space methods is the fact the any improvement to
the projection method does not require to reprocess the entire image collection,
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Figure 7: Convergence error loss trends on the fc6 layer of some selected models.

affecting it only the query processing pipeline. A web scale image collection can
thus immediately benefit from a model update without requiring any processing.
Moreover, a single image similarity search data structure can serve multiple
cross-media search models, e.g., built for different languages or specialized on
different domains.

We have compared against Word2VisualVec, a recently proposed method
that, like ours, uses the visual space as the search space. In our experimental
setup we improved the performance obtained by the originalWord2VisualVeccos

by switching from cosine similarity to euclidean similarity that uses PCA and
whitening, following the state of the art in similarity search literature. The
improved Word2VisualVec model obtained among the best results, together
with D-Text2Vis and W&D-Text2Vis. Our W&D-Text2Vis model im-
proved over Word2VisualVec by a statistical significant margin. W&D-
Text2Vis has more parameters than Word2VisualVec but converges much
faster.

One interesting aspect that proved to be effective in our experiments is the
use of a different tout as a constraint for the hidden representation. When
tin and tout are different, though semantically similar, the autoencoder branch
becomes semantically constrained. We have investigated this idea in the S-
Text2Vis and we believe the same principle could also bring similar benefits for
the D-Text2Vis and W&D-Text2Vis models. We thus plan to investigate
the effects of such “semantic-autoencoding” principle by adopting a Seq2Seg
[5] architecture, i.e., by constraining the final memory state from an encoding
LSTM after processing the input tin to be a good representation to generate a
different, but semantically similar, tout with a decoder LSTM. We believe such
an intermediate state to be able to produce better projections to the visual
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features.
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