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Abstract

This paper describes the methods submitted for evaluation to the
SHREC 2022 track on pothole and crack detection in the road pavement.
A total of 7 different runs for the semantic segmentation of the road
surface are compared, 6 from the participants plus a baseline method.
All methods exploit Deep Learning techniques and their performance is
tested using the same environment (i.e., a single Jupyter notebook). A
training set, composed of 3836 semantic segmentation image/mask pairs
and 797 RGB-D video clips collected with the latest depth cameras was
made available to the participants. The methods are then evaluated on
the 496 image/masks pairs in the validation set, on the 504 pairs in the
test set and finally on 8 video clips. The analysis of the results is based
on quantitative metrics for image segmentation and qualitative analysis of
the video clips. The participation and the results show that the scenario
is of great interest and that the use of RGB-D data is still challenging in
this context.

Keywords: Road monitoring, Deep Learning,p Semantic Segmentation, RGB-
D

1 Introduction1

Road infrastructure is one of the most important foundations of modern soci-2

ety. The interconnection between cities and towns is important both for the3

transport of people and goods. The road network continues to be the solution4

that best combines cost and efficiency to reach locations that would otherwise5

not be reached by the rail network. However, its main constructive component,6

the asphalt, tends to deteriorate considerably with time, use and atmospheric7

events (e.g. rain, snow, frost, etc.). To repair this kind of damage, constant8

and complete monitoring of the road infrastructure is necessary. However, due9

to the high costs, it is often neglected or delayed over time to the detriment of10

the quality of the road surface. Furthermore, the monitoring of road sections11

alone, verifying when it is necessary to intervene and what type of intervention12

is required, is expensive and impractical. Indeed, the scheduling of inspec-13

tions and maintenance is entrusted to specialized personnel who require specific14

training and operate expensive and bulky machinery [?]. Overall, data from15

US authorities indicates that currently the expenses for both vehicle damages16

(related to road mismanagement) and road maintenance are in the order of bil-17

lions USD/year [?]. This is a significant bottleneck for those in charge of road18
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maintenance that can be avoided with technologies aimed at improving and 1

automating these tasks, reducing human effort and costs. 2

It is, therefore, no surprise that the interest in the topic of road pavement 3

analysis has recently grown and many high-quality works [?] have been pro- 4

duced. In this contest, we focus our attention on two kinds of road damage: 5

cracks and potholes. In the context of this paper, we consider the following 6

concepts: 7

� Cracks: one or multiple fractures in the road surface. The length of cracks 8

tends to always exceed their width by orders of magnitude. 9

� Potholes: a portion of asphalt that is missing or crumbled to the point of 10

having a significant displacement in the surface (i.e., the inside of a pothole 11

is lower than the rest of the road surface) and/or the terrain under the 12

road surface is clearly visible. 13

In our context, the main difference between a crack and a pothole is width 14

rather than depth. 15

In this SHREC track, we compare methods that automate crack and pothole 16

detection by enabling timely monitoring of large areas of road pavement through 17

the use of Deep Learning (DL) techniques. The goal is to recognize and segment 18

potholes and cracks in images and videos using a training set of images enriched 19

by RGB-D video clips. For completeness, it is worth mentioning that other kinds 20

of data can be used when working with road-related tasks. For example, Ground 21

Penetrating Radar (GPR) data is generated using electromagnetic waves to 22

scout what is on and below the road surface (e.g.: [?]) but this data source 23

requires very expensive equipment and specialized personnel to operate. 24

This paper is organized as follows. In Section 2 we summarize the state of the 25

art regarding road damage datasets, while in Section 3 we describe the datasets, 26

the task in detail and the numeric evaluation measures used in this SHREC 27

contest. In Section 4 we summarize the methods evaluated in this contest, while 28

their performances are described and discussed in Section 5. Finally, conclusion 29

and final remarks are in Section 6. 30

2 Related datasets 31

The problem of road damage detection using image-based techniques has gained 32

great importance in the last 15 years with the explosion of Computer Vision and 33

Pattern Recognition methods. This rapid growth has led to the publication of 34

numerous surveys comparing different methods, such as [?, ?, ?]. The proposed 35

methods vary in terms of the type of data analyzed and the approach. For 36

example, in [?] the authors propose an image segmentation method based on 37

histograms and thresholds, then, to detect potholes, they further analyze each 38

segment using texture comparison. Another example is [?], in which the authors 39

proposed a high-speed crack detection method employing percolation-based im- 40

age processing. 41
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However, due to the nature of our work and the prospect of being able1

to use cheap acquisition techniques, we focus more on the literature related to2

DL methods. Modern DL techniques have begun to require ever-larger datasets,3

composed of thousands of high-resolution images, definitely much more complex4

to collect for small research groups. How data is collected is crucial, especially5

when large amounts need to be collected and labelled. Luckily, it is at least6

possible to collect road images with a number of different tools, from specialized7

cameras to mid-to-low end phone cameras. In some works, like in [?], authors8

even extended their datasets using simple online resources, like the Google image9

search engine.10

In [?] authors summarize the availability of datasets at the time and divide11

them into two categories: wide view and top-down view. The first class consists12

of images of a large area of road pavement along with other elements (buildings,13

sidewalks, etc.). Examples of this kind of datasets are presented in [?, ?, ?].14

The second class consists of images that are optimal when it comes to as-15

sessing damage to the asphalt, as they offer a more accurate view of the road,16

but at the cost of not representing the entire damaged area (e.g. a large hole17

that expands beyond the camera’s field of view) or to provide a little context18

about elements surrounding that specific damage (and thus possibly increasing19

the risk of confusing e.g. a tar stain with a pothole). However, the tools re-20

quired to efficiently sample this kind of images are more sophisticated, thus less21

available and/or more bulky and expensive. To the best of our knowledge, the22

first freely available dataset of this kind is [?], which used a specialized vehicle23

to sample 2000 images of damaged asphalt. Another dataset, based on data24

delivered by the Federal Highway Administration, that belongs to this class25

is [?]. Regarding [?], it proposes an object detection dataset consisting of more26

than 14000 samples created using the Google API street view. However, the27

image quality is not very high and images show numerous artefacts due to the28

Google Street View stitching algorithm. In more recent times, in [?] authors29

travelled across India to capture road damages on asphalted, cemented and dirt30

roads, acquiring about 1500 images using an iPhone 7 camera. Perhaps one of31

the most complete datasets for object detection is provided in [?]: it is built on32

pre-existing datasets and consists of approximately 26000 images, with street33

samples from multiple countries for further heterogeneity.34

In our benchmark, we aim to perform semantic segmentation of road images,35

i.e. detect and classify road cracks and potholes with pixel accuracy. However,36

the type of ground truth that corresponds to this task is uncommon, as it is very37

expensive in terms of human labelling time. In fact, most of the aforementioned38

datasets are annotated using bounding boxes on the objects of interest. This39

approach speeds up the labelling phase at the cost of being much less precise in40

locating the object of interest and in evaluating its real size. To implement our41

benchmark we looked for datasets whose ground truth allows semantic segmen-42

tation: in Section 3.1, we describe those of interest for our purposes.43

Finally, it is worth discussing RGB-D data as a middle ground between 3D44

and 2D data. RGB-D provides an easier way to detect road damage, based on45

the height displacement of the road surface. It also comes with a relatively low46
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barrier to entry in terms of tools needed: in [?], for example, a Kinect v2.0 1

camera was used to record portions of the road at up to 30 FPS and 300,000 2

points per frame, which were later used to generate RGB-D images. RGB-D 3

technology is, therefore, a very convenient way to collect pre-labelled images 4

which then allow performing a full-fledged ”unsupervised learning”. Quotation 5

marks are mandatory in this case as RGB-D images tend to be noisy, especially 6

in a scenario such as a road surface monitoring where the required height ac- 7

curacies are often borderline with those provided by modern consumer depth 8

cameras, often limited by a very short baseline. 9

3 Benchmark 10

In the following, we describe the data used in the contest, which consists of 11

both images and video data, and the task given to the participants. Then, we 12

explain how we evaluate the results in quantitative terms and, finally, how we 13

qualitatively evaluate them. 14

3.1 Dataset and task proposed 15

The dataset for this contest is called Pothole Mix and it consists of an image 16

dataset and an RGB-D video dataset. The image dataset is composed of 4340 17

image pairs (made of RGB images+segmentation masks), collected from 5 high 18

quality public datasets as well as a small set of images manually segmented 19

by the organizers. Each dataset had its own unique labelling in the form of 20

segmentation masks. To ease the training process on the entire dataset, we 21

uniformed the masks colors: we represent the cracks in red and the potholes in 22

blue. A sample from each image dataset is shown in Figure 1. We detail these 23

datasets (and the criteria behind the split in training, validation and test sets) 24

in the following: 25

� Crack500 [?, ?]: this dataset contains 500 (image/mask) pairs divided in a 26

250/50/200 split (50/10/40 in percentage). The images have a resolution 27

of 2000×1500 px and have been taken from top-down view with cellphones. 28

The images also have the date and time of capture in the file name, were 29

taken from February 22, 2016 to April 15, 2016 and sometimes occur in 30

groups due to spatially close shots. The split is actually random and for 31

this reason all three splits may contain subsets of similar images. This 32

dataset has the peculiarity of incorporating the EXIF metadata coming 33

from the smartphones of origin, so it is necessary to take this into account 34

when loading the images to feed the neural network. 35

� GAPs384: a subset of theGermanAsphaltPavement Distress (GAPs) [?], 36

GAPs384 is a collection of 384 images (out of 1969 total images) with 37

a resolution of 1920 × 1080 px in grayscale with top-down view. The 38

authors in [?] manually selected 384 images from the GAPs dataset 39

which included only cracks, and conducted a pixel-wise annotation on 40
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Crack500 GAPs384 EdmCrack600

Pothole-600 CPRID Web images

Figure 1: An overview of the images available in the SHREC 2022 benchmark
dataset. A couple of samples are drafted from each original dataset and the set
of images segmented by us. Below each image, the respective mask is reported.
Red indicates cracks, while blue indicates potholes.

them. The dataset is composed by 353/4/27 image/mask pairs in its1

training/validation/test sets respectively, giving this dataset a somehow2

”atypical” split of 92/1/7%. The images in this dataset are very homoge-3

neous and the training, validation and test sets are derived from sequential4

images of three distinct road sections that, therefore, have no overlap.5

� EdmCrack600 [?, ?, ?]: this dataset was created by capturing images on6

the streets of Edmonton, Canada and includes 600 pixel-level annotated7

images of road cracks. Although in the paper the adopted split is ran-8

dom and with a proportion of 420/60/120 pairs (70/10/20 in percentage),9

the dataset that can be downloaded from the GitHub repository has not10

been split. For this reason, we decided to randomly split this dataset11

into 480/60/60 pairs (80/10/10 in percentage) in order to give some more12

images to the network during the training.13

� Pothole-600 [?, ?, ?, ?]: this dataset is made by top-down images collected14

using a ZED stereo camera that captured stereo road images with a 400×15

400 px resolution. It counts 600 RGB images, the same amount of disparity16

images and binary segmentation masks. These images have been split by17

the original authors into training/validation/test sets respectively with a18

proportion of 240/180/180 (40/30/30 in percentage) and we have kept the19

same split in this work.20

� Cracks and Potholes in Road Images Dataset [?] (CPRID): these 223521

images of Brazil highways have been provided by DNIT (National De-22
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Figure 2: An example of raw frames of three of the clips we captured using
the Luxonis OAK-D camera. Below each frame, the respective disparity map is
shown in jet colormap (actual disparity videos in the dataset are gray-scale).

partment of Transport Infrastructure). They were captured in the states 1

of Espirito Santo, Rio Grande do Sul and the Federal District between 2

2014 and 2017 and were manually selected to be free of vehicles, people 3

or other types of defects in the image. The resolution of the images is 4

1024 × 640 px and the associated ground truth is a segmentation mask 5

to discriminate between cracks and potholes. The dataset is not split so 6

we adopted the split 2000/200/35 images (i.e. 89/9/1 percent) for train- 7

ing/validation/test sets respectively. 8

� Web images: a small set of 20 wide-view high-resolution images of potholes 9

has been retrieved with Google images and annotated with hand-made 10

pixel-perfect semantic segmentation (the split here is 17/2/1). 11

The image dataset as a whole is composed of 4340 image/mask pairs at 12

different resolutions divided into training/validation/test sets with a proportion 13

of 3340/496/504 images equal to 77/11/12 percent. 14

In addition to images, we provide 797 non-annotated RGB-D video clips 15

(notice that each clip comes with a RGB video and a disparity map video) from 16

which participants can extract additional images to enrich the working dataset. 17

Indeed, we think that the provided disparity maps could help training better 18

models for detecting road damages. Both cracks and potholes correspond to 19

variations in the depth of the road surface, which are visible in the disparity 20

maps. Moreover, even if we provide only short clips, it is possible to extract 21

a large number of images from each of them, given the 15-fps frame rate (see 22

later). We gave no guidelines on how to employ the disparity maps in each clip: 23

we left complete freedom to the participants on how (and if) to use the disparity 24

information provided to improve their methods. These clips are taken with a 25

Luxonis OAK-D camera connected via USB-C to an Android mobile phone 26
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using a Unity app. We captured images of the damaged asphalt of extra-urban1

roads, at varying height (30cm to 1m, according to the size and depth of the2

pothole). RGB videos are captured in Full HD (1920×1080 px) at 15 FPS (due3

to mobile phone+app performance limitations). Disparity videos are gray-scale4

and captured at 640 × 400 px resolution and 15 FPS. It is worth mentioning5

that the Luxonis OAK-D camera is able to provide both the disparity image6

(displacement of each pixel with respect to the two cameras) and depth (real7

calculation of the 3D position of the points, based on the disparity) of the8

scene. The camera is also equipped with an Intel Movidius Myriad X processor,9

capable of running small neural networks to perform inference directly on the10

device or encode multiple high-resolution, high-frame rate video streams out of11

the camera. However, while the disparity image is provided at 8 bits and can12

then be passed to the H.264 or H.265 compression engines, the depth image13

is provided at 16 bits and thus (at the time of writing this article) it was not14

possible to create a pipeline with this data flow to be compressed directly on15

the device. We therefore opted for the disparity image as the depth videos are16

captured in an uncompressed format, creating too large amounts of data that we17

can’t comfortably handle with our current setup. The filtering applied directly18

by the OAK-D camera to each frame of disparity videos consists of a Median19

Filter with a 7x7 kernel and another filter based on the confidence returned by20

the stereo matching algorithm, which sets to 0 any pixel under the specified21

confidence threshold (245 out of 255 in our setup). These clips vary in length,22

from less than 1 second up to 45 seconds each, and in the type of damage they23

portray. The disparity map of these videos is noisy and needs denoising before24

it can become a true segmentation mask, a task that is left to do to the contest25

participants. Figure 2 shows a couple of frames from two of these clips. All the26

data aforementioned is publicly available on Mendeley at this link.27

The final aim of the task is to train neural network models capable of perform-28

ing the semantic segmentation of road surface damage (potholes and cracks).29

3.2 Quantitative measures30

The quantitative assessment is based on standard metrics on the image dataset.31

In particular:32

1. Weighted Pixel Accuracy (WPA): this measure is inspired by [?, ?]. In33

short, it checks how many pixels of a predicted segmentation class are34

correctly identified as potholes or cracks, without considering the unla-35

belled pixels in both the ground-truth mask and the predicted one. In36

our use-case, unlabelled pixels are those depicting undamaged asphalt,37

painted signposting and other road elements. This metric is designed to38

give an indication of the ”net” pixel accuracy, thus without considering39

everything that is asphalt (i.e. most of the image).40

2. Dice Multiclass (DiceMulti): it extends the concept of the Søresen-Dice41

coefficient [?], which is two times the area of overlap between a binary42

mask predicted and its ground-truth divided by the sum of the pixel of43
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both images. In short, Dice multiclass calculates the average of this value 1

for each class, making it a good and widely used evaluation metric for 2

semantic segmentation tasks. See [?] for more details. 3

3. Intersection over Union (IoU) and mean IoU : given a binary prediction 4

mask and a binary ground-truth mask, the IoU score is equal to the area 5

(i.e., number of pixels) of the intersection of the masks over area of the 6

union of the masks. The IoU for a class is the mean across all the samples. 7

Since we are dealing with multiple classes, to obtain the mean of the IoU 8

(mIoU) a confusion matrix has to be built. In this benchmark we use 9

the IoU on potholes alone (pIoU) and cracks alone (cIoU) and the mIoU, 10

ignoring the background also in this metric. 11

3.3 Qualitative evaluation 12

Our qualitative evaluation is done on a small set of video clips of road surface, 13

containing cracks, potholes, both or none of them. Our judgment is driven 14

by the visual accuracy of the segmentation, its temporal stability, amount of 15

false positives and false negatives. Given the definitions of cracks and potholes 16

in Section 1, no particular expertise to assess such a judgement is required. 17

Indeed, while subjective, the organizers were never split in the identification of 18

cracks and potholes. We are confident that, for a qualitative evaluation, common 19

human perception is enough to distinguish between cracks and potholes (or a 20

lack thereof). 21

4 Methods 22

Twelve groups registered to this SHREC track but only two teams submitted 23

their results, including the models trained and the code to make it possible to 24

verify them. Each of the two groups sent three submissions for a total of six 25

runs. In the following, we briefly describe how the proposed methods work. We 26

initially introduce a baseline method run by the organizers, then we describe 27

the methods proposed by the participants. 28

4.1 Baseline (DeepLabv3+) 29

As a baseline, we used the DeepLabv3+ [?] architecture equipped with the a 30

ResNet-101 [?] encoder pre-trained on ImageNet [?], following a similar ap- 31

proach to what was presented in [?]. 32

Model training took place within a Jupyter Notebook running Python 3.8 33

and using the popular Fast.ai library now at its second version [?]. Fast.ai 34

adds an additional layer of abstraction above Pytorch [?], therefore it is very 35

convenient to use to speed up the ”standard” and repetitive tasks of training a 36

neural network. 37

The training exploited the progressive resizing technique [?] (360×360 px → 38

540×540 px) in three ways. First, it is exploited as a form of data augmentation. 39
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Second, it is used as a methodology to accelerate the convergence of the network1

on lower resolution images. Finally, the progressive resizing technique allows an2

early assessment of the quality of the other data augmentations used. In partic-3

ular, the following data augmentations have been used to postpone overfitting4

as much as possible: Blur, CLAHE, GridDistortion, OpticalDistortion, Ran-5

domRotate90, ShiftScaleRotate, Transpose, ElasticTransform, HorizontalFlip,6

HueSaturationValue. In order to maximize the level of automation during the7

training of the network, some Fast.ai callbacks have been used to perform the8

early stopping of the training (with patience = 10, i.e. the training stops when9

the validation loss of the network does not improve for 10 consecutive epochs)10

and to automatically save the best model of the current training round. Later,11

that model is reloaded for the validation and for the next round at higher reso-12

lution. Two consecutive training rounds were run, the first at 360 px resolution,13

the second at 540 px resolution, with a variable number of training epochs de-14

pendent on the early stopping callback of Fast.ai, and each composed of a freeze15

and a unfreeze step (training only the last output layer of the network or also16

all the convolutional layers). After each freeze/unfreeze step is finished, the17

best model weights of the current step are re-loaded in memory, the original18

pre-training weights are restored and the training continues with the next step19

(i.e. next freeze/unfreeze possibly at the next resolution).20

Batch sizes were set to 8 (360× 360 px) and 4 (540× 540 px) for the freeze21

and unfreeze steps, respectively. The learning rates were set to 1e− 03 for the22

freeze step and slice(1e− 07, 1e− 06) for the unfreeze step. The slice notation23

is used to train the network with layer-specific learning rates [?]. Finally, we24

train the model on the 3340 image/mask pairs in the training set.25

4.2 Semantic Segmentation of Crack and Pothole using26

Deep CNN and Learned Active Contours [PUCP], by27

Miguel Chicchon and Ivan Sipiran28

For this problem, the authors investigate the effect of a loss function L based29

on active contour theory on deep neural network training. The implementation30

of the loss function corresponds to the representation through the Level Set31

method of the energy functional proposed by Chan-Vese [?].32

Experiments were performed combining the loss functions based on active33

contours [?, ?, ?] and the cross-entropy loss, as follows:34

L = αLCE + βLCV . (1)

LCE = −
1

N

N
∑

n=1

C
∑

c=1

P
∑

p=1

Tncp ln (Yncp) . (2)
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Figure 3: Overview of the PUCP method

1

LCV =
1

N

N
∑

n=1

C
∑

c=1

(

P
∑

p=1

|Tncp − cncp,1|
2
Hξ (ϕncp) + · · ·

P
∑

p=1

|Tncp − cncp,2|
2
(1−Hξ (ϕncp))

)

.

(3)

The parameters α and β in Equation 1 are set to 0.1 and 10 respectively, as the 2

best results are obtained with these values. Equation 2 represents the calculation 3

of the cross-entropy as a function of the true pixels (Tncp) and the predicted 4

pixels (Yncp), where n is the number of the image in the batch, c is the class 5

and p is the number of pixels in the image. Finally, equation 3 represents the 6

loss function based on theLevel Set method of the energy functional proposed 7

by Chan-Vese [?], specifically the component of the internal and external region 8

to the contour represented by the Level Set method. The level set function ϕ 9

is a shifted dense probability map that is estimated from ξncp = Yncp − 0.5 ∈ 10

[−0.5, 0.5], while Hξ is an approximated Heaviside function, defined by: 11

Hξ (ϕncp) =
1

2

[

1 +
2

π
arctan

(

ϕ

ξ

)]

. (4)

The average intensity of binary ground truth map Tncp for contour inside and 12

outside are: 13

cncp,1 (ϕncp) =

∑P

p=1
TncpHξ (ϕncp)

∑P

p=1
Hξ (ϕncp)

, (5)

cncp,2 (ϕncp) =

∑P

p=1
Tncp (1−Hξ (ϕncp))

∑P

p=1
(1−Hξ (ϕncp))

. (6)
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State of the Art segmentation network architectures such as UNet, UNet++,1

MANet, LinkNet, FPN and DeepLabV3+ were experimented with pre-trained2

networks based on the Efficientnet architecture for the encoding stage. In all3

cases, the combined loss function allowed to improve the training results, se-4

lecting the 3 best models corresponding to the UNet++, MANet and UNet5

architectures. An overview of the method is shown in Figure 3.6

4.3 From SegFormer to Masked Soft CPS [HCMUS], by7

Minh-Khoi Pham, Thang-Long Nguyen-Ho, Hai-Dang8

Nguyen and Minh-Triet Tran9

The authors of this submission adapted well-known state-of-the-art models in10

segmentation, including UNet++ [?], DeepLabV3+ [?] and recent SegFormer11

[?], to the problem of the pothole detection. In particular, the authors used data12

augmentation to balance the situation where each image has only one class. In-13

deed, the main observation at the core of this proposal is that the data provided14

by the organizers only contain one of the two classes of damage (in most cases),15

however, real road scenarios usually have a large assortment of damage types in16

the same image. From that motivation, the authors augment the data by stitch-17

ing the images together to simulate the cracks and the potholes appearing in the18

same scene. In particular, this is done via mosaic data augmentation to blend19

multiple images into a single one. This creates new simulated data that intro-20

duces a variety of possible situations where both cracks and potholes are present21

in the same scene. Figure 4 shows an example of mosaic data augmentation.22

Then, the authors ran different experiments with different augmentation23

and hyperparameters settings. However, all the three proposed setups share the24

same objective function. Initially, authors went for the Cross Entropy (CE) and25

Dice loss, since it is a common combination. This leads to poor recall metrics,26

so the authors guessed that the background pixels outnumbering pothole/crack27

pixels in most of the training samples and a number of inaccurate ground-truth28

masks are the reason behind this. Then, the authors focused on detecting as29

many road damages as possible, i.e., they assumed that a higher recall would give30

more reasonable visual results than higher precision. This led to the adoption31

of a loss function which is a combination of Focal Tversky loss (FTL) [?] and32

Cross Entropy with Online Hard Example Mining (OhemCE) loss (also known33

as Bootstrapping Cross Entropy Loss [?]). Details on these two loss functions34

can be found in the respective references, however, briefly:35

� Focal Tversky loss weights False Negative (FN) and False Positive (FP) by36

α and β terms. Because authors wanted a high recall rate, they penalized37

the FN term more.38

� OhemCE only considers top-k highest loss pixels in the predicted masks.39

This helps the networks not to be overconfident in void pixels. We con-40

strained the k to be equal H ×W ÷ 16.41
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Indeed, these two loss functions are nothing more than parametrized variants 1

of the Dice/Cross Entropy loss respectively, adjustable to force the network to 2

focus more on the recall score while maintaining fine accuracy, thus leading to 3

better overall results. In particular, the FTL is: 4

FTL = (1− T l)γ (7)

where Tl is: 5

T l =
TP

TP + αFP + βFN
(8)

In the following, the three different setups for the different runs are described. 6

Every solution builds over the knowledge acquired from the previous one, leading 7

to the last run to be more developed. 8

4.3.1 SegFormer 9

For their first submission, the authors chose a Transformer model, as they 10

gained its place among state-of-the-art recently. In particular, they used the 11

SegFormer [?] model. The intention was both to check its performance in this 12

scenario and also to assess the domain adaptation capabilities of the Trans- 13

former models family. However, the limitation in this architecture category is 14

its slow convergence. In terms of implementation, the authors inherit a pre- 15

trained model from the Huggingface library [?]. 16

4.3.2 EfficientNet DeepLabV3+ 17

The authors trained the traditional DeepLabV3+ [?] with some implementation 18

changes. In particular, they reused the pre-trained EfficientNets [?] on the 19

ImageNet dataset as the backbone and train the whole architecture with fully- 20

annotated labels. With this setup, the Dice score on the validation set increased 21

from about 0.6 to 0.8 as verified on the test set by the track organizers. The Dice 22

scores of this experiment are also good, once again demonstrating the efficiency 23

of the DeepLabv3+ architecture in semantic segmentation problems. 24

4.3.3 Masked Soft Cross Pseudo Supervision 25

The authors observed that while the setup described in Section 4.3.1 gave overall 26

good metric scores on the validation set, it performed worse when it comes to 27

out-of-distribution samples, such as frames from RGB-D videos. To fix this 28

tendency, the authors strengthened the model with unsupervised data or rather 29

data in-the-wild. In particular, they utilized a non-annotated dataset (i.e., only 30

the RGB images without the masks and the frames of the RGB-D videos) for 31

the unsupervised training branch, aiming at enhancing the capabilities of the 32

model to predict out-of-distribution samples. 33

This setup is inspired by the recent semi-supervised method Cross Pseudo 34

Supervision (CPS) [?], with some critical improvements. Specifically, the au- 35

thors softened the hard-coded pseudo labels with soft-max normalization and 36
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masked out the background channel (hence the nameMasked Soft CPS ). Indeed,1

the original CPS method uses hard-coded pseudo labels and one-hot encoding2

to generate pseudo masks for dual training. The authors thought this would3

hurt performance on this dataset, as the type of model required to face this4

problem usually confidently predicts void pixels. Furthermore, annotated labels5

are not accurate perfectly, the use of strict loss forces the model to learn the6

difference between foreground and background, leading to some confusion of pre-7

diction in contour positions. Moreover, the authors masked out the void pixel8

when training, so that these pixels are not counted in loss computation. CPS9

works by combining both the annotated and non-annotated data and training10

two neural networks simultaneously (DeepLabV3+ and Unet++ in our experi-11

ment). For the annotated samples, supervision loss is applied typically. For the12

non-annotated, the outputs from one model become the other’s targets and are13

judged also by the supervision loss. Figure 5 illustrates this training pipeline.14

In the inference stage, the authors employed the ensemble technique used15

in [?] by merging the two logits derived from both networks by getting the16

max probabilities out of them, then weighted the results by heuristic numbers.17

In particular, the logits of cracks are multiplied by 0.4, potholes by 0.35 and18

background by 0.25. These numbers mean that there is more focus on cracks19

damage since these are more difficult to detect.20

5 Evaluation environment21

This section presents and discusses the performances of the proposed methods22

(plus the baseline). Quantitative and qualitative evaluations are presented in23

Section 5.1, then, the overall discussion of the performance for each method is24

provided in Section 5.2.25

5.1 Results26

To achieve fairness and parity in the evaluation procedure, we collected all 727

methods in a single Jupyter notebook. The hardware used is an Intel Core28

i9-9900K PC with 32 GB of RAM and an Nvidia GeForce RTX 2070 GPU29

with 8 GB of video RAM. This allows us to evaluate the performance of the30

different models using the same environment (i.e., same code, data, metrics,31

initial conditions, etc.). The notebook is publicly available in the following32

formats: html and ipynb. In addition, for the sake of replicability, we provide33

a GitLab repository containing the evaluation notebook, the training scripts of34

the various participants, the pre-trained models, the code to perform inference35

by loading the aforementioned models and the videos we used as a test set in the36

qualitative evaluation. This material, together with the Pothole-Mix dataset, is37

all that is needed to replicate the results and videos obtained in this paper.38

In Table 1 and Table 2 we summarize the performance of the 7 runs (one for39

each method) on the validation and test sets, respectively. There are no huge40

gaps between the scores of the different models, however, the runs ”emphPUCP-41
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Table 1: Evaluation on the image validation set. Values range from 0 (red),
to 1 (green). The higher the value is, the better the method performs. Most
valuable runs are highlighted in bold.

WPA DMmIoU cIoUpIoU

Baseline - DeepLabv3+ 0.6820.814 0.7110.6060.760
PUCP-MAnet 0.7740.810 0.7050.7190.781
PUCP-Unet 0.7540.804 0.6980.6930.776

PUCP-Unet++ 0.7670.800 0.6940.7060.801
HCMUS-SegFormer 0.6710.637 0.5230.6330.624

HCMUS-DeepLabv3+ 0.7270.802 0.6950.6420.780
HCMUS-CPS-DLU-Net 0.8400.763 0.6470.7770.864

Unet++” and ”HCMUS-CPS-DLU-Net” (in bold) stand out from the others. 1

As can be seen in the tables, for many of the methods the score trend is similar 2

in the results of both validation and test sets. This means that the training, 3

validation and test sets are sufficiently homogeneous with each other and the 4

models have learned to extract features correctly and to represent and model 5

the underlying probability distributions. 6

A qualitative evaluation is performed on 8 video clips: 3 are top-down videos 7

taken on foot, 1 is wide-view on foot and the others are wide-view shot from a 8

car. We applied each DL model to every frame of the videos and overlayed the re- 9

sulting mask onto the video for easier evaluation. In this evaluation of wide-view 10

videos, we mostly ignore small false positives on trees and other elements. In- 11

deed, with lane detection techniques, it is possible to limit the recognition to the 12

road surface only. However, we consider this mislabelling as an issue if they hap- 13

pen consistently on a wide number of non-road elements. The videos are publicly 14

available at the following hyperlinks, one for each run: Baseline (DeepLabv3+), 15

PUCP-MAnet, PUCP-U-Net, PUCP-U-Net++, HCMUS-Segformer, HCMUS- 16

DeepLabv3+, HCMUS-Masked SoftCPS DLU-Net. Overall, the performances 17

of the runs vary: some methods perform better on some specific types of videos 18

(e.g., methods very effective in top-down videos may become less so in wide-view 19

videos). We detail the qualities of each method in the following section. 20

5.2 Discussion 21

The Baseline is able to detect most road damages but lacks in terms of the 22

image segmentation quality. In other words, it scores high both true positives 23

and false negatives. This is visible both in cracks and potholes (see Figure 6 and 24

7), in which the damage is spotted but the damaged surface is wider than the 25

generated mask. This is especially evident with respect to the other methods 26

masks on the same image. In the videos, especially in wide-view ones, this 27

“conservativeness” is sharpened and prevents Baseline from detecting most of 28

road damages. Moreover, we observed false positives in correspondence of road 29

signals and shadows. It could be argued that the detection of road damage is 30

15
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Table 2: Evaluation on the image test set. Values range from 0 (red), to 1
(green). The higher the value is, the better the method performs. Most valuable
runs are highlighted in bold.

WPA DM mIoUcIoU pIoU

Baseline - DeepLabv3+ 0.5980.7890.6760.6450.584
PUCP-MAnet 0.7520.8270.7250.7870.728
PUCP-Unet 0.7410.8240.7200.7760.717

PUCP-Unet++ 0.7580.8320.7310.7800.762
HCMUS-SegFormer 0.8020.7470.6280.7630.855

HCMUS-DeepLabv3+ 0.7270.8230.7190.7080.818
HCMUS-CPS-DLU-Net 0.8330.7890.6770.8430.865

strongly related to the presence dark pixels. These last two issues are shown in1

Figure 8, in which we show two frames of a wide-view video: in one, Baseline2

spots no damages (left), in the other the back of a road signal is identified as a3

pothole (right).4

Regarding the PUCP runs, the quantitative scores in Tables 2 and 1 indicate5

that no run is significantly better than the others. This suggests that the value6

of the approach proposed by PUCP is mainly in the loss function and data7

augmentation chosen rather than in the type of neural network architecture.8

Indeed, the Chan-Vese energy function [?] takes into account global spatial9

information, whereas each prediction on pixels in a cross-entropy calculation is10

independent of the others. Furthermore, the representation of class predictions11

based on level set functions is more susceptible to global changes when small12

segmentation errors are present. When analyzed on the videos, the PUCP13

runs show consistent performances on the top-down videos, with great crack14

detection and segmentation accuracy. We evaluate PUCP-MAnet better than15

all the other runs of this contest for this type of videos. An example of this is16

shown in Figure 9(left). Nevertheless, wide-view videos contain a lot of false17

positives and mislabel, as shown in Figure 9(right). It is possible to conclude18

that using a loss function based on active contours improves the quality of19

shape or geometry segmentation, though it has little impact if the models fail20

to distinguish between classes well.21

HCMUS outcome improves over the three runs, since they progressively re-22

fine the model (i.e., HCMUS-CPS-DLU-Net is on top of HCMUS-DeepLabv3+23

that is build on top of HCMUS-SegFormer). Figure 6 and 7 support this24

fact, as well as the results in Table 1 and 2. It is interesting that the Dice25

Multi and mIoU evaluations drop significantly from HCMUS-DeepLabv3+ to26

HCMUS-CPS-DLU-Net while the opposite happens for all the other evaluation27

measures. However, it is worth noticing that the CPS strongly focuses on the28

recall score therefore the model might be predicting too much of false positives.29

In that case, it reduces the overall score since the Dice and mIOU metrics take30

background pixels into consideration. In the videos, the potholes detection are31

great in both top-down and wide-view videos. Interestingly, distant potholes32
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in wide-view videos are initially classified as cracks and then identified as pot- 1

holes once the camera goes closer to them. Overall, HCMUS-CPS-DLU-Net+ 2

performs better on wide-view videos with respect to all the other runs of this 3

benchmark (an example is shown in Figure 10 (top)) and obtains comparable 4

results on top-down videos (despite being less efficient on cracks with respect 5

to PUCP-MAnet). However, we notice less stability in the segmentation across 6

consecutive video frames. An example is shown in Figure 10 (bottom) where 7

three consecutive frames of one of the videos used for the qualitative evaluation 8

are shown. Notice how both cracks and potholes are not constant from frame to 9

frame, causing the typical ”flickering” effect. However, it is worth mentioning 10

that this fact results as a downside with respect to the other methods mainly 11

on cracks: indeed, this flickering effect occurs for all the methods when it comes 12

to potholes. 13

Overall, PUCP-Unet++ and HCMUS-CPS-DLU-Net stand out as the most 14

valuable runs. In general but especially for the Baseline method, it is possi- 15

ble to notice that dark areas in the videos (like the back of a road sign or a 16

decently dark shadow) are very likely to be mislabelled. Unfortunately, none 17

of the participants exploited the information contained in the disparity channel 18

of the RGB-D videos, that could help distinguish between shadow-like areas 19

and actual change in the road surface. Only the method proposed in the run 20

HCMUS-CPS-DLU-Net used data from RGB-D video clips, although it followed 21

an unsupervised approach. The performance obtained with this run also exceeds 22

those of the other runs submitted by the team. 23

6 Conclusions and final remarks 24

In this report we evaluated 7 methods (6 from the two participating teams, 25

1 provided by the organizers as a baseline) able to provide a solution to the 26

“SHREC 2022 track: pothole and crack detection in the road pavement using 27

images and RGB-D data”. All the methods submitted to this track are based 28

on DL techniques. In addition to supervised training on the training/validation 29

sets of 3836 image/segmentation mask pairs provided by the organizers, the 30

HCMUS team chose an unsupervised approach to train one of their models 31

using the RGB component of the provided RGB-D videos. However, none of the 32

methods exploited the disparity map of the 797 RGB-D videos made available 33

by the organizers. As per practice, the 504 image/mask pairs that made up 34

the test set were not provided to the participants and were retained by the 35

organizers for the final evaluation. 36

The methods submitted by the participants show very good results, both 37

in quantitative and qualitative terms on the test videos (also not disclosed to 38

the participants), despite performing differently based on the kind of test im- 39

age/video. The final assessment of the organizers is that the two methods 40

PUCP-Unet++ and HCMUS-CPS-DLU-Net stand out as the most valuable 41

runs. 42

In the future, it could be interesting to explore the possibility of having 43
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a dataset entirely built on RGB-D data and to exploit the whole data (i.e.,1

three color channels and the disparity map) to further help neural network2

models to better recognize road damage. Indeed, since many errors were found3

in correspondence of dark spots in the RGB images, the additional dimension4

can help the models to focus more on actual road surface disruption instead5

of color changes. In parallel, the depth dimension could also help in the pre-6

training phase: using the disparity images as a label (possibly after a slight7

denoise/smoothing) should force the network to learn as many features as pos-8

sible within the dataset, providing a possibly better basis for fine-tuning than9

a model pretrained on ImageNet.10
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Figure 4: An example of the Mosaic Augmentation used in HCMUS.
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Supervised branch

Unsupervised branch

Figure 5: Both branches of the setup of the HCMUS method described in
Section 4.3.3. XL, XU+L indicates labelled inputs, unlabelled and labelled
inputs respectively. Y L and Y S are segmentation masks (the ground-truth
one and the soft pseudo one respectively) while P means the probability maps
defined by the networks. (→) means forward, (// on →) means stop-gradient,
(− →) means loss supervision and (−· →) means masked loss supervision.

.
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Baseline - DeepLabv3+ PUCP-MAnet PUCP-Unet PUCP-Unet++

HCMUS-SegFormer HCMUS-DeepLabv3+HCMUS-CPS-DLU-Net Ground-truth

Figure 6: An example of the mask extracted by all the methods on a sample
image representing a crack.

Baseline - DeepLabv3+ PUCP-MAnet PUCP-Unet PUCP-Unet++

HCMUS-SegFormer HCMUS-DeepLabv3+HCMUS-CPS-DLU-Net Ground-truth

Figure 7: An example of the mask extracted by all the methods on a sample
image representing a pothole and cracks.
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Figure 8: Two frames extracted from the same video and used for qualitative
evaluation. The masks of both frames were generated from Baseline. On the
left, we show an example of Baseline’s lack of damage detection in wide-view
video. On the right, we show how there is a strong correlation between the
Baseline’s detection of a pothole and the presence of a dark blob of pixels. This
last is not a complete frame but a zoom-in on one. For example, the traffic sign
(yellow box) is recognized as a pothole.

Figure 9: Two frames extracted from two different videos and used for qualita-
tive evaluation of PUCP-MAnet predictions. On the left, we show an example
of its very good performance on top-down videos. On the right, the issues in
predicting road damage on wide-view videos.
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Figure 10: Frames extracted from the videos used for the qualitative evaluation.
Masks are generated by HCMUS-CPS-DLU-Net+. Top: an example of the
good performance on wide-view videos. Bottom: 3 consecutive frames of a top-
down video in which HCMUS-CPS-DLU-Net+ segmentation varies significantly
(”prediction flickering”).
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