COMPDYN 2019

7t ECCOMAS Thematic Conference on

Computational Methods in Structural Dynamics and Earthquake Engineering
M. Papadrakakis, M. Fragiadakis (eds.)

Crete, Greece, 24-—26 June 2019

NONLINEAR FE MODEL UPDATING FOR MASONRY
CONSTRUCTIONS VIA LINEAR PERTURBATION AND MODAL
ANALYSIS

Maria Girardi', Cristina Padovani', Daniele Pellegrini', and Leonardo Robol*!

nstitute of Information Science and Technologies “A. Faedo” (ISTI-CNR)
Via G. Moruzzi 1, Pisa, Italy
e-mail: {maria.girardi, cristina.padovani, daniele.pellegrini } @isti.cnr.it

2 Department of Mathematics, University of Pisa
Largo Bruno Pontecorvo 5, Pisa, Italy
e-mail: leonardo.robol@unipi.it

Keywords: Masonry materials, Nonlinear elasticity, Linear perturbation, Modal analysis, Non-
linear Model updating.

Abstract. This paper describes the automated nonlinear model updating procedure for ma-
sonry structures implemented in the NOSA-ITACA code. The algorithm, aimed at matching
numerical and experimental natural frequencies and mode shapes, combines nonlinear static
analysis, linear perturbation and modal analysis and allows fine-tuning the free parameters
of the model. The numerical method is applied to two simple case studies, which prove its
effectiveness.
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1 INTRODUCTION

The goals of finite element (FE) model updating [1] are matching numerical and experimen-

tal dynamic characteristics of a structure, estimating the mechanical properties of its constituent
materials [2, 3, 4, 5], and enabling detection of damage [6, 7]. Model updating, usually carried
out within the framework of linear elasticity, is a suitable tool for assessing the mechanical
characteristics of undamaged structures subjected to very low amplitude vibrations, while it is
unsuitable to update parameters governing nonlinear behavior and/or material properties de-
terioration. Therefore, the use of model updating techniques within the framework of linear
elasticity may be not suitable for masonry structures, since the masonry material has different
tensile and compressive strengths and then exhibit a nonlinear behavior. Generally ancient ma-
sonry structures show cracks due to permanent loads and / or accidental loads, therefore, the
characterization of their overall dynamic behavior should take into account the presence of the
existing fracture pattern.
To date, the literature on nonlinear FE model updating is quite scarce. The first attempts to up-
date in a systematic way nonlinear models mainly concerns reinforced concrete structures. In
[8] a system identification methodology is presented for determining the six control parameters
in a continuously smooth hysteretic model for the inelastic dynamic behavior of structural con-
crete systems, while in [9] the authors use low-level ambient vibration data to detect changes
in the modal parameters of a reinforced concrete shear wall. Then, the damage parameters that
control the nonlinear material model are updated using the acquired modal information. Finally,
in [10] the performance of a nonlinear model updating procedure is investigated in the case of
a concrete seven-story shear wall building.

With regard to masonry structures, in [11, 12, 13] the dynamic behavior of masonry buildings
is assessed using a numerical procedure based on linear perturbation and modal analysis, im-
plemented in the FE code NOSA-ITACA, taking into account the influence of existing damage
on the dynamic properties of buildings. In [14, 15] the same approach is followed to estimate
Young’s moduli and tensile strengths of the materials constituting the Mogadouro bell tower,
by applying a manual nonlinear model updating procedure.

This paper presents a novel automated nonlinear model updating procedure, implemented
in the NOSA-ITACA code. The algorithm, aimed at matching numerical and experimental
frequencies and mode shapes, couples linear perturbation and modal analysis and allows fine-
tuning the free parameters of the model. After a brief description of the numerical method
proposed, its effectiveness is demonstrated on some simple case studies.

2 NUMERICAL METHODS FOR NONLINEAR MODEL UPDATING

The NOSA-ITACA code adopts the constitutive equation of masonry-like materials [16, 17]
and masonry is modeled as an isotropic nonlinear elastic material with low tensile strength and
infinite compressive strength. The material nonlinearity brings as consequence a stronger non-
linearity of the model updating procedure implemented in NOSA-ITACA. This procedure relies
on the combined application of linear perturbation and modal analysis, which allows to calcu-
late the dynamic properties of a structure, taking the presence of cracks into account. Given the
structure under examination, discretized into finite elements, and given the mechanical prop-
erties of the masonry-like material constituting the structure, together with the kinematic con-
straints and loads acting on it, the coupled application of linear perturbation and modal analysis
consists of the following steps.

Step 1. The nonlinear equilibrium problem of the structure is solved through an iterative



M. Girardi, C. Padovani, D. Pellegrini, and L. Robol

scheme and its solution is calculated along with the tangent stiffness matrix Kt to be used in
the next step.

Step 2. A modal analysis about the equilibrium solution is performed. The dynamic proper-
ties of the structures are then calculated by solving the generalized eigenvalue problem

KTV:w2MV; (D

where v € R" is the vector of the structure’s degrees of freedom and the integer n is the
system’s total number of degrees of freedom. Matrices Kt € R™™ and M € R™ " are
the stiffness and mass matrices, symmetric and positive-definite, obtained by assembling the
elemental matrices and taking into account the constraints assigned to the displacements of the
structure. Solving (1) provides the natural frequencies f; = w;/27 and mode shapes v() of the
cracked structure [11, 12, 13]. The nonlinear model updating problem can be formulated as an
optimization problem by assuming that the tangent stiffness and mass matrices are functions of
the parameter vector x, containing the Young’s moduli, tensile strengths and density masses of
the constituent materials. The goal is to determine the optimal value of x € R? that minimizes
a certain cost functional ®(x) within a d-dimensional box Q = [ay,b1] X ... X [ag, bg]. The
objective function ®(x) involves the ¢ experimental frequencies to match and is expressed by

O(x) = wa[ﬁ — fix), )

with f the vector of the measured frequencies, f(x) the vector of numerical frequencies obtained
from (1) and w; suitable weights.

A numerical method for FE model updating of structures made of linear elastic materials has
been described in [18, 19]. The minimum problem addressed in [18, 19] is a nonlinear least
squares problem: the objective function, having the form (2), is nonlinear as the frequencies
f(x) depend nonlinearly on the vector x of material properties. In this paper, another source
of nonlinearity of ®(x) is the dependence of Kr(x), and then of f(x), on the solution of the
equilibrium problem in step (1).

This section is devoted to the description of the method adopted to optimize the objective
function ®(x), which is assumed to have at least a mild regularity in (2. Apart from the determi-
nation of the initial box constraints, any convexity or uniqueness of the minimum point cannot
be assumed. For this reason, a method that guarantees good global convergence properties is
used.

In particular, a method based on an adaptive global polynomial interpolation of the objective
function is proposed, which helps to avoid the convergence to local minima. The main build-
ing block of this approach is the approximation of multivariate functions through Chebsyhev
interpolation combined with adaptive cross approximation techniques, as implemented in the
packages chebfun?2 and chebfun3 [20, 21].

The algorithms implemented in NOSA-ITACA are based on those described in [20, 21], and
allow to manage a generic number of variables, as well as to get approximations at different
levels of precisions. The details of the implementation are given in [22]. In the next sections
the building blocks of our method are briefly explained, and then the approach is summarized
in section 2.3.
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2.1 Global approximation of the objective function

As a building block of the optimization method, we use a procedure that allows to approx-
imate the objective function on the whole domain at a certain accuracy €. More precisely, we
ask that the surrogate function ®(x) satisfies

D(x) = Pp(x) + rp(x), Irk(x)] < max |D(z)e. 3)

To obtain such ®,(x) we approximate the function as the sum of k separable functions as
follows:

k
D(x) ~ Pp(x) = Z B (@) -+ 0 (2a), 4)
j=1

()

where the functions ¢
achieved as follows:

(x;) are expressed as polynomials in the Chebyshev basis. This can be

1. A pivot point X := (&1, ..., Z4) is chosen, and the function ®(z1,. .., Z,) is evaluated at
that point.

2. Through adaptive Chebyshev interpolation, we approximate the fibers of ®(x) obtained
allowing only one variable to change, that is

k;
O(ir, .. Bio1, Yy byt ) 2 Y wTy) = ¢Py),  i=1....d (5
s=1

where T;(y) are the Chebyshev polynomials of the first kind, and k; is a positive integer
that is adaptively determined to obtain a sufficiently accurate expansion. The coefficients
vs can be efficiently computed through a discrete cosine transform [20].

3. We set 31 := ®(x)174
Clearly, the function /3 gogl)(xl) S gogld)(wd) corresponds with ®(x) on x. This first separable
approximation is known as a rank-1 function. After the first step is complete, we replace ®(x)
with the residual ®(x) — Blgpgl)(xl) e gogld) (z4) and we repeat the steps from item 1. After k&
steps, we have obtained an expression of the form (4).

This approach is called functional adaptive cross approximation, and has been investigated,
among others, by Bebendorf [23] and in [24, 25, 26] for bivariate functions. It can be guaranteed
to converge under suitable assumptions on the smoothness of the functions under consideration,
provided that good choices are made for the pivots.

Greater details on how to build such an approximation of ¢ and on the effectiveness of the
approach are given in [22].

2.2 Computing the minimum

When the approximated function is available in the form ®;(x), its global minimum has to
be calculated. To this end, several possibilities can be considered, exploiting the fact that & (x)
is much cheaper to evaluate compared to ¢(x). In our implementation, we make the following
choices:
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1. If d = 2, we compute all the stationary points of the polynomial in the domain of interest,
by solving the system of 2 polynomial equations V& (x) = 0. The nature of the problem
imposes a numerical solution, which can be obtained recasting the problem as a multi-
parameter eigenvalue problem [27]; we then use this information to select the minimum
point.

2. If d > 3, we use the fact that the approximated function is cheap to evaluate and we
evaluate it on a grid, and then refine the minimum found in this way by using a local
optimization method.

In principle, the first approach could be used also when d > 2 (see recent linearizations
introduced in [28, 29]). However, as the number of variables gets higher, the reformulation into
an eigenvalue problem can get exponentially ill-conditioned [30]. We expect that for a large
number of variable a strategy like 2. would be more effective and has been adopted for d = 3
as well.

2.3 Algorithm propose: combining global and local approximation

The algorithm we propose can be summarized as follows:

1. First, we obtain a very rough approximation of the objective function ®(x) on 2 (for
instance, we may set € = 0.1 in (3)) and denote this approximation with ®(x).

2. Then, we look for the minimum point X of this approximated function and we compute

~

intervals [a;, b;] as large as possible, with the constraints that a; < a; < b; < b;, and

Pp(Z1, s Bjm1s Yy D1y -, Ba) — Pp(X) < max [Py (2)] - €, (6)

~

for any y € [a;, b;], and for a certain €.
3. We restrict  to € = [y, by] X ... X |dq, by, and we continue to iterate from point 1.

This process allows to obtain a rough approximation of the global minimum, and then re-
stricts the interval of interest to points where the objective function does not exceed too much its
value at X. The restriction is done by computing a new box as described above in point 2. Note
that, from a theoretical point of view, this strategy does not guarantee that the global minimum
will be inside the new box. However, if € is chosen slightly larger than e, the global convergence
properties of the method are still very good in practice.

In the tests described in section 3 we have used ¢ = 2¢, which has been verified to be a
reasonable tradeoff between speed of convergence and accuracy (in the sense of not leaving
global minimum out of the restricted Q).

3 CASE STUDIES

In order to validate the performance of the optimization method described in section 2, two
artificial examples are used. In both cases a preliminary numerical analysis consisting of static
analysis, linear perturbation and modal analysis (from now on indicated as LPMA), is per-
formed to evaluate the frequencies and mode shapes of the structure, taking into account the
crack pattern due to the self-weight and external loads [11, 12, 14]. Subsequently, these fre-
quencies are used as input of the proposed approach to recover the original parameters (Young’s
moduli and/or tensile strengths).
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3.1 Masonry arch

Let us consider the semi-circular masonry arch sketched up in Figure 1. The system is fully
clamped at the springings and its geometry is characterized by a mean radius of 1.0 m, a span of
2.0 m and a cross section of 0.25 m x 1 m. The displacement of the arch along the X direction is
prevented so that it is forced to move only in the YZ plane. The arch is subjected to a stress state
due to its self-weight and to a distributed load P = 2500 N/m applied along the extrados line
Y =0.29 m,Z = 1.09 m. The arch is discretized into 648 thick shell elements (element number
10 of the NOSA-ITACA library [31]), for a total of 703 nodes and 4218 degrees of freedom.
Figure 1 shows the mesh generated by NOSA-ITACA, and the distributed load applied to the
arch. A preliminary LPMA is performed to evaluate the frequencies and mode shapes of the
arch, taking into account the crack pattern due to the self-weight and distributed load P; the
analysis is performed assuming the arch made of a masonry-like material [16, 17] with Young’s
modulus £ = 3-10° Pa, Poisson’s ratio v = 0.1, mass density p = 1800 kg/m? and tensile
strength 0; = 0 Pa. The first four corresponding natural frequencies ]A”l (i = 1...4), obtained
with the above parameters are

f = [42.913,97.321, 138.630, 184.199] Hz. @)

Figure 2 shows the mode shapes corresponding to the first four frequencies of the arch.

Figure 1: Geometry of the arch (length in meters) and mesh created by NOSA-ITACA.
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Mode shape 2

Mode shape 1 ﬁ;

Mode shape 3 Mode shape 4
Figure 2: First four mode shapes of the arch after the application of the self-weight and distributed load P.

In order to validate the optimization method we minimize the objective function (2), with
~ ~ ~ ~—1
q =3, fi = 42913 Hz, f, = 97.321 Hz, and f3 = 138.630 Hz, and w; = f; ,1 = 1,2,3.
The tensile strength o, and the Young’s modulus F are assumed unknown, considering as their
realistic bounds the following ranges

0Pa<o,<5-10" Pa,1-10° Pa < E < 5-10° Pa- (8)

The algorithm described in section 2.3 converges in 3 iterations to the prescribed tolerance
¢ = 2-1072. The optimal parameters obtained are reported in Table 1. The estimate for E is
very accurate with a relative error of about 0.1%, while the value of o; is very close to zero in
practice. The error Ay on the frequencies is bounded by about 0.38% and MAC values equal
to 1.0 ensures the correspondence between original and optimized mode shapes (see Table 2).
Figure 3 shows the objective function ®(x) where several local minima are also visible, while
the true global minimum corresponds to a point where there is a steep descent. For this rea-
son, classical algorithms for nonlinear least square problems fail to find the right value of o, —
whereas the approach proposed in section 2 yields a good solution.

E [Pa] o, [Pa]
true 3.0-10° 0.0
optimal  3.003-10°  80.4
error [%] 0.1% -

Table 1: Comparison between the true values of the mechanical characteristics and those obtained from optimiza-
tion.
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filHz]l  fio [Hz]l As[%] MAC
mode 1 42.913 43.077  0.38% 1.0
mode 2 97.321 97.387 0.07% 1.0
mode 3 138.630 138.915 0.21% 1.0
mode 4 184.199 184.189 0.06% 1.0

Table 2: Comparison between the original frequencies fl and the frequencies f; o calculated for the optimal values
of the parameters.
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E [Pa] o [Pa] x10 Gt [Pa] - 104

Figure 3: On the left, a 3D plot of the objective function for the case study of the arch. On the right, a contour plot
of the same objective function, where local minima and flat regions are clearly visible.

3.2 Masonry arch on piers

The second example considered is the semi-circular arch on piers shown in Figure 4. The
arch spans 2.0 m, has a cross section of 0.25 m x 1 m and rests on two 2.5 m high lateral piers
having cross section of 0.5 m X 1 m. The structure is fully clamped at the base of the piers and
subjected to a stress state due to its self-weight and to a lateral load proportional to its mass
through a factor equal to 0.15g, where g is the gravity acceleration. The structure is discretized
into 1008 thick shell elements (element number 10, [31]), for a total of 1083 nodes and 6498
degrees of freedom, as shown in Figure 4.



M. Girardi, C. Padovani, D. Pellegrini, and L. Robol

Figure 4: Geometry of the structure (length in meters) and the model created by NOSA-ITACA.

A LPMA is performed assuming the structure made of two masonry-like materials with the
same Young’s modulus and different tensile strengths: the material 1 of the arch and the material
2 of the columns. The Poisson’s ratio is set to ¥ = 0.2 for all the materials, and assumed to be
known a priori. For the remaining parameters the following values are assumed

E =2.0-10° Pa, p; = 1800 kg/m® 0,; = 1-10* Pa 9)

E =2.0-10° Pa, p, = 2200 kg/m®, 0,5 = 4-10* Pa (10)
The first six natural frequencies fl (1= 1...6), obtained with these fixed parameters are:
f= [3.124, 9.083, 10.46, 14.83, 15.60, 24.57] Hz - (11)

Figure 5 shows the mode shapes corresponding to the first four frequencies of the structure.
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Mode shape 1 S Mode shape 2

Mode shape 3 Mode shape 4

Figure 5: First four mode shapes of the system arch-piers after the application of the self-weight and lateral load.

In order to validate the optimization method, the tensile strength o, ; and o> and Young’s
modulus £ are assumed unknown considering, as their realistic bounds the following ranges

1-10* Pa < 041,012 < 5-10% Pa, 1-10° Pa < E < 5-10° Pa.-

The method applied to the objective function (2) with ¢ = 6 converges in 7 iterations to the
optimal values reported in Table 3 with a maximum relative error of 2.31% and of 0.7% for the
Young’s modulus and tensile strength respectively. Table 4 shows the results in terms of natural
frequencies and MAC values with a maximum relative error A, of 1% on frequencies and a
minimum value of MAC equal to 0.99.

EPa] oy [Pa] oy [Pa]

true 2-10° 10 4-10%
optimal  1.9538-10° 10t 4.028-10*
error [%] 2.31% 0% 0.7%

Table 3: Comparison between the true values of the mechanical characteristics and those obtained from optimiza-
tion.

10
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filHz] fio [Hzl A;[%] MAC
mode 1 3.124 3.122 0.04 1.000
mode 2 9.083 9.004 0.87  0.999
mode 3 10.459 10.379 0.76  1.000
mode 4 14.834 14.795 0.26  0.999
mode 5 15.595  15.441 0.99 1.000
mode 6 24.566 24.411 0.63  0.999

Table 4: Comparison between the original frequencies ﬁ and the frequencies f; o calculated for the optimal values
of the parameters.

4 CONCLUSIONS

This paper is focussed on FE model updating of masonry structures. Unlike linear elastic
structures, whose dynamic properties depend on the materials’ characteristics, such as Young’s
modulus, mass density, etc., masonry buildings exhibit a nonlinear behavior and their natural
frequencies and mode shapes are not independent of crack distribution. The numerical pro-
cedure presented in the paper takes into account the nonlinearity of masonry materials. Af-
ter solving the nonlinear equilibrium problem of the structure subjected to prescribed loads, a
modal analysis about the equilibrium solution is carried out to estimate its frequencies and mode
shapes in the presence of cracks. The model updating algorithm allows for minimizing the dis-
crepancy between the experimental and numerical frequencies, as the materials’ constants vary
within a given set. As in the case of linear elastic materials addressed in [18, 19] the minimum
problem to be solved is a nonlinear least squares problem. In the presence of masonry materials
a further nonlinearity, due to the dependence of the tangent stiffness matrix on the solution to
the equilibrium problem, affects the objective function and makes it impossible to resort to the
efficient model reduction techniques adopted in [18, 19]. The minimization strategy proposed
in this paper is based on an adaptive global polynomial interpolation of the objective function.
The approach implemented in NOSA-ITACA and applied to two simple case studies seems to
be able to overcome the difficulties due to the presence of several global minima in the objective
function. Further tests are planned to validate the performance of the algorithm and prove its
capabilities in a broader class of numerical problems.
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