 Consiglio Nazionale delleRicezche

|
i
i
E
i
|
i
;

ISTITUTO DI ELABORAZIONE
DELLA INFORMAZIONE

PISA

A NEW OPERATIONAL SEMANTICS FOR CCS
BASED ON CONDITION/EVENT SYSTEMS

P. Degano, R. De Nicola, U. Montanari

Nota interna B4-42

Agosto 1986

A New Operational Semantics for CCS
Based on Condition/Event Systems

Pierpaolo Degano *, Rocco De Nicola™ and Ugo Montanari *

* Dipartimento di Informatica, Universita di Pisa, PISA
* Istituto di Elaborazione dell’Informazione, C.N.R., PISA

Abstract. A new class of Petri Nets, called Augmented Condition/Event Systerns is defined, by
slightly relaxing the condition for enabling events. A Net from this class called s is used to give
a new operational semantics to Milner’s Calculus for Communicating Systems. The set of CCS
agents together with the traditional, interleaving based, derivation relation is proved isomorphic to the
case graph of 2~cg (when single transitions only are considered). Our achievement is twofold: first
we provide CCS with a semantics which is able to describe concurrency and causal dependencies
between the actions the various agents can perform; second, we guarantee an adequate linguistic level

for the partieular class of Petri Nets which can be defined through CCS operators.

Running Head: CCS as a Condition/Event System

1. Introduction

Petri Nets [S, 9] are one of the best known models of concurrent and communicating systems,
and have a suggestive graphical representation. They can be viewed as a generalization of transition
systems in which concurrency and causal independence between transitions is explicitly represented.
A generally acknowledged inadequacy is their lack of compositionality and modularity, due to the
absence of a linguistic level which is necessary to build bigger nets from smaller ones. Many different
kinds of Petri Nets have been defined, and they can be divided into two families. The first class
contains those more intensional which represent models of real systems, and may thus have cycles.
The nets in the second class can be seen as behaviours of systems, with a partial ordering structure
obtained by unfolding nets in the first class. Privileged representatives of the first class are
Condition/Event (C/E) Systems which describe how the occurrence of events causes changes in local
states, called conditions. Typical elements of the second class are Occurrence Nets. A brief summary
of the relevant aspects of C/E Systems is given in Section 2.

We intend to study the re'lationships between C/E Systems and Milner’s Calculus for
Communicating Systems (CCS) [7]. This is a language for concurrent and communicating systems
based on a small number of operators. CCS operational semantics is a transition system defined via a
set of transition rules in a syntax-driven way, by using the SOS technique of [8]. As it stands, CCS
has a so-called interleaving semantics where the “I” operator for parallel composition of processes is
not primitive: given any finite process containing |, another process always exists without | which
exhibits the same behaviour. A brief summary of CCS is given in Section 2.

In this paper, we present a new operational semantics for CCS which considers the parallel
operator as “first class” and associates a Condition/Event System to CCS. Our achievement is
twofold: first we provide CCS with a semantics which is able to describe concurrency and causal
dependencies between the actions the various agent can perform; second, we guarantee an adequate
linguistic level for the particular class of Petri Nets which can be defined through CCS operators. Gur
results should provide a framework for evaluating CCS’s expressive power, and for understanding
the relationships between the two theories, so that analytic cohcepts and techniques might be

transferred form one theory to the other.

o

There have been many attempts to use Petri Nets to give an operational semantics to CCS
without value passing ("pure" CCS). To the best of our knowledge, no definitive result has yet been
achieved: either only subsets of CCS have been considered or the interleaving semantics of the
resulting net is not the standard CCS one [1, 6, 10, 11].

Goltz and Mycroft [6] give a denotational semantics of CCS in terms of Occurrence Nets and
an operational semantics in terms of Place/Transitions Nets. In the former case, since Occurrence
Nets are used, the operational intuition of intensional nets and some of the advantages of their
graphical representation are lost. In the latter, only a CCS subcalculus w.hich does not contain the
restriction operator is considered. Moreover the semantics they give is not in complete agreement with
the interleaving semantics; in particular, it does not respect all the causal dependencies between the
actions performed by the agents (further details are given in the conclusions).

Winskel [10] also proposes a partial ordering denotational semantics for CCS which is based
on event structures, a domain very close to Occurrence Nets and thus extensional as well. However,
he simply claims that the interleaved semantics agrees with Milner’s synchronization trees semantics
but does not give any formal 'statement of this fact. In [11] a categorical interpretation of
Place/Transition Nets is proposed and various operators are defined on them to provide an adequate
linguistic level. Unfortunately, the sum operator defined there is not in full agreement neither with
that defined in [7] nor with operational intuitions about nondeterministic choice; this means that his
category of nets cannot be used as a semantic domain for CCS.

De Cindio et al. [1] map CCS into a subclass of Petri Nets (Superposed Automata Nets) the
elements of which are systems composed of interacting sequential automata. However, they restrict
CCS syntax to forbid the generation of unboundedly many instances of a recursive system.

Here, for the first time, we map the whole “pure” CCS into a minor extension of C/E Systems
which we call Augmented Condition/Events (A-C/E) Systems. Our extension relaxes simplicity and
permits self-loops. Indeed, we have taken care of maintaining all the relevant properties of C/E
Systems, in primis the capability of clearly expressing concurrency and of distinguishing it from
nondeterminism. The epistemological consequences of this different notion of event have not been
studied here. Our semantics carries more information than Milner’s, namely that about concurrency,

since the latter can be recovered by considering the interleaving part of the case graph of the former.

Simplicity (i.e. an event is characterized by its pre- and post conditions) has been relaxed since
situations of pure nondeterminism can be expressed in CCS, e.g. by the CCS agent «E + BE, which -
méy evolve to E in two ways, firing either an event observed as ¢ or as . Afterwards, we show that
simplicity can be kept, although a more complicated and less suggestive net is obtained.

The other extension is actually needed to enable a transition for which some preconditions
coincide with some postconditions. This is because self-loops arise naturally when dealing with
recursive CCS agents, e.g. rec x. ax. The conditions for enabling events and the property of
contact-freeness have been accordingly modified, still maintaining the properties that an event whose
preconditions hold is always enabled and that no token is ever lost. Thus, the formal troubles due to
contact situations are avoided, and we argue that all the results proved for contact-free C/E Systems
hold for contact-free A-C/E Systems too. An extension similar to our is prdposed in [11] although no
justification is given for it there.

In order to define the new CCS operational semantics, the SOS approach is taken once again,
but a different notion of derivation relation is defined, which we call partial ordering derivation. It
relates sequential processes of age'nts, rather than their whole global states. Sequential processes are
obtained by decomposing CCS agents, and the partial ordering derivation relation describes both the
actions sequential processes may perform and their effects. The A-C/E system, called > ~g, is
obtained straightforwardly from the partial ordering derivation. More precisely, sequential processes
are conditions; decompositions of CCS agents are cases; and elements of the partial ordering
derivation relation are events.

The soundness of the new semantics (with respect to the interleaving operational semantics of
[7]) relies on the fact that the transition graph of CCS (in which nodes are agents and arcs are
derivations) is isomorphic to the interleaving case graph of 2 cg (the case graph with the arcs

l1abelled by a single event only).

2. Background

Here, we shortly introduce the relevant deﬁnitions about Petri Condition/Event (C/E) Systems

[5, 9] and Milner’s Calculus for Communicating Systems [7].

Anetisa tripk; <B, E; F>, where
» B is the set of conditions;
o Eis the set of events;
+ BNE=®;
» F < (BXE)u (ExB).
Given a net N = <B, E; F>, let x,y € B UE,
o -xdenotes {y | yFx}, called preset, and x-denotes {y | xFy}, called postset;
e xisisolated if x Ux =&;
o N is simple if, whenever ‘x="y and x'=y-, x=y;
« asubset ¢ B iscalled 'case;
« ecFE is enabled by c iff c is a case and e ¢ ¢ and e € B-c (- denotes set difference).
Furthermore, givency,co €B and G CE, the step ¢ [G>cy, is defined if
o YeeG,eis c1-enabled;
» Veypeeq, e1#ey, ‘€] Neg=ep Ney =¢;

¢ ¢y=(c1~G) U G- (where - is extended on sets).

A Condition/Event system (C/E system) is a quadruple 2. = <B, E; F, C>, where
o <B, E; F> is a simple net with no isolated element and B U E # @;
e Cc2Bisan equivalence class of the reachability relation R=(r v r‘l)*, being
r < 2Bx2B, where ¢; r ¢, iff 3G ¢ E such that ¢q [G> ¢5. C is called the case class;

» Yee E, dc such that e is c-enabled.

A contact-free C/E system is a C/E system <B, E; F, C> in which VeeE, VceC
« +e ¢ cimplies e ¢ B-c;

¢ g ¢ cimplies ‘e ¢ B-c.

Given a C/E system 2, =<B, E; F, C>, let P = {(€1, G, cp)lcg [G>cqpis astep of 2.}. Then,
the graph @ = (C, P) is called the case graph of 2.
We present now a brief survey of CCS’s syntax and semantics. First, we shall recall the main

operators of the calculus, then we will present the traditional interleaving semantics of [7].

If A ={a, B,vy...}isafixedset, A" = {o"laae A}, A= AUA" (ranged over by A)
denotes the set of visible actions; % is a distinguished invisible action not in A and A U {1} is ranged
over by W, then the CCS agents are clbsed terms (i.e. terms without free variables) generated by the
following BNF-like grammar;

E:=xINILIpEI B | E[¢] I E+ E|EE lrec x. E,

where x is a variable and ¢ is a permutation of A U {t} which preserves 1 and the operation ~ of

complementation.

CCS interleaving operational-semantics is based on a labelled transition system, the transition
relation of whicﬁ is defined by a set of inference rules over agents. A relation —p—, called
derivation relation, is defined, with the intuition that agent Eq may evolve to become agent E either
by reacting to a A-stimulus from its environment (E;—A—E9) or by performing an internal action

which is independent of the environment (E1—1—E5).

Milner’s derivation relation E{——E, is defined as the least relation satisfying the following

axiom and inference rules:

Act) ME—u—E

Res) E{—u—Ey implies E{\ou—ju— Ex\x, P& {o,0}

Rel) Ej{—u—Ey implies Eq[¢]—o6(1)— E5[¢]

Sum) E{—u— Ey implies E{+E—j1—E, and E+Ej——Ey

Com) E{—u— Ey implies E{[E—— E)lE and EIE{—u— EIE,
E{—A—E; and Ej—A—E, implies E{IE'{—1— EjlE

Rec) Eqlrecx. Ey/x]——E, implies rec x. Ej —ji— E,.

This relation completely specifies CCS operational semantics which, given an agent,
determines the actions or the sequences of actions it may perform, and the new agent which is
obtained as a result. We aim at defining a Petri Net which, besidgs the above informations, carries
also informations about the pausal dependencies and the possible concurrency among the actions

performed by every CCS agent.

3. Augmented Condition/Event Systems

In this section we introduce the class of Petri Nets which we will use in the rest of the paper to
describe the semantics of CCS agents. We define the class of Augmented Condition/Event (A-C/E)
Systems by slightly relaxing the condition for enabling events to deal with self-loops and by
removing the simplicity condition to obtain simpler nets.

We drop the condition of éimplicity on A-C/E systems since we want to straightforwardly
represent situations of pure nondeterminism, such as the one expressed in CCS by the agent oF +
BE, which may evolve to E in two ways, firing an event either observed as o or as 3. Afterwards,
we will show that simplicity can be kept, but at the price of obtaining a more complicated and less
suggestive net.

The actual extension to C/E Systems consists of relaxing the conditions under which a
transition may occur. This is mainly due to the f;;lct that we want to consider as enabled an event for
which the preset is not disjoint from the postset. Indeed, loops arise when considering CCS agents
involving recursion, e.g. rec x. ox. The property of contact-freeness has been accordingly modified,
still avoiding those cases where the preset of an event holds, but the event is not enabled, and

avoiding the loss of tokens when playing the token game.

Definition 3.1.
Given anet N =<B, E; F> and a case ¢,

» aneventeis a-enabled by cif and only if'e Ccand e <€ e U B-c.

Given ¢1,c9p € B and G C E, the a-step ¢ [HG> ¢, is defined if
e VYeeg, e is a-enabled by c1s
+ VeypeeG,eqzey, 'eg Neg=ep Ney =d;
° ¢p=(c1~G) LG , ¢

Definition 3.2.
An Augmented Condition/Event system (A-C/E system) is a quadruple ¥ = <B, E; F, C>, where
e <B, E; F> is a net with no isolated element and B U E # &;
« Cc2B isan equivalence class of the reachability relation R=(r U r‘l)*, being
Ic 2B><2B, where ¢1 1 ¢ iff 3G ¢ E such that ¢q [[G> cy;

e VeeE, dc such that e is a-enabled by c. ¢

Definition 3.3.
An a-contact-free A-C/E system is an A-C/E system <B, E; F, C> in which VeeE, VceC
o e cimpliese e uUB-c;

s e Ccimplieseg e UB-c. ¢

Property 3.1.
Given an a-contact-free A-C/E system <B, E; F, C> and a case ¢ in C, an event is a-enabled iff its

preset is in c.
The following theorem characterizes a-contact-freeness.

Definition 3.4.
A case c of anet N = <B, E; F> is critical if there exists an event e such that either

eccand(c-e)ne=d® or eccand(ce)nexd %

Note that in a critical case the preset of an event holds, which, if fired, would cause the “loss
of some token”. Actually, the case reached after firing would be the union of c--e and e- and, if the

two sets were intersecting, some token would be lost. Alternatively, the dual property might hold.

Theorem 3.1. (a system is a-contact-free iff no token is lost in the token game)
An A-C/E system 2. = <B, E; F, C> is a-contact-free iff no case in C is critical.
Proof. Immediate. . ¢

The if part of the above theorem is not true for standard C/E Systems, as proved by the C/E

system in Fig. 3.1. which, being non contact-free, has no critical cases.

Fig. 3.1. A non contact-free C/E system which is an a-contact-free A-C/E system.

The following theorem relates C/E Systems with A-C/E Systems.

Theorem 3.2.
The set of (contact-free) C/E Systems is a proper subset of (a-contact-free) A-C/E Systems.

Proof. Containement is obvious. For proper inclusion see the net in Fig. 3.1. @

4. CCS as an Augmented C/E System

In this section we present a new set of inference rules for CCS which are a simpler version of
those presented in [2, 3, 4], and which relate parts of CCS agents, rather than whole global states.
CCS agents are decomposed into sets of sequential processes, called grapes, and the new transition
relation not only tells the actions an agent E may perform, but also tells those sequential processes of
E which move when a transition occurs. The new transition relation will be used as the starting point
for defining the new semantics of CCS in terms of an A-C/E System. The transitions have the form
I1——1, and their intuitive meaning is that the set of grapes Iy may become the set Iy by performing
the action . The new axioms and inference rules are in direct correspondence with those of Section

2. Before introducing the new transition relation we need few definitions.

Definition 4.1. (defining CCS sequential processes)
A grape is a term defined by the following BNF-like grammar
G:=E | idIG | Glid | G\ 1 G[¢]
where E, \ot and [¢] have the standard CCS meaning, $

Intuitively speaking, a grape represents a subagent of a CCS agent, together with its access path.

A CCS agent can be decomposed by function dec into a set of grapes.

Definition 4.2. (decomposing CCS agents into sequential processes)

The function dec decomposes a CCS agent into a set of grapes and is defined by structural induction

as follows:
dec(x) = {x}
dec(NIL) = {NIL)
dec(UE) = {LE}
dee(In) = dec(I\u
dec(E[¢]) = dec(E)[¢]
dec(E1+E,) = (E{+E,}
dec(Eq[Ep) = dec(Eplid u idldec(Ey)

dec(rec x. E) = {rec x. E}. ; 'y

We understand constructors as extended to operate on sets, e.g. Do={g\a. | geI}. Note that the
decomposition stops when an action, a sum or a recursion is encountered, since these are considered

as atomic sequential processes.

Example 4.1.
dec((((recx. ax+Px) | recx. ox+yx) | recx. ax)\x) =

{(((recx. ax+Bx)lid)lid)\a, ((dlrecx. ox+yx)lid)\a, (idirecx. o x)\ot } %

Definition 4.3.

A set I of grapes is complete if there exists a CCS agent E such that dec(E) = L ®

Property 4.1. (complete sets of grapes are isomorphic to CCS agents)
Function dec is injective and thus defines a bijection between CCS agents and complete sets of
grapes.

Proof. Immediate by structural induction. 1

Note that the inverse function of dec is standard unification, provided that distinct variables are
substituted for each occurrence of id, and {LE}, (E{+E5} and {rec x. E} are considered atomic. In
other words, the most general unifier of a complete set of grapes I is the CCS agent of which I is the
decomposition. Note also that complete sets of grapes can be used to represent the global states of the

system.
Definition 4.4. (partial ordering derivation relation)

The partial ordering derivation relation I; —u— I, is defined as the least relation satisfying the

following axiom and inference rules

act) {UE} —u—dec(E)

res) Ij—p—1Iy implies I —p— I\, pe {00}
rel) Il P 4 12 implies Il [¢] ——(b(}l)—-% 12[¢]
sum) (dec(Ep) - I3) —i— I implies {E{+E} —1— Luls

and {E+Ej}—u—>I Ul
com) Iy —i— 1 implies Ilid—u— I,lid
and idll{—p— idll,
I —A— 1y and I'1 —A"—> I'y implies Iylid U idll'| —t— Lylid U idll'y
rec) (dec(Eq[rec x. Eq/x]) - I3) —i— I implies {rec x. E1}—p— I uls. &

We can now comment about our axiom and rules. In axiom act), a single grape is rewritten as a

set of grapes, since the firing of the action makes explicit the (possible) parallelism of E. The rules

10

res) and rel) and the first two rules for com) simply say that if a set of grapes Ij can be rewritten as I
via |, then we can prefix the access paths of the grapes in both Ij and Iy with any of the path
constructors .\, .[¢], .lid and idl., and still obtain a derivation, labelled say by p'. Clearly, when
dealing with restriction [1" = |1, but the inference is possible only if 1L & {o,0"}; in rel) i’ = ¢(1) and
in the first two rules of com) ' = . The second rule for com) is just the synchronization rule. A
move generated by the rule sum) can be understood as consisting of two steps. Starting from the
singleton {E1+E} or {E+E;} a first step discards alternative E and decomposes E; into dec(E¢) and
a second step (the condition of the inference rule) rewrites a subset of dec(Eq) as I, while the rest of
dec(El), say I3, is rewritten unchanged. The net effect of the two steps, however, is to rewrite the
singleton {E{+E} or {E+E} into the set Iy U I3. The rule for rec) determines the moves of a
recursively defined agent via the transitions of the set of grapes obtained by decomposing the result of
an unwinding of the recursive definition: if a subset of dec(E[rec x. E{/x]) may be rewritten via an
action as I, then {rec x. E; } may be rewritten via the same action as I U I3, where I3 is the subset

of dec(Eq[rec x. E1/x]) which does not contribute to the action.

Theorem 4.1. (asynchrony of partial ordering derivation relation)

If Ii——Iyisa denvauon then there exists a set of grapes I3, with I3 M Il = @, such thatI; VI3
is a complete set of grapes. Furthermore, for every such I3 we have also that I3 NIy = ® and that
Iy U I is a complete set of grapes.

Proof. Immediate by induction on the structure of the proof of the derivation. &

The theorem above amounts to saying that the initial set of grapes of a derivation can always be
seen as a part of a global state. Moreover, derivations are independent from grapes which are
concurrent with the rewritten ones, but inactive. This result throws light on the asynchrony of our

derivation relation.

Theorem 4.2. (correspondence between Milner’s and partial ordering derivations)

We have a Milner’s derivation E; —{1—E, iff there exist a set of grapes I3 and a triple Ii—1—I5 in
the partial ordering derivation relation such that

deC(El) = IIUI?, and deC(Ez) = 12UI3.

11

Proof. Given a derivation, use the structure of its deduction to obtain the other derivation. 3
We can now define the A-C/E System corresponding to CCS.

Definition 4.5. (from CCS to the corresponding a-contact-free A-CIE system)

Let 2ccs = <B, E; F, C>, where
* B is the set of all grapes;
¢ E1is the set of the triples Ij—{1—1I in the partial ordering derivation. relation;
° Ij F(I;—u—Ip) and (I3—4—1Iy) F1I,, forall I{—p—I5 in E;

» Cis the class of all complete sets of grapes. .‘ , ¢

Property 4.2.
C is an equivalence class of the reachability relation.

Proof. Given two cases dec(Eq) and dec(E,), we have dec(Ep) 1 dec(OLEl-s—BEZ) r dec(Ey). 3

Property 4.3.
The A-C/E system 2 is a-contact-free.

Proof. By Theorem 4.1., if I3 U 11 is complete then I3 N1, is empty; the claim follows trivially. ¢

Example 4.2, Let us consider the CCS agent of Example 4.1.
E = (((recx. ox+Bx) | recx. ax+yx) | recx. a"x)\cw.
Fig. 4.1 shows the sub-system of zCCS corresponding to E, containing only the cases ¢ with dec(E)
r* ¢, the conditions in such cases and the events enabled by them. It has one case
cg = {bg, by, by}, where bg = (((recx.ax+Bx)lid)lid)\ot;
by = ((idlrecx. ox+yx)lid)\o;
by = (idlrecx. " x)\oy;
the following four transitions
eg: {bg, by} —1— {bg, bs}; ey : {bg} —B— {bg};
ey {by}—y— {b1}; e3: {bg, by} —1— (b, by};

and the relation F such that

12

eg =g’ = {bg, ba}; ey =er = {bg};

€y =€y = {bl}; | ey=e3 = {bl, bz}. ¢
s SO O O
eq - by) b, es by €y

Fig. 4.1. The fragment of ¥cg, as constructed in Example 4.2., which corresponds to the agent E
of Example 4.1. For clarity sake, we have labelled the events with the actions they contain.

We now show that the interleaving semantics of 2ccs coincides with the standard semantics

of CCS.

Definition 4.6. (interleaving case graph)

Let Pgpgsr = {(C1. o €0) T o1 [[Ij—p—3I > cp is astep of gl
Then, the graph @ = (C, Pp,,) is the interleaving case graph of the A-C/E system Zcs. ¢

Note that passing from ZCCS to @ corresponds to an abstraction step, since more than one
event is mapped on the same arc. For instance, the two events e and eg, both labelled by <, are

mapped into the single arc labelled by 1 of the graph in Fig. 4.2.a).

Definition 4.7. (CCS transition graph)
Let E be the set of CCS agents and T be Milner’s derivation relation.
Then, the graph WV = (E, T) is the transition graph of CCS. @

T

()
Crsa D (e

a) . b)

Fig.4.2. The part relative to the agent E of Example 4.2. of the interleaving case graph of ECCS
(in a) and of the transition graph of CCS (in b) .

13

Theorem 4.3. (interleaving X g is CCS)

The interleaving case graph @ of 2cg is isomorphic to the transition graph ¥ of CCS.

Proof. The one-to-one correspondence between the nodes of © and W follows from Property 4.1.,
so we will write hereto c; for dec(E;) and viceversa.

If there is an arc (c1, 1, ¢p) in O, there exist then both a set of grapes I3 and a triple I;—{1—I, in the
partial ordering derivation relation such that I;Ul3 = ¢ and IpUl3 = cy. No matter how we choose
Iy, I and I3, by Theorem 4.2. there exists a unique E;—{1—E, in Milner’s derivation relation,
hence the arc (Eq, i, Eo) in ¥ corresponds to the arc (cy, I, ¢p) in D. The proof of the converse is

similar. ¢

Corollary 4.1.
The trees obtained by unfolding the interleaving case graph of ¥~cg are isomorphic to the

synchronization trees of CCS. ¢

The above construction is suggestive and straightforward, but violates the simplicity
requirement for C/E Systems. Simplicity is felt as an important property within the theory of Petri
Nets, being imposed by the extensionality requirement. The following construction, slightly more

cumbersome, generates a system which is simple.

Definition 4.8. (a simple a-contact-free A-CI/E system for CCS)
Let Sceos = <B, E; F, C>, where
« B =G uU A, where G is the set of all grapes;
¢ Eis the set of the triples I;—jl-]5 in the partial ordering derivation relation;
o (I; v {u) Fdy—p—Iy) and (I4—p—-Ip) F Iy v {p}), forall Ii—u—Iy in E;

¢ C={IuAllisacomplete set of grapes}. ®

Property 4.4.
The A-C/E system S is simple and a-contact-free.

14

Fig. 4.3. shows the fragment of Scg corresponding to the Examples 4.1. and 4.2. (omitting

the conditions for the actions not included in the sort of agent E).

91‘»0240‘:» <O

e by eQ bsy es b €

«l
-

Fig. 4.3. The fragment of S(g corresponding to the Examples 4.1. and 4.2. .

It is immediate to extend Theorem 4.3. and Corollary 4.1. to the simple and a-contact-free

A-C/E system S g.

5. Conclusions

We have introduced Augmented Condition/Event Systems by slightly relaxing the classical
simplicity and enabling conditions for Condition/Event Systems. A Net from this class, called
ZCCS’ is used to give a new operational semantics to Milner’s Calculus for Communicating
Systems. Indeed, full CCS has been mapped on the a-contact-free Augmented Condition/Event
system 2g and also on the simple a-contact-free Augmented Condition/Event system Sces- The
transition system of CCS has been proved isomorphic to the interleaving case graphs of ECCS and
Sccs-

We argue that our extensions do not affect the results proven for standard Condition/Event
Systems, thus non-sequential processes defined for Condition/Event Systems [9] can be immediately

defined also for CCS.

15

The translation is in one direction only, mainly because synchronization in CCS involves only
two agents, whereas in Petri Nets the preconditions of an event may even be an infinite set. CCS
synchronization algebra needs extensions in order to cope with this problém.

The authors have tackled the problem of partial ordering semantics in a number of papers;
particularly relevant to the work presented here are papers [2, 3, 4]. In [2] a partial ordering
semantics for CCS is given in terms of Concurrent Histories, a sequential rewriting system
previously developed by' two of the authors. In [4], a new model for non—sequential computations,
called Distributed Transition Systems, in which states are sets of processes and transitions specify
which processes stay idle, is introduced and both Condition/Event and Place/Transition Petri Nets
and CCS are modelled in terms of DTS. The model for CCS developed in [4] is used in [3] as the
basis for defihing new equivalence relations over the set of CCS agents and for studying the
relationships between interleaving and partial ordering observational semantics of the language.

In this paper we let Condition/Event Systems play the role of transition systems and are thus
able to contrast Petri Nets and CCS directly. As in the other papers, the technique used to define CCS
agents transitions is based on Pl'otkin’s SOS. However, the derivation rules are simpler. Indeed,
there are just two sets of processes and no explicit reference to idle processes is made.

In the introduction we discussed other attempts to give a semantics for CCS in terms of Petri
Nets. The most complete of these attempts is that of [6], which, in denotational style, defines an
operation on nets in correspondence with every CCS operator and associates a net to every CCS
agent. Unfortunately, as already mentioned, the resulting semantics is not in full agreement with CCS
original interleaving semantics. In particular, the new semantics does not respect all the original
causal constraints between the actions performed by CCS agents. Indeed, there exist agents whose
corresponding Occurrence Nets permit the firing of an action before its causes have fired. For

example, consider the following agent:

E = (B&y NILI a.d"NIL)\ | e’ NIL

According to the original interleaving based semantics of {7], we have that E can perform an action
v only after it has performed an action 3; now the corresponding net according to [6], reported in

Fig. 5.1., allows a ¥ to be performed after two invisible actions regardless of .

16

P
5

Figure 5.1. The occurrence net associated to (B&y NIL! a8 NIL)\3 | o NIL by Goltz and Mycroft

" The main reason for the loss of causal dependencies seems to be the way they describe the effect of
synchronizing two single transitions in a net, see Definition (6) of Section 4.1 in [6]. Whenever a net
contains two complementary actions , say & and o, they add to it newly generated copies of the
subnets “behind” o and o together with a new transition labelled by T whose preconditions are the
preconditions of & and o and whose postconditions are the initial conditions of the new copies. In
this way, the relationships between the transitions of the new copies of the subnets “behind” o and

o and the transitions of the original nets which are not related to o or o"are lost.

Acknowledgements.
The construction of the simple net for CCS come out after pleasant and friendly discussions with
Pippo Torrigiani. Tommaso Bolognesi pointed out inadequacies of the definition of the parallel

operator in [6].

17

References

10.

11.

. De Cindio, F., De Michelis, G., Pomello, L. and Simone C.: Milner’s Communicating Systems

and Petri Nets. In: Selected papers from the 37 d European Workshop on Applications and Theory
of Petri Nets, Informatik Fachberichte 66, pp. 40-59, Springer-Verlag, 1983.

Degano, P., De Nicola, R. and Montanari, U.: Partial Orderi'ng Derivations for CCS. Proc.Sth
Int. Conf. on Fundamentals of Computation Theory (L. Budach, ed.), LNCS 199, pp. 520-523,
Springer-Verlag, 1985.

Degano, P., De Nicola, R. and Montanari, U.: Observational Equivalences for Concurrency
Models. To appear in Proc. IFIP Workshop on Formal Description of Programming Concepts,
(M. Wirsing, ed.), North Holland, 1986

Degano, P. and Montanari, U.: Concurrent Histories: A Basis for Observing Distributed
Systems. To appear in Journal of Computer and System Sciences.

Genrich, H.J., Lautenbach, K. and Thiagarajan, P.S.: Elements of General Net Theory. In: Net
Theory and Applications (W. Brauer, ed.) LNCS 84, pp. 21-163, Springer-Verlag, 1980.

. Goltz, U. and Mycroft, A.: On the Relationships of CCS and Petri Nets. Proc. 11t ICALP (.

Paredaens, ed.), LNCS 172, pp. 196-208, Springer-Verlag,1984.

Milner, R.: A Calculus of Communicating Systems. LNCS 92, Springer-Verlag, 1980.

Plotkin, G.: A Structural Approach to Operational Semantics. Lecture Notes, Aarhus University,
Department of Computer Science, 1981.

. Reisig, W.: Petri Nets: An Introduction, EACTS Monographs on Theoretical Computer Science,

Springer-Verlag, 1985.

Winskel, G.: Event Structure Semantics for CCS and Related Languages, Proc. othjcaLP (M.
Nielsen and E. M. Schmidt, eds.), LNCS 140, pp. 561-567, Springer-Verlag, 1982.

Winskel, G.: A New Definition of Morphism on Petri Nets, Proc. 18t Symposium on Theoretical

Aspects of Computer Science, (M. Fontet and K. Melhomn, eds.), LNCS 166, pp. 140-150,
Springer-Verlag, 1984.

18

