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Abstract
Changes in snow and vegetation cover associated with global warming can modify surface albedo
(the reflected amount of radiative energy from the sun), therefore modulating the rise of surface
temperature that is primarily caused by anthropogenic greenhouse-gases emission. This introduces
a series of potential feedbacks to regional warming with positive (negative) feedbacks enhancing
(reducing) temperature increase by augmenting (decreasing) the absorption of short-wave
radiation. So far our knowledge on the importance and magnitude of these feedbacks has been
hampered by the limited availability of relatively long records of continuous satellite observations.
Here we exploit a 31 year (1982–2012) high-frequency observational record of land data to quantify
the strength of the surface-albedo feedback on land warming modulated by snow and vegetation
during the recent historical period. To distinguish snow and vegetation contributions to this
feedback, we examine temporal composites of satellite data in three different Northern Hemisphere
domains. The analysis reveals and quantifies markedly different signatures of the surface-albedo
feedback. A large positive surface-albedo feedback of+0.87 (CI 95%: 0.68, 1.05) W(m2 · K)−1

absorbed solar radiation per degree of temperature increase is estimated in the domain where snow
dominates. On the other hand the surface-albedo feedback becomes predominantly negative where
vegetation dominates: it is largely negative (−0.91 (−0.81,−1.03) W(m2 · K)−1) in the domain
with vegetation dominating, while it is moderately negative (−0.57 (−0.40,−0.72) W(m2 · K)−1)
where both vegetation and snow are significantly present. Snow cover reduction consistently
provides a positive feedback on warming. In contrast, vegetation expansion can produce either
positive or negative feedbacks in different regions and seasons, depending on whether the
underlying surface being replaced has higher (e.g. snow) or lower (e.g. dark soils) albedo than
vegetation. This work provides fundamental knowledge to model and predict how the
surface-albedo feedback will evolve and affect the rate of regional temperature rise in the future.

1. Introduction

Surface albedo (hereinafter ALB) over land has the
potential to locally feed back on global warming
by affecting the amount of incoming solar radi-
ation that is reflected back at each geographical loc-
ation (Hall 2004, Myhre 2013). Over the Northern
Hemisphere (NH) middle to high latitudes a positive

surface-albedo feedback (SAF) can be particularly
effective because of the snow melting associated with
temperature increase (Mudryk et al 2017) that, redu-
cing the highly reflective snow cover, provides addi-
tional positive regional warming (Chapin et al 2005,
Atlaskina et al 2015) (see figure 1(a), left feedback
loop). During the last decades, a considerable reduc-
tion of snow cover extent has been revealed in spring
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Figure 1. (a) Processes contributing to surface albedo–temperature coupling and feedback loops. Positive arrows (red) indicate
processes that lead to positive coupling; blue arrows denote negative couplings. Upward (downward) black arrows indicate
positive (negative) change in the involved variables. (+)/(−) refer to the resulting positive/negative feedback loop relative to the
sign of the change of the involved variables (see text for details). (b) Classification of the regions covered/not covered by snow
and/or dense vegetation: the region with no noticeable snow but dominated by dense vegetation is in red (NOSNOW_VEG), the
region dominated by snow but with sparse or no vegetation is in blue (SNOW_NOVEG), the domain with both snow and dense
vegetation is in green (SNOW_VEG), while black indicates no snow and no dense vegetation (see Methods for details). Areal
fractions are denoted in the legend.

and summer by satellite-derived observations, espe-
cially over Artic land areas (>60◦N; Vaughan et al
2013, Estilow et al 2015, Robinson 2018, Meredith
et al 2019). On the other hand, greenhouse gas-
driven global warming is being accompanied bywide-
spread greening of the Earth (Forzieri et al 2017).
The increase of atmospheric CO2 promotes vegeta-
tion productivity (CO2 fertilization effect; Zhu et al
2016) while the warming trend facilitates vegetation
expansion especially at high latitudes where temper-
ature tends to be a limiting growth factor (Pearson
et al 2013). Satellite derived estimates of leaf area
index (LAI) show an extensive positive trend dur-
ing recent decades that implies an increased green-
ness over 25%–50% of the global vegetated area (Zhu
et al 2016, Jia et al 2019). This vegetation response
can influence the SAF over snow-covered regions,

where the masking effect of vegetation over snow
can considerably decrease ALB (Loranty et al 2014).
Fresh snow is characterized by very high albedo aver-
anging around 0.8 (range 0.7–0.9; Hartmann 1994),
while coexistence of vegetation (especially trees) with
snow decreases the ALB to typical values of around
0.3 (0.2–0.35, Hartmann 1994; see figure 1(a), pos-
itive feedback loop on the right). Similarly, due to
the optical contrast between the vegetation canopy
and the underlying soil surface, the land greening can
also produce a feedback by changing the ALB over
snow-free areas (Alessandri et al 2017). This feedback
has been widely discussed for the Daisyworld con-
ceptual model (Lovelock 1983a, 1983b) used to cor-
roborate hypotheses about the capability of the biota
to foster homeostasis of Earth (Watson and Lovelock
1983): white daisies (more reflective than soil) will
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generate a negative SAF; on the other hand, when
daisies are black (less reflective than soil) a positive
feedback is implied. Over arid and semi-arid sub-
tropical domains soil albedo tends to exceed vegeta-
tion albedo, whereas organic soils tend to be darker
than vegetation in most of NH forest regions (Rechid
et al 2009; see figure 1(a), negative feedback loop on
the right).

Quantitative assessment of systematic ALB
changes and resulting climate feedbacks has been
hampered by the limited availability of continu-
ous satellite observations. Before ∼2000 ALB
products were based on AVHRR (advanced very-
high-resolution radiometer; Saunders 1990), while
after 2000 new products have been released from
a new generation of sensors (e.g. moderate resolu-
tion imaging spectroradiometer; MODIS; Gao 2005).
Procedures and algorithms adopted for these new
sensors are different from the AVHRR processing
chain, which introduces gaps and inconsistencies
among datasets. Recently a new algorithm allowed
integration of AVHRR and MODIS products leading
to a gapless, continuous and self-consistent data set
of ALB covering over 30 years (1982–2012) and with
accuracy similar to that of the widely acknowledged
MODIS product (Liu et al 2013). Concurrently,
global satellite-derived datasets with unprecedented
quality and coverage of vegetation LAI (1982–2014;
Xiao et al 2014) and NH snow cover (1979–2012;
Robinson et al 2015) have become available.

This work exploits this combination of long-term
observational land data, together with ERA-Interim
reanalysis of surface temperature and downward solar
radiation, to quantify the magnitude of different
components of the SAF during the 1982–2012 period.
The spatially varying signatures of SAF are identi-
fied by comparing the temporal composites of the
recent (1998–2012) with historical reference (1982–
1996) periods over three different NH domains that
are distinguished based on the dominance of snow
and/or vegetation cover (figure 1(b)).

2. Methods

State-of-the-art observational datasets have been col-
lected at the highest available resolution in time
and space (see table 1 for details about providers
and original space-time resolution of each dataset).
ALB (Liu et al 2013) and LAI (Xiao et al 2014)
are obtained from the Global LAnd Surface Satellite
(GLASS; Liang et al 2014) dataset generated by the
College of Global Change and Earth System Sciences
at BeijingNormal University and as distributed by the
Global Land Cover Facility at the University of Mary-
land (www.glass.umd.edu). NH snow extent (SE) is
retrieved from the National Snow and Ice Data Cen-
ter (NSIDC) as based on a variety of satellite sources
and surface observations (Robinson et al 2015). As
described in Estilow et al (2015), the weekly product

was produced by regridding the original source data
to the EASE-Grid 2.0 (Brodzik et al 2012) and assign-
ing snow (SE = 1.0) if more than 50% of the ori-
ginal observations diagnosed snow cover in the grid
cell; otherwise the cell was determined to be snow-
free (SE = 0.0). Air temperature at 2 m and down-
ward short-wave solar radiation at the surface (T2M
and SSRD) are obtained from ERA-Interim reana-
lysis (Dee et al 2011). The time-range availability
depends on the datasets (see table 1): 31 years (1982–
2012) for ALB, 33 years (1982–2014) for LAI, 34 years
(1979–2012) for SE, and 41 years (1979–present) for
ERA-Interim.

Following the approach in Alessandri et al (2017),
a proxy for the density of vegetation (hereinafter
effective vegetation cover, CVEFF) has been derived
by applying the Lambert–Beer relationship to the LAI
data:

CVEFF =
(
1− e−0.5×LAI

)
.

All the datasets have then been homogenized over
NH to the same spatial (0.5◦ × 0.5◦) and temporal
(8 d) resolution within a 31 year common available
time range (1982–2012).

Following earlier studies (Hall and Qu 2006, Lor-
anty et al 2014, Qu andHall 2014), the strength in the
surface component of the albedo feedback (herein-
after SAFALB) is represented by the relative % change
in ALB

(
∆ALB·100

ALB

)
that is associated with the corres-

ponding difference in air temperature at the surface
(∆T2M). Tomake outcomes comparable with results
from earlier studies, the SAFALB is computed consist-
ently with reference literature (Hall and Qu 2006, Qu
and Hall 2014) as the ratio between the relative ALB
change (%) ∆ALB·100

ALB and ∆T2M by extending the
approach previously applied to snow-regions only:

SAFALB =
∆ALB · 100
ALB · ∆T2M

. (1)

Following the convention in previous literature
(e.g. Hall andQu 2006), a positive feedback is defined
by a negative value of SAFALB where a reduced ALB
leads to increased temperature (see figure 1(a)). The
ALB and temperature changes in equation (1) are
computed by splitting the analysis time range into two
composites, one for the recent (1998–2012) and one
for the reference (1982–1996) period. This is differ-
ent from previous works that diagnosed the SAFALB
from the climatological seasonal cycle of ALB, i.e.
by assuming similarity between anthropogenic cli-
mate change and the present-day seasonal cycle (Hall
and Qu 2006). Due to the relatively short satellite-
observation record, in previous works SAFALB could
only be diagnosed from∆T2M and ∆ALB·100

ALB derived
from the difference between climatological spring
and summer. While this could be used as the only
possible observational reference for the evaluation
of coupled climate models used for multi-model

3

www.glass.umd.edu


Environ. Res. Lett. 16 (2021) 034023 A Alessandri et al

Table 1. Provider and original space-time resolution characteristics of the observational and reanalysis datasets.

Producer Spatial domain and resolution Temporal resolution Period

LAI GLCF-GLASS Global 0.05◦ × 0.05◦ 8 d 1982–2014
ALB GLCF-GLASS Global 0.05◦ × 0.05◦ 8 d 1982–2012
SE NSIDC Northern Hemisphere 180× 180 EASE grid Weekly 1979–2012
T2M ERA-INTERIM Global T255, 80 km× 80 km Daily 1979–present
SSRD ERA-INTERIM Global T255, 80 km× 80 km Daily 1979–present

intercomparison projects (CMIP3-5; www.wcrp-
climate.org/wgcm-cmip), it was not intended to yield
actual estimates of the observed SAFALB in a climate
change context (Qu and Hall 2014).

The net short-wave solar radiation that is
absorbed at the surface (hereinafter SSRN) is com-
puted by multiplying the 8 daily (1−ALB) in each
sub-period (i.e. 1982–1996 and 1998–2012) with the
corresponding climatology (i.e. mean of each 8 d
value averaged over the entire 1982–2012 period) of
SSRD. The use of SSRD climatology allows us to isol-
ate the radiative feedback that is due to ALB changes
only, while filtering out the other possible forcings
and feedbacks of atmospheric origin (e.g. water
vapor, cloud, radiation, or aerosol feedbacks). The
surface radiative energy feedback governed by ALB
changes (hereinafter SAFSSRN) is consistently evalu-
ated using the ratio between the composite-difference
in SSRN and the respective temperature change. Note
that we want to quantify the feedbacks in terms of
radiative energy flux in accordance with reference
literature (Qu and Hall 2014), so we are using here
absolute changes in short-wave radiation (SSRN)
as contrasted with the relative (%) ALB changes in
equation (1):

SAFSSRN =
∆SSRN

∆T2M
(2)

(positive feedback indicated by positive values here as
opposed to SAFALB).

The signature of the SAFALB, SSRN depends on the
presence of snow and vegetation. Therefore, differ-
entNH regions are distinguished that are significantly
covered or not covered by snow and/or vegetation
(figure 1(b)). The discrimination between different
surface types is based on threshold values identified
in the (1982–2012) annual-mean climatology of snow
and vegetation as follows:

• snow dominance: annual-mean areal fraction of
snow cover >10%;

• snow absence: annual-mean areal fraction of snow
cover <0.1%;

• dense vegetation: annual-mean LAI⩾ 0.5 (corres-
ponding to CVEFF ≥ 22%);

• sparse or no vegetation: annual-mean LAI < 0.5
(CVEFF < 22%).

Transitional regions (0.1% < snow cover < 10%)
are not attributable to any class and not included

in the analysis. The above threshold values gave the
best match of known regions dominated by snow
in the climatological mean. The snow dominance
threshold retains only points where there is substan-
tial snow cover during most of the seasonal cycle.
The vegetation threshold is chosen to match known
regions characterized by dense vegetation (mostly
tree forests) and exclude regions where vegetation is
absent or only sparse vegetation can be found. Sev-
eral sets of thresholds covering a reasonable range of
values have been tested and results showed small sens-
itivity to threshold choice.

The composite analysis has been applied to the
annual means as well as for separate monthly-means
to determine the annual cycle of the SAFALB, SSRN.
To account for the uncertainties related to random
errors in the observational data and internal variab-
ility in the space/time domain of the composites, a
1000 iteration bootstrap procedure is employed for
both reference (1982–1996) and recent (1998–2012)
periods, as well as for their difference. The average
over each period and domain is computed multiple
times by resampling observations with replacement.
At each iteration, the original gridded set of monthly-
or annually-averaged observations is resampled with
replacement to obtain a new grid of 15 year time
slices. When used to estimate the uncertainty in
the (recent minus reference) difference between the
composite-averages, the bootstrap resampling is per-
formed independently for the recent and the reference
periods and the difference between the two composite
averages is computed at each iteration.

To identify the drivers of the SAFALB, SSRN across
the seasonal cycle (i.e. for each month of the year),
the regression coefficients of ALB and SSRN vs SE
and CVEFF have been computed over time by con-
sidering the entire 31 year (1982–2012) time-range of
the dataset. To this aim, we regressed the interannual
anomalies of the time-series that are obtained by spa-
tially averaging over each of the considered domains.
The significance of the linear regression is evaluated
by using the F-test (Chambers 1992) and only the
regression-slope estimates that passed statistical sig-
nificance at 10% significance level are considered in
the analysis.

3. Results

Table 2 summarizes the recent (1998–2012) minus
reference (1982–1996) composite-difference for
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Table 2. Summary of (1998–2012 minus 1982–1996) composite-difference averaged over each domain for T2M, ALB, CVEFF, SE and
SSRN. Numbers between brackets are the 95% confidence interval obtained using a bootstrap procedure. Note that ALB, CVEFF and SE
composite-differences are expressed as percentage points.

Northern Hemisphere SNOW_NOVEG SNOW_VEG NOSNOW_VEG

T2M (K) 0.73 (0.70, 0.76) 1.07 (1.00, 1.13) 0.59 (0.55, 0.63) 0.41 (0.37, 0.45)
ALB (%) −0.25 (−0.30,−0.20) −0.56 (−0.66,−0.46) −0.19 (−0.26,−0.13) 0.18 (0.16, 0.20)
SSRN (Wm−2) 0.11 (0.19, 0.03) 0.92 (1.12, 0.73) −0.34 (−0.24,−0.42) −0.37 (−0.33,−0.41)
CVEFF (%) 4.33 (4.26, 4.39) 1.52 (1.44, 1.59) 5.21 (5.13, 5.30) 7.63 (7.38, 7.85)
SE (%) −0.01 (−0.11, 0.09) −0.71 (−0.95,−0.48) 0.61 (0.47, 0.74) 0

T2M, ALB, CVEFF, SE and SSRN. Note that ALB,
CVEFF, and SE are expressed as percentages and
accordingly the composite-differences are percent-
age points in table 2 and consistently throughout
the paper. The domains considered in this analysis
(figure 1(b); see section 2) display marked differences
in the recent minus reference warming signal. In the
regions dominated by snow but no or sparse veget-
ation (SNOW_NOVEG), the average T2M increase
is 1.07 K (95% confidence interval (1.00, 1.13)). In
contrast, the average T2M increase in the domain
with no noticeable snow but dominated by dense
vegetation (NOSNOW_VEG) is only 0.41 K (0.37,
0.45). The temperature increase in the domain with
both snow and dense vegetation (SNOW_VEG)
is 0.59 K (0.55, 0.63) in between the other two
domains. Supplementary figure S1 (available online
at stacks.iop.org/ERL/16/034023/mmedia) reports
the probability density functions of the composites
for each domain obtained by the bootstrap proced-
ure described in Methods. It is shown that the shape
of the distributions is nearly gaussian and that the
spread is narrow relative to the distance between the
averages of the two time periods, indicating that the
composite differences are significantly (<1% signific-
ance level) different from zero. The only exception
is in the NOSNOW_VEG domain, where SE is zero
in both periods and so their difference is also zero
(figure S1(n)). Supplementary figure S2 also shows
the composite-difference maps, displaying a large SE
and ALB reduction North of 60◦N (supplementary
figures S2(h) and (d)), where the SNOW_NOVEG
domain extends the most (figure 1(b)). Overall, the
SNOW_NOVEG domain displays an SE reduction of
−0.71% (−0.95, −0.48) (see supplementary figure
S1(d)) in accordance with previous literature that
reported a considerable snowdecline over Artic lands,
especially in spring and summer (Vaughan et al 2013,
Estilow et al 2015, Robinson 2018, Meredith et al
2019). Consistently with Estilow et al (2015), the
largest snow decline in SNOW_NOVEG is found
in June (by −2.26% (−3.55, −1.44)) and July (by
−5.53% (−6.25, −4.12)), while in spring (April–
May) the snow reduction remains smaller than−2%;
it is nearly zero in winter and slightly positive in fall.
Despite the marked decline in the Artic, negative SE
changes are not observed in all NH regions (Estilow
et al 2015; see supplementary figure S2(h)). This

is the case for the SNOW_VEG domain, that even
shows an opposite trend towards increased SE (see
supplementary figures S1(i) and S2(h)).

The NOSNOW_VEG and SNOW_VEG domains
are characterized by widespread vegetation green-
ing (Zhu et al 2016, Jia et al 2019) with marked
CVEFF increases by 7.63% (7.38, 7.85) and 5.21%
(5.13, 5.30), respectively. Remarkably, also the
SNOW_NOVEG domain has experienced a CVEFF

increase by 1.52% (1.44, 1.59) (table 2), with the
averaged CVEFF during the reference period being
12% (see supplementary figure S1(e)). As explained
in section 2, ‘NOVEG’ stands for sparse or no veget-
ation (CVEFF < 22%) and therefore justifies the
moderate vegetation expansion that is reported in
SNOW_NOVEG. The composite difference in ALB
shows a large reduction in SNOW_NOVEG, an
increase in NOSNOW_VEG and an intermediate
ALB reduction in SNOW_VEG (table 2, 2nd row and
supplementary figure S1, 2nd column) and will be
analyzed with details in the forthcoming feedback
analysis. Note that the change in SSRN is negative
over SNOW_VEG, contrasting with the negative ALB
change in this domain; this apparent contradiction
will be analyzed and explained later.

Figures 2(a) and (b) report the strength of the
SAF for the different domains in terms of both relat-
ive (%) change in ALB (SAFALB; panel a) and change
in SSRN (SAFSSRN; panel b) per unit temperature
increase between recent and reference periods (see
Methods for details). Indeed, the regions with the lar-
ger amount ofwarming signal are those displaying the
larger SAF. In SNOW_NOVEG, a very effective pos-
itive SAFALB is found, of−1.87 (−1.50,−2.26)%K−1

(figure 2(a)), which corresponds to a positive SAFSSRN
of+0.87 (+0.68,+1.05) W(m2 · K)−1 (figure 2(b)).
The strength of the feedback is larger during sum-
mer months, especially June–July (figure 2(c)), when
most of the SSRD is available (see inset histogram of
figure 2(c)) and the effect of summer ALB changes is
enhanced.

The NOSNOW_VEG domain displays opposite
behavior compared to SNOW_NOVEG with negat-
ive SAFALB of +1.59 (1.36, 1.83) %K−1 (figure 2(a)),
corresponding to SAFSSRN of −0.91 (−0.81,
−1.03) W(m2 · K)−1 (figure 2(b)). SAFALB,SSRN
remains negative throughout the seasonal cycle with
the largest magnitude during winter (figure 2(e)).
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Figure 2. Change (1998–2012 minus 1982–1996) in T2M vs SAF in terms of (a) ALB change (SAFALB) and (b) change in absorbed
short wave (SAFSSRN) for each considered domain. The regional temperature change relative to the average NH land domain is
displayed on right y-axis. (c)–(e) Seasonal cycle of (pink) SAFALB and (orange) SAFSSRN for (c) SNOW_NOVEG (d) SNOW_VEG
and (e) NOSNOW_VEG. Left axis is SAFSSRN (W(m2 · K)−1), right is SAFALB %K−1). Inset histograms show the climatological
seasonal cycle of available downward short-wave radiation (SSRD; W m−2) for each month. Uncertainty of the estimates is
assessed by re-sampling the grid points in each domain by a bootstrap procedure with replacement (1000 iterations). 5th and 95th
percentiles of the synthetic distribution are displayed.

Due to the fact that NOSNOW_VEG is mostly con-
fined in the Tropics, the seasonal variations of SSRD
is smaller than other regions (see inset histograms of
figures 2(c)–(e)), therefore keeping the annual march
of SAFSSRN closer to SAFALB along the seasonal cycle
(figure 2(e)).

The SAF for SNOW_VEG is in between the
other two domains, with SAFALB of −1.15 (−0.78,
−1.56) %K−1 indicating a positive feedback
(figure 2(a)). Interestingly, SAFSSRN (figure 2(b))
shows a negative sign, with a value of −0.57 (−0.40,
−0.72) W(m2 · K)−1, therefore showing a negat-
ive feedback. This apparent contradiction can be
explained by the fact that most ALB reductions for
the SNOW_VEG case occur during winter months
(i.e. when very limited SSRD is available; see inset
histogram of figure 2(d)) with little effect on SAFSSRN
(figure 2(d)).

To disentangle the drivers of the SAF, figure 3
reports the normalized annual cycle of the monthly
composite-differences for SAFSSRN as well as for SE
and CVEFF per unit temperature-change. SAFSSRN in

SNOW_NOVEG appears to be driven by the reduc-
tion in snow cover that peaks in July (figure 3(a-I)).
Furthermore, the summer vegetation greening
provides additional positive radiative energy feed-
back over this domain, as revealed by the positive
regression coefficients (See section 2 for details) that
are reported in the histogram insets (figure 3(a-II)). It
is the masking by the emerging vegetation over snow
that contributes to reducing ALB because vegetation
is darker relative to snow. Greening will mask snow
especially in early summer (June) when there is still
extensive coverage of snow on the ground (see grey
bars in figure 3(a-II) for the climatological seasonal
cycle of snow cover), which will increase available
energy and thus regional warming.

The negative SAFSSRN in the NOSNOW_VEG
domain (figure 3(c-I)) is explained by the reduc-
tion in SSRN due to the expansion of the CVEFF

over relatively dark soils (see negative regression coef-
ficients in figure 3(c-II)). This is consistent with
Rechid et al (2009) who showed that vegetation
tends to be more reflective than organic soils under
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Figure 3. Annual cycle of change per degree K in SSRN (SAFSSRN; orange), SE (blue), and CVEFF (green) for (a-I) SNOW_NOVEG
(b-I) SNOW_VEG and (c-I) NOSNOW_VEG. Normalization is performed with respect to the standard deviation of the seasonal
cycle (reported in brackets in the legend). Uncertainty of the estimates is assessed by the 1000 iteration bootstrap procedure. 5th
and 95th percentiles of the synthetic distribution are displayed. Panels-II report the regression coefficients of absorbed short wave
changes vs (blue) snow changes and (green) CVEFF changes. Only the regression-slopes that passed statistical significance at 10%
significance level are displayed. In grey the climatological seasonal cycle of fractional (%) SE is reported.

tropical-deciduous, boreal and temperate forests. See
the global map of ALB contrast between vegetation
and soil as obtained from Rechid et al (2009) estim-
ates in supplementary figure S3. The largest expan-
sion of vegetation in the NOSNOW_VEG domain
is found during winter, therefore also leading to the
largest negative SAFSSRN in that season (figure 3(c-I)).
On the other hand, the relatively small increase of
CVEFF in summer is probably related to the fact
that CVEFF might be already close to its maximum
especially in the late growing-season months (July–
September; figure 3(c-I)).

In contrast to SNOW_NOVEG, the SE
composite-differences over SNOW_VEG signific-
antly change sign over the seasons, with SE reduc-
tions in summer and increases in spring and autumn
(figure 3(b-I)). When averaged annually, SE even

shows a net increase and therefore potentially pro-
duces a negative surface radiative energy feedback.
Indeed, SE expansion is shown to decrease SSRN
during spring and, especially in April, the regression
slope of SSRN vs SE has fairly large negative values. In
both spring and autumn, the increase of short-wave
reflection by snow is at least partly compensated by
the enhanced masking of snow by the vegetation
(negative regression coefficient; figure 3(b-II)). Sup-
plementary figure S4 reports the same as figure 3 but
for SAFALB. As expected, the results for SAFALB are
very similar to SAFSSRN except for the SNOW_VEG
case. In SNOW_VEG, the enlarged masking by the
relatively dark vegetation over snow tends to pro-
duce a positive SAF. This is particularly evident when
looking at the regression coefficients of ALB vs CVEFF

(supplementary figure S4(b-II)) that are negative
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from autumn to spring and with especially large neg-
ative values in winter. However, due to the very lim-
ited SSRD available in this season (figure 2(d), inset
histogram), the regression coefficients of SSRN vs
CVEFF remain small in winter (figure 3(b-II)), and
so does the positive feedback in terms of radiative
energy (figure 3(b-I)). In contrast, vegetation expan-
sion appears to provide a negative radiative energy
feedback by increasing the reflected short-wave radi-
ation in the summermonths when SE becomes negli-
gible in this domain (figure 3(b-II)). Indeed, in June,
July, August and September the slope regression of
SSRN vs CVEFF is negative, therefore confirming
a negative surface radiation feedback of vegetation
greening. Similarly to NOSNOW_VEG, the negative
regressions are consistent with the increase of ALB
following the expansion of the brighter vegetation to
replace darker organic soils (see supplementary figure
S3; Rechid et al 2009).

4. Discussion and conclusions

Different signatures of the SAF are identified over NH
land during 31 years in the recent historical period.
A large positive SAF is estimated over the domain
where snow dominates and no or only sparse vegeta-
tion is present (SNOW_NOVEG). This region exper-
iences a+0.87 (+0.68,+1.05)W(m2 · K)−1 increase
of SSRN, which corresponds to a decrease in ALB of
−1.87 (−1.50, −2.26) %K−1. A large negative SAF
is estimated in the domain where dense vegetation
dominates and no significant snow cover is present
(NOSNOW_VEG): in this region, there is a −0.91
(−0.81, −1.03) W(m2 · K)−1 decrease of SSRN and
a consistent increase of the ALB of 1.59 (1.36,
1.83)%K−1. An intermediate SAF is estimated for the
domain where both dense vegetation and snow coex-
ist (SNOW_VEG). There is a reduction of the SSRN
by−0.57 (−0.40,−0.72)W(m2 · K)−1 in this region,
implying a negative feedback. The opposite behavior
is apparent in the SNOW_VEG region for the ALB
(−1.15 (−0.84, −1.51) %K−1), which is explained
by the fact that the ALB reduction occurs during
winter months when the available downward short-
wave radiation is small. The warming of the domains
appears proportional to the SAF. In SNOW_NOVEG
the T2M increase of 1.07 (1.00, 1.13) K is about 47%
larger than the NH-average (0.73 K). It is about 44%
smaller than the NH-average in NOSNOW_VEG
(0.41 (0.37, 0.45) K) and about 19% below average
in SNOW_VEG (0.59 (0.55, 0.63) K). While snow
cover reduction consistently provides a clear posit-
ive SAF on temperature rise in SNOW_NOVEG, the
widespread vegetation greening displays a twofold
effect: (a) when dense vegetation dominates and no
significant snow cover is present (NOSNOW_VEG
and, during summer months, SNOW_VEG), a neg-
ative feedback prevails due to the expansion of
effective forest-vegetation cover over dark organic

soils, leading to a higher ALB and reduced warm-
ing when vegetation expands. (b) when both veget-
ation and snow are present (i.e. autumn to spring
for SNOW_VEG and late-spring/early-summer and
early-autumn for SNOW_NOVEG) vegetation green-
ing generates a positive SAF on warming by the
enlarged masking over snow by the vegetation cover.

Both positive and negative SAFs are found in
SNOW_VEG but in different parts of the seasonal
cycle, depending on whether or not a substantial SE is
present. The positive and negative phases compensate
each other but the negative component prevailed dur-
ing the recent historical period. The trade-off between
the positive and negative feedback components will
be important for the rate of temperature rise during
the next decades. It will depend on the future rate of
greening, on the albedo characteristics of the under-
lying surface being replaced by vegetation, and on
complex non-linear interactions among the different
components of the climate system.

This study is limited to the quantification of the
SAF on NH land warming and to the understand-
ing of the role played by changes in snow and veget-
ation cover. Consideration of the effects of forcings
(e.g. solar irradiance, volcanoes, aerosols) and other
feedbacks (e.g. water vapor, clouds, aerosol, biogeo-
chemical) is out of the scope of this paper. How-
ever, it is worth noting that the non-linear interac-
tion between the different components of the climate
system initiates a network of other feedbacks that
could as well amplify or dampen climate change and
therefore potentially interact with snow and vegeta-
tion. For instance, the feedbacks associated with the
loss of sea ice are central to polar amplification (i.e.
enhanced warming at latitudes north of 60◦N; Dai
et al 2019, Meredith et al 2019) and the resulting
large-scale effects could as well amplify warming over
high-latitude land areas and therefore enhance snow
melt and/or expansion of vegetation there (Pearson
et al 2013, Mudryk et al 2017). Similarly, aerosol,
dust, water vapor and cloud feedbacks can contribute
to a network of interacting radiative effects that can
impact regional warming as well as rainfall and snow-
fall distribution and frequency (Boucher et al 2013).
In addition, deposition of aerosols, especially black
carbon, brown carbon, and dust on snow surfaces can
reduce ALB in some regions although the associated
forcing is estimated to be only marginally changed
compared with the preindustrial period (Meredith
et al 2019); while aerosol deposition also provides
nutrients such as nitrogen and phosphorous that
can affect biogeochemical cycling and increase pro-
ductivity in critical terrestrial ecosystems (Andreae
et al 2002, Jia et al 2019). In this context, an expan-
ded or reduced vegetation cover could feed back by
modifying the emission of biogenic aerosol and its
precursors, while mineral dust release could be also
affected because it is preferentially emitted from dry
and unvegetated soils (Jia et al 2019). On the other
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hand, the greening of vegetation implies a stronger
carbon sink and provides more water vapor to the
atmosphere via increased evapotranspiration thatwill
on the other hand cool down the surface by removing
latent heat (Ciais et al 2013, Jia et al 2019). Further-
more, the biophysics of snow–vegetation–radiation
interactions can involve more pathways than via the
absorption of solar radiation. Long-wave enhance-
ment by expansion of forest area has been shown
to result in positive surface net long-wave radiation
when snow cover is present (Todt et al 2018, 2019)
with a potential to feedback with snowmelt and sea-
sonal warming thatmay be especially effective in tem-
perate and sub-arctic regions (Todt et al 2019). The
complex interaction and cumulative effect of all (pos-
itive and negative) feedbacks operating at different
space and time scales will affect the future rates of
regional temperature rise.

The societal challenges posed by climate change
ask for more interdisciplinary research towards a
broader Earth system science view that will enable a
full accounting of the couplings and feedbacks asso-
ciated with the biosphere for future regional climate
change assessments. Earth system models (ESMs)
able to represent snow and vegetation dynamics could
help to investigate the future role of SAF in ampli-
fying or reducing anthropogenic climate warming at
the regional scale. However, the simulation of SAFs
show a large spread and divergence among the avail-
able state-of-the-art ESMs, due to uncertainties in
the representation of vegetation-snow processes and
the dynamics of vegetation and to uncertainties in
land-cover parameters (Loranty et al 2014, Thackeray
and Fletcher 2015, Thackeray et al 2018). It is there-
fore essential to improve and better constrain current
ESMs to achieve reliable projections of the future SAF
on climate change. To this aim, the analysis and data
used in this work will provide unprecedented obser-
vational benchmarks to improve the representation of
the processes underlying SAF in the next generation
of ESMs.
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