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Abstract: Marine sponges represent a good source of natural metabolites for biotechnological ap-
plications in the pharmacological, cosmeceutical, and nutraceutical fields. In the present work, we
analyzed the biotechnological potential of the alien species Haliclona (Halichoclona) vansoesti de Weerdt,
de Kluijver & Gomez, 1999, previously collected in the Mediterranean Sea (Faro Lake, Sicily). The
bioactivity and chemical content of this species has never been investigated, and information in the
literature on its Caribbean counterpart is scarce. We show that an enriched extract of H. vansoesti
induced cell death in human melanoma cells with an IC50 value of 36.36 µg mL−1, by (i) triggering
a pro-inflammatory response, (ii) activating extrinsic apoptosis mediated by tumor necrosis factor
receptors triggering the mitochondrial apoptosis via the involvement of Bcl-2 proteins and caspase 9,
and (iii) inducing a significant reduction in several proteins promoting human angiogenesis. Through
orthogonal SPE fractionations, we identified two active sphingoid-based lipid classes, also character-
ized by nuclear magnetic resonance and mass spectrometry, as the main components of two active
fractions. Overall, our findings provide the first evaluation of the anti-cancer potential of polar lipids
isolated from the marine sponge H. (Halichoclona) vansoesti, which may lead to new lead compounds
with biotechnological applications in the pharmaceutical field.

Keywords: SPE fractionation; marine biotechnology; melanoma; sphingoid lipids; porifera

1. Introduction

The discovery of new anti-cancer metabolites from marine organisms is continuously
occurring, with some successful examples of commercial drugs currently being used in clin-
ical practices [1–3]. Marine sponges play a key role in producing bioactive molecules [4–6].

The anti-cancer activity of marine sponge-derived compounds has been the most
studied, with the first drug approved in 1969 for the treatment of leukemia [7]. So far,
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different approaches have been applied to discover novel anti-tumor drugs from sponges
and/or their symbionts, requiring classical preliminary screening on human cancer cell lines
often coupled to the purification and structural characterization of chemical compounds
(e.g., nucleosides, macrolides, and sterols) exhibiting such activities [8–14].

Melanoma is a cutaneous cancer spread worldwide, with an increasing incidence,
particularly in white populations. Statistical data have reported that its early diagno-
sis is extremely important to prevent metastasis and to promote a high 5-year survival
rate [15]. Several therapies have been developed to treat melanoma, including classical
chemotherapy with anti-proliferative drugs and immunotherapy targeting specific me-
diators of inflammation [16]. Recently, biomarkers associated with the cell proliferation
of metastatic melanoma, such as mutated genes involved into key signaling pathways,
have also been discovered. Targeted therapies based on inhibitors of these aberrant genes
favoring malignant phenotypes have already been approved by the Food and Drug Ad-
ministration (FDA), whereas others are still in clinical trials [17]. Current chemotherapies
have been testing the induction on cancer cells of immunogenic cell death (ICD) alone
and in combination with immunotherapy [18]. ICD has its beginning with the chronic
release starting from dying cells of damage-associated molecular patterns (DAMPs) with
the recruitment of several immune factors within the tumor microenvironment (TME) that
promote an immune-mediated death of cancer cells. Specifically, DAMPs provoke the
maturation of dendritic cells (DCs) that produce pro-inflammatory cytokines activating
tumor-specific T lymphocytes [19]. Therefore, the elicitation of T cell-driven immune re-
sponses specific to cancer antigens has been found to be a potent method to treat and block
tumor development [18]. Recently, applying a bioassay-guided screening for immunomod-
ulatory compounds, has led to the identification of lepadin A, an alkaloid immunogenic
cell death-inducing compound [20].

The potential pharmacological activity of cerebroside and sphingoid lipids are al-
ready reported in the literature [21–25] Glycosphingolipids include amphipathic molecules
formed by a long-chain amino alcohol, the sphingoid base, a fatty acid residue linked
in turn to its amino group (the ceramide), and a carbohydrate chain linked to the pri-
mary hydroxyl group of the ceramide. Cerebrosides are neutral monohexosylceramides
with the sugar residue composed by glucose or galactose. In the marine environment,
many sphingolipids were mainly isolated from echinoderms and sponges, showing several
biotechnological applications in pharmacological fields, such as antitumor, immunomodu-
latory, and neuritogenic activities [22]. One of the first cerebroside mixture was isolated
from the marine sponge Chondrilla nucula Schmidt, 1862 [26]. Interestingly, Agelasphin-7a,
a-galactocerebrosides isolated from the sponge Agelas mauritiana Carter, 1883, showed a
potent antitumor activity, leading to the development of the synthetic analogue KRN7000,
which acts through stimulation of the immune system [27,28]. Recently, several previously
unknown D-glucopyranosyl-ceramides were identified from the eastern deep-sea glass
sponge, Aulosaccus sp. [29,30]. Also, cerebrosides from different marine sources and terres-
trial environments were discovered to be a source of biomolecules with pharmacological
applications. However, no further in-depth investigations at the genetic level related to
treatment with cerebrosides have been reported so far.

Similarly, we tested the methanol extract and related enriched fractions obtained by
solid phase extraction (SPE) [3,31] of the marine Demospongiae Haliclona (Halichoclona)
vansoesti de Weerdt, de Kluijver & Gomez, 1999 on the human melanoma epithelial cell
line A2058. This sponge species, belonging to the Demospongiae class, is native to the
Caribbean. We previously reported H. (Halichoclona) vansoesti as an alien species from
the Mediterranean Sea, being collected from a meromictic basin (Faro Lake) located in
the Strait of Messina [32]. We hypothesized that the presence of this sponge could be
the result of global warming, and more generally of global changes, which are strongly
affecting the marine environment. At present, to our knowledge, the bioactivity of this
sponge species has been poorly investigated, with a total lack of studies focusing on its
anti-cancer potential [33,34]. In fact, the only data on metabolites isolated from this sponge,
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dating back to the last ten years, focuses on (2R, 3R, 7Z)-2-aminotetradec-7-ene-1, 3-diol, a
potent antimicrobial metabolite [33], and (2R,3R,7Z)-2-aminotetradec-7-ene-1,3-diol, a new
amino alcohol [34]. Overall, this study aimed to detect the potential biotechnological role
of metabolites from H. (Halichoclona) vansoesti, thus providing the first evaluation of the
anti-cancer potential of polar lipids isolated from this marine sponge species.

2. Results
2.1. Bioassay-Guided Fractionation and Chemical Analysis of the Active Fractions

Sponge extract and related enriched fractions, obtained by HRX-SPE [3], were analyzed
at three different concentrations (1, 10, and 100 µg/mL−1) to evaluate the anti-proliferative
activity against the A2058 cancer cell line using PNT2 as the somatic cell control. As shown
in Figure 1, the results indicated that the HRX fractions C and D were the most cytotoxic.
However, due to the strong cytotoxic effect of sample C against normal human PNT2 cells
at 100 µg mL−1 (Figure 1A), fraction D was selected for subsequent experiments. A specific
and dose-dependent cytotoxic effect was identified in the HRX-D fraction on A2058 cells
with a low percentage viable cell value (~30%) at 100 µg mL−1 (p < 0.001) (Figure 1B) and
an IC50 value of 36.36 µg mL−1 (Figure 1C).
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Figure 1. MTT assay of marine sponge extract and fractions on human melanoma cell lines. (A) Per-
centage cell viability of PNT2 cells treated with total extract (Ext) and HRX-B, C, D, and E fractions
from H. vansoesti at concentrations of 1, 10, and 100 µg mL−1. Red line refers to cell viability of 100%.
(B) Percentage cell viability of A2058 cancer cells treated with total extract (Ext) and HRX-B, C, D, and
E fractions from H. vansoesti at concentrations of 1, 10, and 100 µg mL−1. (C) IC50 of HRX-D fraction.
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The preliminary 1H NMR spectrum (Figure S1) of fraction D indicated that the sample
was a mixture of metabolites. Further purification of the active sample with an SPE method
based on hydrophilic resin (HILIC-SPE) [20] allowed the separation of different families
of lipids, distinctly visible on TLC (Figure S2). All the new fractions obtained by HILIC
fractionation of sample HRX-D were then tested on A2058 cells at the IC50 concentration
and two serial dilutions (ten-fold) to deeply investigate their anti-proliferative activity
(Figure 2). The new HILIC samples C and D were found to be the most pro-apoptotic on
melanoma cells, with a reduction in cell viability (~55–65%) already visible at the lowest
concentration, and IC50 values of 3.2 and 1 µg mL−1, respectively (Figure 3).
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Figure 2. MTT assay of the HILIC fractions (A–E) and sample HRX-D (Ctr) on the human melanoma
cell line A2058. Cell viability at IC50 concentration (36 µg mL−1) and two ten-fold dilutions (3.6 and
0.36 µg mL−1, respectively) was reported as a percentage.
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Figure 3. IC50 of pro-apoptotic HILIC fractions C (A) and D (B).

NMR and MS data of the two active fractions clearly indicated the presence of a
different families of compounds (Figures S4–S15).

LC-MS-MS/MS analysis of fraction C suggested the presence of a mixture of cerebro-
sides differing in the degree of saturation, oxidation, and/or the length of the acyl chain.
The main compounds identified as [M-H]− and [M+Cl]− ion peaks are listed in Table 1.
Although the NMR spectra of the mixture appeared complex, the characteristics resonances
of a sugar, like the anomeric proton at δH 4.31 (1H, d, 7.7 Hz)–δC 104.3, the diagnostic signal
of methine attached to nitrogen at δH 4.02–δC 54.4 of the sphingolipid skeleton, several
oxygenated methylenes between 3.20 and 4.50 ppm, two oxygenated methylenes at δH
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4.08/3.83 and 3.90/3.70, a long methylene chain protons of fatty acids at δH 1.30, and the
terminal methyl groups at δH 0.90, were distinguishable (Table 2).

Table 1. Rt and main m/z ion peak and related fragments.

Rt (min) m/z Ion Peak
[M-H]−/[M+Cl]−

m/z Fragment
[M-H-Glc]−

Molecular
Formula Exact Mass

19.20 732.56/768.54 570.52 C40H79NO10 733.5704
20.97 712.54/748.53 550.49 C40H75NO9 713.5442
22.49 726.56/762.54 564.50 C41H77NO9 727.5962
23.02 760.60/796.59 598.54 C42H83NO10 761.6017
23.79 740.57/776.56 578.52 C42H79NO9 741.5755
26.64 816.66/852.65 654.61 C46H91NO10 817.6643
27.29 830.67/866.65 668.62 C46H89NO11 831.6436

Table 2. Relevant NMR Data a of compounds belonging to HILIC fraction C in CD3OD at 600 MHz.

1a, 1d 1b, 1c, 1e

Position δH (m, J in Hz) δC, Type δH (m, J in Hz) δC, Type

1 4.08 (dd, 10.5, 6.0)
3.83 (dd, 10.5, 3.8) 69.7, CH2

4.14 (overlap.)
3.75 (dd, 10.5, 3.8) 69.5, CH2

2 4.28 (m) 51.5, CH 4.02 (m) 54.4, CH
3 3.64 (t, 6.0) 75.2, CH 4.17 (overlap.) 72.4, CH
4 3.55 (m) 72.9, CH 5.51 (dd, 15.0, 7.0) 130.9, CH
5 1.44 (m) 32.6, CH 5.77 (dt, 15.0, 7.0) 134.3, CH
6 2.10 (m) 33.3, CH2
7 2.11 (m) 33.4, CH2

8, 9 5.45 (m) 131.0, CH
10 2.00 (m) 34.8, CH2
11 1.37 (m) 23.9, CH2
1′ 176.5, C 176.5, C
2′ 4.05 (dd, 8.0, 4.2) 72.7, CH 4.05 (dd, 8.0, 4.2) 72.7, CH
3′ 1.64 (m) 35.2, CH2 1.64 (m) 35.2, CH2
4′ 1.30 (m) 30.0, CH2 1.30 (m) 30.0, CH2
1′′ 4.31 (d, 7.7) 104.1, CH 4.31 (d, 7.7) 104.1, CH
2′′ 3.21 (m) 74.8, CH 3.21 (m) 74.8, CH
3′′ 3.38 (m) 77.5, CH 3.38 (m) 77.5, CH
4′′ 3.30 (m) 71.7, CH 3.30 (m) 71.7, CH
5′′ 3.31 (m) 77.3, CH 3.31 (m) 77.3, CH

6′′ 3.70 (dd, 12.0, 2.0)
3.90 (dd, 12.0, 3.0) 62.5, CH2

3.70 (dd, 12.0, 2.0)
3.90 (dd, 12.0, 3.0) 62.5, CH2

a The structure assignment was obtained by 1H-1H COSY, TOCSY, HSQCedited, and HMBC correlations.

Using 2D NMR experiments and a comparison with the literature data, it was possible
to assign the sugar moiety to a α-glucopyranose (resonances between δH 4.31 and δH
3.70 for 1H, and δC 104.1 and δC 62.5 for 13C) [35,36] and the sphingoid base (Table 1),
confirming our hypothesis of glucoceramides (Figure 4A). Chemical shift and coupling
constant analysis of the anomeric proton (δH 4.31, d J = 7.7 Hz/δC 104.1) suggested β-
orientation of the sugar unit [36,37]. However, COSY and TOCSY correlations supported
the presence of two different spin systems from carbon C1 to C6 with a common 2-amino-
1,3-dioxygenated moiety (1a–e). Indeed, the 1H and 13C NMR signals at position 2 of 1a
and 1d resonated at 4.28 and 51.5 ppm, while they were shifted at 4.02 and 54.5 ppm in
compounds 1b, 1c, and 1e. Both protons showed COSY correlations with a methylene at
C-1 and a methine at C-3 oxygenates.
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Detailed studies of the fragmentation pattern (Figures S3–S10) allowed us to infer the
analogues differing for the hydroxy group in position 4 (1a, 1d) or the ∆4–5 double bond of
sphingosine (1b, 1c, 1e).

Most of the fragmentations in our compounds (Figure S3) were consistent with those
previously described by Santalova et al. [30,38]. In ESI− mode, the MS/MS profile of 1a–e
showed the diagnostic ion peak of the sugar (C1 = m/z 179.06; B1 = m/z 161.04; A1 = m/z
89.02) and the corresponding loss of the neutral fragment arising from the break between
the oxygen and the anomeric carbon [M-H-Glc]− (Y0; Figure S10, Table 2). The assignment
of the acyl chain is mainly based on the fragmentation in α to the carbonyl moiety (W-2H;
Figures S3 and S10).

Regarding the configuration of the ceramide backbone, the erythro stereochemistry at
C-2 and C-3 was supported by the agreement of the chemical shifts of the corresponding
protons (54.4 and 72.4 ppm, respectively) with the literature data [2,3]. Analogously, the
geometry of the double bond between C-4 and C-5 was assigned as E by the large value
(15.0 Hz) of the coupling constant (Table 2).

NMR and MS analysis of HILIC fraction D instead indicated the presence of another
class of sphingoid base lipids, namely halisphingosines, already reported in various species
of the marine sponge genus Haliclona [4,5]. The main product, halisphingosine A, is shown
in Figure 4B. The NMR data (Table 3, Figures S11–S15) of D displayed the diagnostic signals
of a sphingosine-type structure: a proton at δH 2.96 correlated to a carbon signal at 58.4 due
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to the methine linked to the amino group, a methylene oxygenated proton at δH 3.74 and
3.62 (δC 61.8), a methine oxygenated at δH 3.66, and a hydroxyl allylic proton at δH 4.39.

Table 3. Relevant NMR data a of compounds belonging to HILIC fraction D in CD3OD at 600 MHz.

Position δH (m, J in Hz) δC, Type

1 3.74 (dd, 11.0, 3.7)
3.62 (m) 61.8, CH2

2 2.96 (m) 58.4, CH
3 3.66 (m) 69.7, CH
4 1.54–1.40 (m) 35.0, CH2
5 1.56–1.40 (m) 38.0, CH2
6 4.39 (m) 67.8, CH
7 5.35 (dd, 10.0, 9.0) 134.2, CH
8 5.44 (overlap.) 133.0, CH
9 2.08 (m) 28.6, CH2

10–17 1.40–1.25
18 0.90 (t, 7.0) 14.0, CH3

a The structure assignment was obtained by 1H-1H COSY and HSQC correlations.

Although some NMR signals are not well resolved, due to the presence of minor
analogues, the cis geometry of the double bond was clearly confirmed through the char-
acteristic coupling constant (J = 10.0 Hz) and the carbon chemical shift of CH2-9 at 28.6,
whereas the stereochemistry of the chiral carbon at C-2, C-3 and C-6 was suggested to be
the same as the known metabolite halishingosine A [39] given the similarity of the NMR
data with the literature.

HR-ESI+ MS analysis of HILIC fraction D (Figure S14) showed the main peaks at m/z
316.2844, 297.2740 and 280.2633 related to the [M+H]+, [M-H2O+H]+, [M-2H2O+H]+ ion
peaks of halisphingosine A, respectively. However, additional signals are also present at
m/z 360.3108, 362.3261, 384.3105, 386.3262, 408.3105 and 410.3262, which corresponds
well with the following molecular formula C20H42NO4

+, C20H44NO4
+, C22H42NO4

+,
C20H44NO4

+, C24H42NO4
+, C24H44NO4

+ (as [M+H]+), suggesting the presence of new
minor related compounds. The study of MSMS fragments (Figure S15) confirmed the
correlation with the main product of these minor analogues, which mainly differed in chain
length and degree of unsaturation, and with halisphingosine A for the presence also of one
more hydroxyl group in the chain as indicated by the loss of one more water molecule in
the pattern of fragmentation.

2.2. Chemical Purification and Characterization of HILIC Fraction C

Chromatographic fractionation of the HILIC fraction C on silica gel column by an
elution gradient from 7 to 15% of methanol in dichloromethane yielded two isolated
pools of products containing sphingosine with a ∆4–5 double bond (1b, 1c, 1e) or hydroxy
group in position 4 (1a, 1d). The purification of these products allowed us to suggest the
additional double bond position of the sphingosine chain reported in 1b, 1c, and 1e. In
detail, spectroscopic data (Figures S17–S19) indicated the presence of two methylenes at δH
2.10 and 2.11 coupling with the olefinic protons at δ 5.77 and 5.45 respectively. The olefinic
protons at 8,9 resonated at the same chemical shift (5.45 ppm); thus, the geometry of the
double bond was not assigned because we do no not have enough data. The NMR and
MS data of these two sphingosine families are reported in the Supplementary Material
(Figures S16–S22). ESI-MS (negative ions) spectra (Figure S22) counted for a series of peaks
between m/z 712 and 848, suggesting the presence of different fatty acids linked to the
sphingosine chain, in addition to 1a–e (Figure 4). However, due to the very limited amount
of product available, a separation of the analogues by HPLC was not attempted.
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2.3. PCR Array

Gene expression analysis on A2058 cells treated with HILIC samples C and D at
IC50 concentrations (3.2 and 1 µg mL−1, respectively) revealed several molecular targets
that were significantly activated (p > 0.05) by both subfractions in comparison to the
control (see Tables S1–S4). In the case of sample C, different biological pathways were
simultaneously triggered after 2 h of treatment. In fact, specific genes for the autophagic
cascade, such as autophagy-related 12 homolog (ATG12, 4.78 fold regulation), autophagy-related
16-like 1 (ATG16L1, 12.64 fold regulation), autophagy-related 5 homolog (ATG5, 11.75 fold
regulation), autophagy-related 7 homolog (ATG7, 25.8 fold), and beclin 1 (BECN1, 6.67 fold
regulation), were significantly upregulated (see Table S1 for the genes and fold change
values). Moreover, B-cell leukemia/lymphoma 2 (BCL2, 40.34-fold regulation), BCL2-like 1
(BCL2L1, 37.22-fold regulation), apoptotic peptidase activating factor 1 (APAF-1, 23.85-fold
regulation), caspase 1 (CASP1, 20.2-fold regulation), caspase 2 (CASP2, 13.48-fold regulation),
caspase 3 (CASP3, 21.23-fold regulation), caspase 6 (CASP6, 25.11-fold regulation), caspase 7
(CASP7, 84.01-fold regulation), and caspase 9 (CASP9, 132.84-fold regulation), plus tumor
necrosis factor (TNF, 19.83-fold regulation), tumor necrosis factor receptor superfamily, member
10a (TNFRSF10A, 35403.22-fold regulation), tumor necrosis factor receptor superfamily, member
11b (TNFRSF11B, 25.11-fold regulation), and tumor necrosis factor receptor superfamily, member
1A (TNFRSF1A, 36.82-fold regulation) increased their expression, revealing the presence
of different apoptotic events in A2058 cells. On the contrary, HILIC fraction D induced a
selected molecular pathway by upregulating some gene factors involved in autophagy and
in both extrinsic and mitochondrial apoptosis (Figure 5).
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Figure 5. PCR array on A2058 cells exposed to HILIC fraction D. Fold regulation of nineteen
apoptotic genes in A2058 cells. Values greater than ±2 and p < 0.05 were considered significant (see
blue dotted lines).

For instance, ATG16L1 (2.16-fold regulation) and BECN1 (3.14-fold regulation), in-
volved in the autophagic events were upregulated. Moreover, TNF receptor superfamily,
member 6 (FAS, 38.45-fold regulation) and its ligand FASLG (3.97-fold regulation), TNFRSF1A
(4.24-fold regulation), estrogen receptor 1 (ESR1, 2.02-fold regulation), CASP9 (3293.15-fold
regulation), BCL-2-like 11 apoptosis facilitator (BCL2L11 or BIM, 3.94-fold regulation), and
APAF-1 (4.86-fold regulation) significantly increased their expression, together with some
defensive and inhibitor genes, such as BCL-2-like 1 (12.3-fold regulation), eukaryotic trans-
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lation initiation factor 5B (EIF5B, 7.51-fold regulation), X-linked inhibitor of apoptosis (XIAP,
35-fold regulation), baculoviral IAP repeat containing 2 (BIRC2, 2.05-fold regulation), insulin-
like growth factor 1 (IGF1, 3.64-fold regulation), and nuclear factor of kappa light polypeptide gene
enhancer in B-cells 1 (NFKB1, 3.32-fold regulation). Interestingly, the sponge fraction also
downregulated DNA fragmentation factor, alpha polypeptide (DFFA, −2.36-fold regulation)
which is an apoptotic regulator triggering DNA fragmentation, and did not switch the
effector caspase CASP3 on or off(1.66-fold regulation).

2.4. ImmunoArray

Immunogenic cell death was then validated through ImmunoArray analysis by fo-
cusing on fraction D, denoting an inhibition of proangiogenic factor secretion in culture
medium (Figures 6 and S24).
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Figure 6. ImmunoArray on A2058 cells treated with the HILIC fraction D. Relative expression
of ten proteins involved in human angiogenesis in treated A2058 cells normalized vs. control
(untreated cells). A reduction of >30% was considered significant. * p value < 0.05; ** p value < 0.01;
*** p value < 0.001.

In particular, the expression and release of several proteins involved in human angio-
genesis were evaluated in treated human melanoma cells in comparison to controls. Of the
proteins analyzed, ten were significantly depleted (at least a 30% reduction) in A2058 cells
after 24 h of treatment with HILIC fraction D at IC50 concentration (1 µg mL−1).

In detail, a considerable reduction (~40%, p < 0.05) in angiopoietin-1 and angiopoietin-
2, was measured. ImmunoArray detection also indicated a relevant decline in granulocyte
colony-stimulating factor (G-CSF, ~30%, p < 0.01) and granulocyte-macrophage colony-
stimulating factor (GM-CSF, ~30%, p < 0.001). Moreover, chemokine I-309, significantly
decreased, with a percentage of about 30% with respect to control samples (p < 0.001).
Vascular endothelial growth factor receptor 3 (VEGF R3) and metalloproteinase 9 (MMP-9)
also reduced their expression in response to the sponge fraction in melanoma cells by about
50% (p < 0.05) and 30% (p < 0.01), respectively. Interestingly, the expression of angiostatin,
endostatin, and interleukin-10 (IL-10) significantly decreased (~40–50%, p < 0.05) in A2058
cells treated with HILIC fraction D.

3. Discussion

Marine sponges, together with their symbiotic communities, represent a rich source of
bioactive compounds displaying a wide range of potential applications in the biotechno-
logical field [40–43]. Here, we evaluated the cytotoxicity and anti-proliferative capabilities
of the crude extract and enriched fractions obtained from H. (Halichoclona) vansoesti, an
alien sponge collected from the Strait of Messina (Faro Lake, Messina, Italy) [44]. This
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sponge species, already collected from Caribbean waters [45,46], was identified for the first
time in the Mediterranean Sea by Bertolino et al. [33]. So far, several alien species have
been recorded in the Strait of Messina, including macrophytae, polychaetes, molluscs, and
sponges [44,46,47].

As reported in Bertolino et al. [33] the mechanism by which this species was introduced
into the Mediterranean Sea from the Caribbean and Brazilian coasts is not clear. One of the
factors could be due to intense maritime traffic, as well as the increasing number of bivalve
farms often associated with organisms coming from the Atlantic Ocean. The presence of
this sponge species in this lake could also be linked to global changes, such as climate
change, which, together with changes from a socioeconomic point of view, are considered
the main drivers for the introduction of alien species and their biodiversity in the future.

The use of alien and invasive species for experimental purposes might be a con-
crete and sustainable research line to avoid the excessive harvesting of Mediterranean
native species.

Applying a bioassay-guided fractionation approach, we highlight possible anti-cancer
and pharmacological properties of H. (Halichoclona) vansoesti metabolites against human
melanoma cells. MTT assay showed that the enriched SPE fraction eluted with acetonitrile
(CH3CN 100%, fraction HRX-D) was the most interesting, since low cytotoxicity was
measured on the normal cell line (PNT2), while a dose-dependent effect on cell viability
was recorded on the A2058 cancer cell line. Interestingly, when the fraction of interest
(D) was further fractionated, MTT indicated that the cytotoxic effect in melanoma cells
was spread between two new fractions (C and D). A chemical analysis of these two active
samples clearly indicated the presence of different classes of sphingolipids. Fraction C
was composed of the more complex lipid, cerebrosides, whereas fraction D contained
sphingolipids of the halisphingosine family.

A sponge belonging to the Haliclona genus, Haliclona (Reniera) tubifera (George & Wil-
son, 1919), from the Brazilian coastline, was a source of two modified C18 sphingoid bases,
namely (2R,3R,6R,7Z)-2-aminooctadec-7-ene-1,3,6-triol and (2R,3R,6R)-2-aminooctadec-
1,3,6-triol (29,39). An ethyl acetate fraction of this sponge, containing sphingosine-derived
content, showed cytotoxic effects on glioma (U87) and neuroblastoma (SH-SY5Y) cells,
showing an IC50 < 15 µg/mL on both human cancer cell lines, as well as anticoagulant
properties, increasing the recalcification time of human blood [22]. Safingol is a saturated
analogue of sphingosine of the family of sphingolipids, whose cytotoxic effect consisted
of inhibiting sphingosine kinase. In that way it was possible to prevent the formation of
sphingosine-1-phosphate, which has a key role in in cell proliferation and angiogenesis, as
well as cell death through protein kinase C inhibition [48,49].

Several sphingoid-based compounds were tested against seven human cancer cell
lines, such as MCF-7 (mammary gland adenocarcinoma), A-549 (non-small cell lung cancer),
MDA-MB-231 (mammary gland adenocarcinoma), HeLa (cervical adenocarcinoma), HTC-
116 (human colon carcinoma), Jurkat (acute T-lymphoblastic leukemia), Caco-2 (human
colon carcinoma), and the non-cancerous cell line NiH 3T3 (mouse fibroblasts), showing
antiproliferative and cytotoxic activities [50]. Aiming to deeply investigate the gene path-
way inducing cell death, a PCR array was performed on A2058 cells treated with active
fractions C and D at IC50 concentrations, containing cerebrosides and halisphingosines,
respectively. The PCR array showed that fraction D, enriched with sphingosine derivatives,
activated a well-defined molecular response. In fact, we found that cells primarily undergo
an autophagic cascade by activating several genes, such as ATG16L1, ATG5, and BECN1.
These latter genes are involved in the nucleation and expansion of the autophagosome
that subsequently merges with the lysosomes to initiate the degradation of dysfunctional
organelles or microbes. Consequently, cells start a “self-eating” process that is normally
used to counteract energy loss occurring during metabolic stress and disease (e.g., cancer,
neurodegeneration, inflammation, and aging) [51–54].

An increase in the gene expression of Fas and its ligand (FasL) was also observed after
1 h of treatment at 1 µg mL−1 with the active fraction D. Fas, a type I transmembrane
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protein and member of the TNF receptor family, mediates the extrinsic apoptosis since it
normally induces programmed cell death (PCD) through the binding of the cytokine FasL.
This interaction triggered several cytoplasmic signal transducers recruiting pro-caspase
8 that, in turn, converts into its active form [55]. Contemporarily, a strong upregulation
of BCL2L11 (BIM), APAF1, and CASP9 was observed. BCL2L11 is a pro-apoptotic protein
that allows the permeabilization of the mitochondrial outer membrane and the release of
several soluble proteins (e. g. cytochrome c) [56]. This change in the mitochondrial status
induced the activation of APAF1 and oligomerization to CASP9 (apoptosome), which is
the initiator caspase leading to the activation of the apoptosis executioner (CASP3) [56–58].
Real-time qPCR data indicated that the fraction under analysis might induce PCD in human
melanoma cells (A2058), through a crosstalk between the extrinsic pathway, mediated by
TNF receptors and the catalytic activity of caspase 8, and the mitochondria, via activating
pro-apoptotic BCL-2 proteins and CASP9. These data were well confirmed by cell cycle
analysis by flow cytometry.

A similar apoptotic response has been recently observed in primary neurons treated
for 24 h with cadmium at a concentration range of 5–20 µM [59]. Interestingly, CASP3
was not found to be particularly upregulated, since the fold regulation value was below
the established cut-off. This result suggested that cells, in response to the harmful signals
induced by the active fraction (D), could undergo apoptosis without completing the cell
death process, probably due to the short incubation time (1 h). In fact, certain survival cues
were also activated, with a gene expression increase in several defensive genes, such as
BCL2L1, EIF5B, XIAP, BIRC2, IGF1, and NFKB1 [56].

Corroborating the hypothesis of a pro-apoptotic and immunogenic cascade induced
by sample D in human melanoma cell lines was the fact that several proteins promoting
angiogenesis, such as angiopoietin-1 and angiopoietin-2, which inhibit vascular inflam-
mation and prevent endothelial death [60], were significantly reduced. Moreover, G-CSF
and GM-CSF, two linked protein factors that normally promote angiogenesis and tumor
development, were also targeted [61], as was chemokine I-309, the binding of which to
endothelial cells induces chemotaxis, invasion, and differentiation [62]. ImmunoArray
analysis also indicated a decrease in the protein levels of MMP-9 and VEGF R3, both
linked to the formation of blood vessels and cancer metastasis [63,64]. Interestingly, we
corroborated the hypothesis raised by the gene expression analysis, suggesting that cells
could undergo a PCD cascade without completing it, since some survival proteins, such as
angiostatin, endostatin, and the cytokine IL-10 [65,66], were also found to be significantly
reduced in treated A2058 cells.

Our data showed a significant inhibition of the expression of pro-angiogenic factors
mediated by fraction D. In cancer, high levels of tissue inhibitors of metalloproteinases
(TIMPs) are notable because they downregulate the activity of MMPs. For this reason,
the angiogenic response can be strictly related to the modulation of genes associated to
invasion and the balance between pro- and anti-angiogenic factors. Linked to this, the
downregulation of pro-inflammatory chemokines and cytokines was evaluated from the
molecular point of view. During tumor progression, these molecules are directly responsible
for angiogenesis.

Overall, the present study explored the cerebrosides and sphingolipids derived from
the sponge H. (Halichoclona) vansoesti for their potential chemopreventive and angiopre-
ventive action, showing that they inhibited proliferation and promoted immunogenic
cell death.

The Caribbean region is a hotspot for biodiversity, and several examples of bioac-
tive compounds have been reported in the literature, not only from sponges but also
algae, corals, mollusks, microorganisms, cyanobacteria, and dinoflagellates [67]. The
lipophilic extract of the Caribbean sponge Cribrochalina vasculum showed the presence
of four new bioactive acetylene metabolites, namely (3R)-hydroxy-14-methyldocos-(4E)-
en-1-yne, (3R)-hydroxy-16-methyleicos-1-yne, (3R)-hydroxy-19-methyleicos-1-yne, and
docosa-(3E, 15Z)-dien-1-yne [68]. Bioactive metabolites were isolated from the Caribbean



Int. J. Mol. Sci. 2024, 25, 7418 12 of 17

sponge Aka coralliphagum, such as the sulfated compounds siphonodictyals, corallidictyals
C and D, and siphonodictyal G, with antimicrobial activity against bacteria, yeasts, and
fungi, as well as antiproliferative activity on cultures of mouse fibroblasts [69]. Rodríguez-
Berríos et al. [67] reviewed research from 1981 to 2020, reporting about ninety compounds
(mainly polyketides) isolated in the Caribbean region, of which eighty-two showed bio-
logical activity. These results prompted the researchers to explore this peculiar marine
environment to search for new natural bioactive compounds. Thanks to its high chemical
biodiversity, the marine environment can be considered an amazing source of discoveries of
bioactive compounds as potential drugs. Our in vitro study underlines the potential of the
H. vansoesti metabolites as a resource of compounds for biotechnological applications in the
medical field. Indeed, we demonstrated that the compounds reported in this study, namely
cerebrosides and sphingolipids, were anti-proliferative against melanoma, suggesting their
possible use as inspiration molecules in the design of new anticancer agents, not only as a
monotherapy but also in combination with established treatment modalities, to enhance
their action.

4. Materials and Methods
4.1. Chemical Extraction and Fractionation

Haliclona (Halichoclona) vansoesti [44] was collected from the Strait of Messina (Faro
Lake, Messina, Italy) and stored at −80 ◦C, until use [33]. The sponge was previously
identified, starting from four samples, by morphological observations of its body, shape,
and skeleton, and using a 28S rRNA molecular marker [33]. Prior to chemical extraction,
wet samples (~80 g) were lyophilized under a freeze dryer. Methanol (Merk Life Science
S.r.l., Milan, Italy) extraction was performed on dried sponge tissues (~7 g) using a Precellys
Evolution tissue homogenizer equipped with a Cryolys Evolution cooling system (Bertin
Italia, Genoa, Italy) to obtain 1.2 g of crude extract. The protocol of extraction was already
set up for marine samples [3,20] and consisted of a run at 6200 rpm (3 cycles × 30 s) at a
temperature of 16 ◦C to prevent degradation, followed by centrifugation of the sample at
3450 rpm for 10 min at 4 ◦C. The extract was filtered and dried in a rotatory evaporator
at room temperature. About 100 mg of raw extract was subjected to SPE on a GX-271
ASPEC Gilson apparatus (Gilson Italy, Cinisello, Italy) by using CHROMABOND® HRX
cartridges (6 mL/500 mg, Macherey-Nagel, Düren, Germany) [3]. Briefly, this fractionation
yielded five samples (A: 44.2 mg, B: 14.8 mg, C: 10.6 mg, D: 2.1 mg and E: 10.9 mg)
eluted with H2O, CH3OH/H2O 1:1, CH3CN/H2O 7:3, CH3CN, and CH2Cl2/CH3OH 9:1,
respectively. Total extract and the enriched fractions B–E were tested. After preliminary
1H NMR of the SPE-HRX fraction D (1.9 mg), the sample was subjected to a further solid-
phase extraction using hydrophilic interaction chromatography (or hydrophilic interaction
liquid chromatography, HILIC), using a prepacked column with CHROMABOND® HILIC
cartridges (6 mL/500 mg, Macherey-Nagel, Düren, Germany) and the automated GX-271
ASPEC Gilson system [20]. In detail, the cartridge was conditioned with 2 mL of milli-q
water and equilibrated with 10 mL of tetrahydrofuran (THF)/n-hexan 50:50 (v/v). The
sample was suspended in 1 mL of THF/n-hexan 50:50 (v/v) and sonicated for a few seconds
in an ultrasonic bath before being loaded onto the column. Elution steps led us to obtain
five new fractions (A–E) each eluted with 6 mL of THF/n-hexane 50:50 v/v (A: 0.8 mg), THF
100% (B: 0.2 mg), THF/MeOH 90:10 v/v (C: 0.1 mg), THF/MeOH 80:20 v/v (D: 0.2 mg),
and THF/MeOH 10:90 v/v (E: 0.1 mg), respectively. All HILIC fractions were tested and
the active samples C (0.1 mg) and D (0.2 mg) were analyzed by mono bidimensional NMR
on a Bruker DRX 600 MHz spectrometer (Bruker Bio-Spin, Fällanden, Swiss) equipped with
a TXI CryoProbe in CD3OD (δ values of 3.34 and 49.0 ppm) and a HRESI-MS/LCMS-MSMS
on a Q-Exactive™ Hybrid Quadrupole-Orbitrap™ Mass Spectrometer (Thermo Scientific,
Waltham, MA, USA) coupled with a 1290 Infinity UPLC System (Agilent Technologies,
Santa Clara, CA, USA) (Figures S8–S10, S14 and S15) with the ESI source in the negative
mode using an RP-column (Phenomenex Luna C18 150 × 5 mm, 5 µm), with water and
MeOH as solvent A and B, respectively, starting in an isocratic condition with 10:90 A/B
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(v/v) for 15 min followed by a gradient up to 100% of B in 10 min, with a flow rate of
0.8 mL/min.

MS raw data are available and accessible at the following link: https://cloud.icb.cnr.
it/s/Y7rS39KZZc9A9A8 (accessed on 1 March 2024).

In order to obtain a more accurate characterization of cerebrosides, approximately
200 mg of raw extract was submitted to the SPE fractionations (HRX and HILIC) to yield
0.5 mg of faction C. This sample was further purified by a silica gel small column using
an elution gradient from 7 to 15% of methanol in dichloromethane to produce subfraction
1 (1b, c, and e) and 2 (1a and d). Chromatographic fractionation was monitored by TLC
eluted with DCM/MeOH 85:15 (see Figure S23)

4.2. Cell Maintenance and Treatments

The following cell lines were used: PNT2 (normal prostate epithelium immortalized
with SV40) grown in RPMI 1640; A2058 (human melanoma epithelial cell line) grown in
Dulbecco’s modified Eagle’s medium (DMEM). Media were enriched with 10% (v/v) of
fetal bovine serum (FBS), 2 mM of L-glutamine, 100 units mL−1 of penicillin and strep-
tomycin. Once cultures reached confluence (approximatively every 3 days), cells were
detached by using trypsin, and the culture medium was changed. Before the experiments,
cells were placed in 96-well plates and kept overnight in a thermostatic chamber in a 5%
CO2 atmosphere at 37 ◦C for the attachment. For viability assays, the total extracts and
fractions were suspended in dimethyl sulfoxide (DMSO) at a final concentration of 1%
(v/v). Three standard concentrations were used for the analysis: 1, 10, and 100 µg mL−1.
The concentrations in the case of the subfractions were 0.1, 1, and 10 µg mL−1, respectively.

4.3. Cytotoxicity Assay

The crude extract and fractions B, C, D, and E were tested on human cell lines at
three different concentrations: 1, 10, and 100 µg/mL−1. No study was performed to
verify that the biological activity came from the sponge and not from some endophytic
microorganisms, such as fungus or bacteria. The cytotoxic effect of sponge extracts and
fractions was evaluated by 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide
(MTT) assay (Applichem A2231, Darmstadt, Germany). After 48 h of treatment, cells were
treated with 10 µL of MTT (5 mg mL−1) and incubated in the dark for 3 h at 37 ◦C. Then,
100 µL of isopropanol was added to the cells and incubated under agitation for 1 h to let
the purple formazan crystals dissolve. The absorbance was detected on a microplate reader
at a wavelength of 570 nm (TECAN, Life Sciences). The anti-proliferative activity was
measured as percentage of cell viability considering the ratio of the absorbance of each
sample (reported as a mean), as well as for the absorbance of controls.

4.4. RNA Extraction, cDNA Synthesis, and RT2 Profiler PCR-Array

A2058 cells were pipetted in 6-well multiwells and grown overnight in 2 mL of culture
media to extract RNA. Cells were treated for two hours with the fraction of interest at
the IC50 concentration. Treatments and controls (grown in medium without the addition
of the fractions) were carried out in triplicates. After two hours of exposure time, cells
were washed using cold phosphate-buffered saline (PBS) and lysed in 500 µL of TRIsure
reagent (Bioline, London, UK) for each mL of culture medium. Then, the RNA extraction
was conducted, following the manufacturer’s instructions. RNA quantity (measured
as ng µL−1) and purity (calculating the ratios A260/A280, A260/A230) was assessed
through a NanoDrop spectrophotometer (Thermo Scientific). About 200 ng of RNA were
retrotranscribed by using the RT2 first strand kit (Qiagen, Venlo, The Netherlands). RT-
qPCR experiments were performed in triplicates by using a RT2 profiler PCR-array kit for
cell death pathway identification (Qiagen), run on a ViiA7 (Applied Biosystems, Waltham,
MA, USA) through a standard fast PCR cycling protocol, including a denaturation step
at 95 ◦C for 10 min, 40 amplification cycles at 95 ◦C for 15 s and 60 ◦C for 1 min, and a
final extension step at 72 ◦C for 10 min, by using 10 µL of the solution for the final reaction.

https://cloud.icb.cnr.it/s/Y7rS39KZZc9A9A8
https://cloud.icb.cnr.it/s/Y7rS39KZZc9A9A8
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Amplification data were collected by using the ViiA™ 7 software v1.0. (accessed 1 February
2024; Applied Biosystems). The cycle threshold (Ct) values were then analyzed through
PCR array data analysis using online software (https://dataanalysis2.qiagen.com/pcr,
Qiagen; accessed on 10 January 2024). Fold-change values (gene expression ratios) were
calculated on the basis of the 2(−∆∆Ct) method [70]. The reference genes [71] used for data
normalization were actin-beta (ACTB), beta-2-microglobulin (B2M), glyceraldehyde-3-phosphate
dehydrogenase (GAPDH), hypoxanthine phosphoribosyltransferase 1 (HPRT1), and ribosomal
protein, large subunit P0 (RPLP0), and their expressions were found to be unchanged in
control and treated cells. To show a more readable gene expression data, fold changes (x)
were converted to fold regulation values as (−1/x). The cut-off was set at ±2.

4.5. Protein Extraction and ImmunoArray

A2058 cells were seeded in 6-well multiwells and left overnight in a thermostatic
chamber at 37 ◦C for the attachment process. Cells were treated with the fraction of interest
at the IC50 concentration for 24 h at 37 ◦C. Treatments and controls (medium without the
compound) were performed in triplicates. Protein extraction was performed by adding
1 mL of 1× lysis buffer (Raybiotech, Norcross, GA, USA). After washing A2058 cells with
cold PBS, cell debris and supernatants were divided through centrifugation at 12,000× g for
5 min at 4 ◦C and stored at −20 ◦C until use. Then, ImmunoArray experiments were applied
on 400 µL of lysates using a RayBio® C-Series Human Angiogenesis Antibody Array kit,
according to the manufacturer’s instructions. For protein detection, membranes were
incubated with 1 mL of biotinylated antibody cocktail and 2 mL of 1× HRP-streptavidin.
Array membranes were analyzed under a ChemiDoc imaging system (Bio-Rad) and signal
intensity for each antigen-specific antibody spot was converted into numerical values
through a 2D densitometry approach. Ratios between treatment and controls were applied
to measure the relative expression of each protein.

4.6. Statistical Analyses

Multiple Student’s t tests were applied to evaluate the differences between the groups
(mean ± SD) of biological replicates (N = 3). Statistical analyses and dose–response curve
were designed using GraphPad Prism v9.0 for Windows, GraphPad Software, La Jolla, CA,
USA, www.graphpad.com. For RT-qPCR, Student’s t tests of the triplicate 2–∆Ct values for
the genes under analysis in each control and treated groups comparison were performed
using the available online software used for data analysis (https://dataanalysis2.qiagen.
com/pcr, Qiagen).
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