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The thermoelectric performance of a topological Josephson nonlocal heat engine is thoroughly
investigated. The nonlocal response is obtained by using a normal metal probe coupled with only one
of the proximized helical edges in the middle of the junction. In this configuration, we investigate how
the flux bias and the phase bias trigger the nonlocal thermoelectric effects under the application of a
thermal difference between the superconducting terminals. Possible experimental nonidealities such
as asymmetric proximized superconducting gaps are considered showing how the nonlocal response
can be affected. The interplay between Doppler-shift, which tends to close gaps, and Andreev
interferometry, which affects particle-hole resonant transport, are clearly identified for different
operating regimes. Finally, we discuss the power and the efficiency of the topological thermoelectric
engine which reaches maximum power at maximal efficiency for a well coupled normal probe. We
find quite high nonlocal Seebeck coefficient of the order of tenths of µV/K at a few kelvin, a signal
that would be clearly detectable also against any spurious local effect even with moderate asymmetry
of the gaps.

I. INTRODUCTION

Topological Josephson junctions have been actively
investigated in the recent years.1–4 In particular,
their potential to localize Majorana fermions5–8 could
represent a novel platform for topological quantum
computation.9,10 Topological Josephson junctions are
also a unique resource in the field of low-temperature
thermal management18–21, which could play an impor-
tant role for quantum technologies in general. New appli-
cations based on the proximized helical edge states have
been envisioned.11–17 For such cases a fundamental step
is the capability to identify the helical nature of the edge
states as result of the spin-momentum locking, deter-
mined by the topological protection.22–25 After the the-
oretical prediction26,27, experimental evidence28–30 have
been shown on the existence of edge states in several
systems but not yet on their helical nature.34,35,37–41 For
this purpose different strategies have been identified.42,43

Recently, we have realized that the helical nature deter-
mines an unique signature in the thermoelectrical prop-
erties of topological Josephson junctions.44,45

Thermoelectricity is in itself an important trend in
material science46, which found a renaissance in low-
dimensional47,48 and quantum-based49,50 devices. The
thermoelectric response in superconducting systems is
expected to be negligible due to the particle-hole (PH)
symmetry which is enforced by superconducting corre-
lations as clearly shown in the Bogoliubov-de Gennes
(BdG) Hamiltonian.51 Still, thermoelectric response of
superconductors has a long history since the Ginzburg
seminal work52 and following literature53,54. There are
various strategies aimed at inducing thermoelectricity
in superconducting or proximized systems by explic-
itly breaking the PH symmetry by means of ferromag-
netic correlations55–59 and nonlocal geometries55,60,61

or by using nonlinearities.62–65 Recently, several au-
thors have discussed Andreev interferometers66–70 and
nonlocal thermoelectricity in Cooper pair splitters71,72,
which found experimental confirmations.73–76 The ap-
plication of thermal gradients to Josephson junctions
has suggested also novel technologies64,77–82, showing
that the peculiar properties of topological Josephson
junctions could also play an important role in this
perspective.14,17,83–87

In this work we generalize the analysis of Refs. 44 and
45, where we discussed how the nonlocal thermoelectric
response is intimately connected to the helical nature of
edge states in a topological Josephson junction (TJJ). In
these previous works we analyzed a three terminal struc-
ture where the TJJ, obtained by proximizing the two
ends of a 2D topological insulator (TI) bar through su-
perconducting electrodes, is contacted on one edge with
a normal metal probe (N).14,42,83,88–90 In this configu-
ration there is a nonlocal thermoelectric response when
a temperature bias is applied between the two super-
conductors, which consists in the occurrence of a cur-
rent flowing in the probe. We note that in order to ob-
serve such nonlocal thermoelectric effect it is necessary
to break the particle-hole (PH) symmetry at nonlocal
level.91 This can be done by introducing a magnetic field
orthogonal to the plane of the TI, which induces the so
called Doppler shift (DS) of the TI bands44, or simply by
applying45 a Josephson phase difference φ, which may be
generated by imposing a dissipationless current through-
out the junction. In Refs. 44 and 45 we assumed equal
proximized gaps in the two superconducting right/left
ends and we concentrated only on the linear regime. In
this work we generalize to the case where we have dif-
ferent gaps, showing how the unique nonlocal signature
survives in the asymmetric case. At the same time we
take the opportunity to analyze in details the nonlin-

ar
X

iv
:2

10
3.

14
39

4v
1 

 [
co

nd
-m

at
.m

es
-h

al
l]

  2
6 

M
ar

 2
02

1



2

/2 /2

SRSL

−+ N

0
0

Φ

Figure 1. Sketch of the setup. A helical Kramers pair of edge
states of a quantum spin Hall bar is put in contact with two
superconductors at different temperatures TL = T+δT/2 and
TR = T − δT/2. A bias voltage VN is applied to the normal-
metal probe coupled to the edge at the point x0 and kept at
temperature TN = T . L is the length of the junction. The
structure is threaded by a magnetic flux Φ which induces a
Doppler shift in the edge states in addition to a Josephson
phase difference φ ≡ φR − φL applied between the two su-
perconductors. The green arrow depicts spin-↑ right-moving
quasi-particles, the orange arrow indicates spin-↓ left-moving
quasi-particles.

ear regime, discussing the thermodynamic performance
of the nonlocal thermoelectric engine obtained in such
configuration.

More specifically, in Sec. II, we present the three ter-
minal setup and introduce the model Hamiltonian. By
using the scattering approach, we discuss how the dissipa-
tive currents can be computed. In Sec. III we investigate
the nonlocal Onsager coefficients in the linear-response
regime and discuss how the junction asymmetry affects
the nonlocal thermoelectricity. In Sec. IV we study the
performance quantifiers (electrical power, efficiency and
nonlocal Seebeck coefficient) in the non-linear regime and
in the presence of finite voltage bias and/or finite temper-
ature difference between the two superconducting elec-
trodes. In Sec. V we present the relevant conclusions
concerning the nonlocal effects of the topological Joseph-
son junctions and possible perspectives.

II. SYSTEM AND MODEL

We consider a TJJ which consists of two superconduct-
ing electrodes placed on top of a 2D TI at a distance L
(see Fig. 1). The two electrodes induce superconducting
correlations on the edge states via proximity effect11,12.
A normal-metal probe is contacted to one side of the
junction as depicted in Fig. 1, thus putting it in elec-
trical contact with only one edge. In the setup, a volt-
age bias VN may be applied between the probe N and
the superconducting electrodes, which are equipotential
and grounded.117 The two superconductors are kept at
different temperatures in order to maintain a thermal
bias δT = TL − TR. A superconducting phase difference
φ = φR − φL is also applied between the two. We fix

the temperature of the probe at the average temperature
TN = (TL+TR)/2 = T . As we will see below, this choice
is the most convenient experimental one in order to ex-
tract the nonlocal signal. The width of the TI strip is
assumed to be large enough such that we can neglect the
lower edge, i.e. we focus only on the upper one.

The proximized system in the upper-edge can be de-
scribed by the following Bogoliubov-de Gennes (BdG)
Hamiltonian

H =

(
H(x) iσy∆(x)

−iσy∆(x)∗ −H(x)∗

)
, (1)

expressed in the four-component Nambu ba-
sis (ψ↑, ψ↓, ψ

∗
↑ , ψ

∗
↓)
T with spin ↑ and ↓ collinear

with the natural spin quantization axis of the TI
edge pointing along the z-direction. In Eq. (1)
H(x) = vF (−i~∂x + pDS/2)σz − µσ0 + Λ(x) is the low-
energy effective Hamiltonian of a 2D TI, with −H(x)∗

being its time-reversal partner. Here vF indicates the
Fermi velocity, µ is the chemical potential and σi are the
Pauli matrices. The momentum pDS = (π~/L)(Φ/Φ0)
represents the so-called DS contribution describing
the gauge invariant shift of momentum induced by a
small magnetic flux Φ threading the weak link, while
Φ0 = h/2e is the magnetic flux quantum.11 A contact
potential Λ(x) = ΛLδ(x) + ΛRδ(x−L/2) is also included
at the junction boundaries. ∆(x) is the superconducting
order parameter which is assumed to obey rigid bound-
ary conditions: ∆(x) = ∆LΘ(−x)eiφL +∆RΘ(x−L)eiφR ,
where Θ(x) is the step function and ∆i (with i = L/R)
is the proximity induced gap for the left and right
superconducting regions. The two gaps can indeed
be different for many reasons. For example, the two
superconductors may be made of different materials92,
or the two superconducting films might have different
thicknesses93–95, or the two S-TI interfaces might be
made of different quality96,97. Moreover, in realistic ex-
perimental conditions, the finite temperature difference
in the nonlinear regime may induce the superconducting
gaps to take different values on the two sides92. In
the latter case, in order to make realistic predictions
in a wide temperature range, we need to include the
self-consistent temperature dependence of the gaps.

The eigenspectrum of the BdG Hamiltonian relative to
a homogeneously proximized 2D TI upper edge is given

by Eiχ± (k) =
(
εDS(Φ) + χ

√
(~vF k ∓ µ)2 + ∆2

i

)
. Here

the lower index ± labels the right/left parabola, χ =
± indicates branches with positive/negative concavity,
i = L,R for the left and right superconducting regions
and εDS(Φ) = vF pDS/2 = (vFh/4L)(Φ/Φ0) is the DS
energy. The effect of the DS on the dispersion curve
is to shift the various branches vertically by an amount
εDS(Φ), upwards or downwards, as shown in the example
of Fig. 2, where we plot the dispersion curves for the
three regions composing the TJJ. As a consequence, a
finite value of the magnetic flux Φ reduces the gap in the
eigenspectrum, which eventually closes when |εDS(Φ)| =
∆L/R in the left/right superconducting regions of the 2D
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Figure 2. Dispersion curves for electron-like QPs (solid lines) and hole-like QPs (dashed lines) in the left [panel (a)] and right
[panel (c)] proximized regions, and in the weak link TI region [panel (b)], for 0 < εDS(Φ) < ∆L (with ∆R > ∆L). Green arrows
represent spin-↑ right-moving QPs, while orange arrows spin-↓ left-moving QPs.

TI, respectively. Clearly, when the values of ∆L and
∆R are different, such a gap closing in the left and right
regions occurs at different values of the flux Φ.

The eigenfunctions of the electron-like Bogoliubov
quasiparticles (QPs) of the BdG Hamiltonian for both
left/right superconducting regions can be written, in
Nambu notation, as

Ψi,χ
e+ = (χui−e

i
φi
2 , 0, 0, vi−e

−iφi2 )T e
ikiχe+

x

Ψi,χ
e− = (0,−χui+ei

φi
2 , vi+e

−iφi2 , 0)T e
ikiχe−

x
, (2)

where the energy-dependent coherence factors (spinor
components) are

ui± =

√
∆i

2ε±
e

1
2hi(ε±); vi± =

√
∆i

2ε±
e−

1
2hi(ε±), (3)

with ε± = ε± εDS(Φ) and hi(ε±) = arcCosh (ε±/∆i) for
ε± > ∆i and hi(ε±) = i arccos (ε±/∆i) for ε± < ∆i. The

QP’s momentum is kiχe± = ±kF (χ
√

(ε2∓ −∆2
i )/µ

2 + 1),

while the related group velocity is viχe± = ~−1|∂kEiχ± | =

vF (u2
i∓ − v2

i∓). The eigenfunctions Ψi,χ
h±

relative to the

hole-like Bogoliubov QPs can be obtained by replacing
(ui±, vi±) → (vi±, ui±), kiχe± → kiχh∓ = ki,χ̄e± (with χ̄ =

−χ) and viχe± → viχh∓ = viχe± in the expressions of Eq. (2).

Clearly, the limit ∆i → 0 returns the standard 1D Dirac
spectrum [shown in Fig. 2(b)] which characterizes the 2D
TI (non-proximized) edge.

The normal-metal probe N – which would model for
instance a STM tip42,88–90 – is assumed to be directly
contacted to the upper edge at the point x0 (see Fig. 1)
and modelled by an energy- and spin-independent trans-
mission amplitude t.

A. Charge and Heat Currents

In the following we will investigate only the dissipative
currents flowing through the structure which can be ob-
tained by using the Landauer-Büttiker scattering98 for-
malism generalized in order to include superconductiv-
ity99. More precisely, we are not interested in the dis-
sipationless (Josephson) contribution to the charge cur-
rent flowing in the superconducting electrodes, which has
been already discussed elsewhere4,8,17,100–104. The dissi-
pative charge (γ = −) and heat (γ = +) currents exiting
from lead i = L,R,N can be written in this form[
J−i
J+
i

]
=

2

h

∑
j,α,β

ˆ ∞
0

dε

[
qαi (ε)

ε− (qαi (ε)Vi − αµS)

]
Fαβij (ε)Pα,βi,j (ε, ~θ),

(4)

where µS is the chemical potential of the superconduc-
tors, which we take as a reference for all the energies, and
α, β = +/− for electron-like and hole-like QPs, respec-
tively. The function

Fαβij = fαi (ε)− fβj (ε) (5)

is a compact way to write differences of the general-
ized Fermi functions fαi (ε) = {eε−α(eVi−µS)/kBTi + 1}−1,
where Ti and Vi are, respectively, the temperature and
the voltage of lead i. As discussed earlier, in the following
we will set eVL = eVR ≡ µS = 0.

In Eq. (4) the most important physical quantities are

the scattering coefficients Pα,βi,j (ε, ~θ) which are calculated

from the scattering matrix Sα,β(i,σ),(j,σ′) as follows

Pα,βi,j (ε, ~θ) =
∑
σ,σ′

∣∣∣Sα,β(i,σ),(j,σ′)

∣∣∣2 (6)

[see Appendix A for the details of the computation and
Appendix B for the discussion of the special symmetries
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of the scattering coefficients in the symmetric case (i. e.

when ∆L = ∆R)]. The scattering coefficients Pα,βi,j (ε, ~θ)

represents the reflection (i = j) or transmission (i 6= j)
probability of a QP of type β injected from lead j to end
up as a QP of type α in lead i. We introduced the vector

parameter ~θ ≡ (Φ, φ) which includes both the magnetic
flux Φ and the gauge invariant Josephson phase difference
φ ≡ φR−φL. We treat the two quantities independently,
since Φ depends directly on the magnetic-field flux in the
junction, while the phase bias φ depends also on the dis-
sipationless current imposed through the junction. They
represent two different degrees of freedom needed to fully
characterize the state of the TJJ. It is worth to notice
that there is no dependence of the scattering coefficients
on the contact potential105 parameters Λi.

118. This is a
direct consequence of the helicity of the edge channels
which do not admit ordinary reflections at barriers (akin
to the Klein paradox).106

Finally, in Eq. (4) we introduced also the function qαi (ε)
which represents the charge of the Bogoliubov QP of type
α = ± at energy ε at lead i

qαi (ε) =

{
αe for i = N

[Ψi,χi
α∓ ]†CΨi,χi

α∓ for i = L/R,
(7)

where C = e τ3 ⊗ σ0 is the QP charge operator (being
e the electronic charge) expressed in terms of the Pauli
matrices τ and σ acting, respectively, on the particle-
hole and spin space. The index χi ≡ χi(ε, εDS) =
sign(ε− |∆i − |εDS ||), with i = L,R, refers to the differ-
ent concavities of the eigenspectrum of Fig. 2, in agree-
ment with the notation used in Eq. (2). More explicitly,
using Eqs. (2) and (3), the second line of Eq. (7) can be
reduced to the usual formula

q±L/R(ε) = ±e
(∣∣uL±/R∓(ε)

∣∣2 − ∣∣vL±/R∓(ε)
∣∣2) (8)

representing the charge of Bogoliubov QPs, which re-
duces, for energy well above the gap, to ±e for an
electron-like and a hole-like QP, respectively.

III. LINEAR RESPONSE REGIME

The occurrence of a nonlocal thermoelectric response
in the presence of a DS44 or of a phase difference45 was
discussed and attributed to the helical nature of the edge
states of the TJJ. For simplicity, in those papers, only the
symmetric case of equal gaps ∆L = ∆R was considered.
We refer the reader to the Appendix C for a thorough
discussion of such symmetric case, which complete the
analysis done in Ref. 45 by presenting the analytical ex-
pressions of the heat and charge currents flowing through
the probe obtained in the general case in which both the
DS and the phase bias are present.

In this section we extend the discussion to the asym-
metric case (where ∆L 6= ∆R). This is not a mere gener-
alization of previous results, since it provides important

information relevant for realistic (experimental) realiza-
tions. Indeed, when one of the two temperatures Ti is big-
ger than 0.4TC,i (with TC,i being the critical temperature
of the i-th superconductor) the self-consistent gap ∆i(Ti)
gets reduced from the zero-temperature value ∆i,0 and
the right-left symmetric gap condition is hardly valid.92

Let us first clarify which is the relevant thermoelec-
trical response for the three terminal setup depicted in
Fig. 1. We use the approach developed in Ref. 107 to
investigate thermoelectrical properties for multiterminal
systems91. The first step is to identify the independent
currents. Since charge and energy must be conserved,
we are only left with 4 independent currents, out of 6
(3 charge currents and 3 heat currents). In our three-
terminal Josephson junction setup we consider the case of
a stationary superconducting phase bias (φ̇ = 0), which
indeed necessarily requires VL = VR.119 In such configu-
ration the charge current flowing in the two superconduc-
tors is dominated by the dissipationless Josephson cur-
rent which, in the linear response regime, is unaffected by
the temperature difference between the electrodes. In the
following, in analogy to Refs. 44 and 45, we mainly dis-
cuss the only relevant currents which allow us to charac-
terize the nonlocal thermoelectric response of our setup,
which are the charge current (J−N ) flowing in the normal
probe and a heat current associated to the superconduc-
tors (see below for the proper definition). Moreover, in-
teresting features emerge also from the analysis of the
linear heat current (J+

N ) flowing in the normal probe,
which will be presented for completeness in Sec. III D.

A. Nonlocal thermoelectric and Peltier coefficients

For small values of VN and δT , the charge current J−N
can be expanded up to the linear order in these quanti-
ties71,72,91,107–109. The charge current for the probe reads

J−N = LN11

VN
T

+ LN12

δT

T 2
, (9)

with VN/T and δT/T 2 taking the role of the relevant
affinities of the problem, while LN11 and LN12 are lin-
ear transport coefficients. We note that the electrical
response to the bias VN is given by the conductance
G = LN11/T , while the linear response to δT (temperature
difference between the superconductors) corresponds to
a nonlocal thermoelectric current, represented by the co-
efficient LN12. It is important to stress now that in the
linear-response regime the system is close to equilibrium.
As a result, the temperature of the probe needs to be
set to its equilibrium value, namely TN = T . By setting
J−N = 0 in Eq. (9) and solving for VN one finds the linear
Seebeck thermovoltage V S

N , through which we can com-
pute the nonlocal Seebeck coefficient S = −V S

N/δT =
(1/T )LN12/L

N
11 similarly with the derivation of the local

case.
Let us now consider the heat currents. In the symmet-

ric case (∆L = ∆R) and for TN = T , the heat current
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flowing in left superconducting lead J+
L is exactly oppo-

site to the current flowing in the right lead J+
R , namely

J+
L = −J+

R , while J+
N = 0 (i.e. there is no heat current at

the probe), due to the symmetries of the configuration,
see Appendix C for details. When the left-right sym-
metry is broken (∆L 6= ∆R), the two superconducting
terminals are no more equivalent and the heat currents
in the two superconducting terminals are different. In
such a case it is convenient to describe the heat current
associated to the two superconductors by the average

J+
S ≡

J+
L − J

+
R

2
. (10)

So the linear-response regime is expressed by

J+
S = LS21

VN
T

+ LS22

δT

T 2
, (11)

The last term returns the local heat conductance κ =
LS22/T

2 between the two terminals, while the first term
represents the nonlocal Peltier-like contribution. We no-
tice that, in general, for a multiterminal system107 one
does not expect any specific symmetry relation between
the nonlocal linear coefficients. However, with the defini-
tion of Eq. (10), the Onsager-Casimir relations91,110–112

for the linear coefficients defined by Eqs. (9) and (11) can

be expressed in the following form: LN12(~θ) = −LS21(~θ).
In the next section we will numerically verify that such
a relation holds independently of the ratio between the
gaps.

We will divide the analysis in two limiting situations.
In the first case we will discuss the Onsager coefficients
as functions of the DS in absence of any phase-bias, i.e.
φ = 0. In the second case, instead, we analyze how in
an extremely asymmetric case the thermoelectrical effect
depends on the phase bias in absence of the DS (Φ = 0).
In real experiments the discussed effects, which are differ-
ent aspects of the nonlocal thermoelectricity, are proba-
bly mixed but it is interesting to discuss them separately
in order to clearly recognize their contributions to the
nonlocal thermoelectrical signal.

B. Asymmetric case for φ = 0

In this section we investigate the linear transport coef-
ficients in the case where the right/left symmetry is bro-
ken by different zero-temperature superconducting gaps
(∆0,R 6= ∆0,L), and we define the ratio r ≡ ∆0,R/∆0,L =
ξL/ξR where the second identity is expressed in terms of
the coherence lengths ξi = ~vF /π∆0,i, with i = R,L.
We notice that, when r 6= 1, the scattering coefficients

Pα,βi,j of Eq. (6) depend on the position of the probe. For
the sake of convenience, hereafter we consider the probe
positioned exactly in between the two superconductors
(i. e. x0 = L/2) and we fix r ≥ 1.120

The behavior of the linear coefficients L
N/S
ij of Eqs. (9)

and (11) is shown in Fig. 3 as a function of the DS

εDS(Φ)/∆0,L and of the asymmetry parameter r, for
fixed phase bias φ = 0. The local coefficients LN11 and
LS22 are plotted in units of G0T and GTT

2, respectively,
where G0 denotes the electrical conductance quantum
and GT = (π2/3h)k2

BT the thermal one. The nonlocal
thermoelectrical coefficients LN12 and LS21 are plotted in
units of

√
G0GTT 3. In these plots, we consider an inter-

mediate coupling parameter to the probe (|t|2 = 0.5) and
set the length of the junction three times longer than the
superconducting coherence length, i.e. L/ξL = 3. Such
a value of L corresponds to the case of a long junction
(given a coherence length ξL in the proximized TI of the
order of 600 nm), which allows the emergence of oscil-
lations in the linear-response coefficients due to the pro-
liferation of resonant states in the junction. The choice
of the value |t|2 = 0.5 comes from the fact that by in-

creasing the coupling |t|2, the resonances get broadened,
eventually disappearing when the coupling approaches
unity, irrespective of the length L (not shown).

Assuming ∆0,L < ∆0,R (namely r > 1), it turns out
that the DS energy εDS(Φ), modulated by the flux Φ,
modifies the dispersion curves of Fig. 2 in a different
way for the right and left superconductor. In particular,
for |εDS(Φ)| < ∆0,L the spectrum is gapped for energies
ε < ∆0,L − |εDS(Φ)| in both superconducting leads. For
∆0,L < |εDS(Φ)| < ∆0,R we are in a situation where the
gap is closed for the left superconductor, but open for
the right one. Finally when |εDS(Φ)| > ∆0,R the gaps
are closed for both sides of the junction.

Figure 3. Onsager coefficients LN
11 (a), LN

12 (b), LS
21 (c) and

LS
22 (d) as functions of εDS(Φ)/∆0,L and r = ∆0,R/∆0,L for

φ = φR − φL = 0, T/TC,L = 0.1, L/ξL = 3 and |t|2 =
0.5. Such quantities are normalized as follows: LN

11/(G0T ),
LS

22/(GTT
2) and (LN

12, L
S
21)/(

√
G0GTT 3).
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These different regimes can be recognized in the behav-
ior of the Onsager coefficients, depicted in Fig. 3, com-
puted at low temperature T/TC,L = 0.1 (with TC,L the
critical temperature of the left superconductor). In par-
ticular we recognize a subgap region (i) (between vertical
solid lines) for |εDS(Φ)/∆L| < 1, a partially gapped re-
gion (ii) (between the dashed and solid lines) and the
supragap region (iii) (below diagonal dashed lines). No-
tice that the clear distinction of the different regions
emerging in the behavior of all the Onsager coefficients
of Fig. 3 can be used, in principle, as an experimental
observation of the different zero temperature gaps of the
superconductors forming the junction.

For the electrical coefficient LN11/G0T , depicted in
Fig. 3(a), we can recognize a similarity with SI-
NIS (superconductor-insulator-normal metal-insulator-
supercondutor) junctions where transport is typically
suppressed in the subgap regime (i), though resonances
are present (vertical red stripes) that correspond to An-
dreev bound states (ABSs) crossing zero energy. We
checked that the linewidth of ABS resonances is depen-
dent on the coupling parameter (by increasing the cou-

pling |t|2 the resonances broaden). Furthermore, the
number of resonances inside the region (i) grows with
the ratio L/ξL due to the proliferation of ABSs in the
junction (not shown). Similarly, in the partially gapped
(ii) and the supragap (iii) regions we see a weak oscil-
lating behavior (vertical stripes) reminiscent of Andreev
interferometric effects. On the other hand, we observe
that the thermal coefficient LS22/GTT

2 [Fig. 3(d)] is com-
pletely suppressed in region (i) since, in this case, the
ABS resonances cannot contribute to thermal transport
due to the Andreev mirror effect. Indeed, Andreev re-
flection does not allow the flow of energy through the S
interface, since energy is carried by QPs, but not by the
condensate. However, the thermal conductance becomes
finite and large in the supragap region (iii) where energy
can be carried by QPs. In the region (ii) the thermal
transport between the two superconductors is not com-
pletely suppressed and it is influenced by an Andreev in-
terferometric mechanism which determines an oscillating
behavior.

Concerning the nonlocal coefficients LN12 and LS21, de-
picted in Fig. 3(b) and (c) respectively, we confirm the
validity of the discussed generalized Onsager symmetry
which becomes LN12(Φ) = −LS21(Φ) (being here φ = 0).
The nonlocal coefficients clearly resemble some aspects
of those discussed in Ref. 44 for identical gaps. In partic-
ular, LN12 is suppressed in the subgap region (i) and two
main peaks at |εDS(Φ)| = ∆0,R appear at the boundaries
of regions (ii) and (iii) (dashed lines). In this condition,
for εDS > 0 (εDS < 0), the top left (top right) band
of the right proximized region in Fig. 2(c) nearly touch
zero energy opening the possibility for thermoelectrical
effects. In particular, the helicity of the edge states al-
lows (for example, for εDS > 0) a flow of hole-like QPs
[whose dispersion is represented by the dashed red curve
in Fig. 2(a)] to move to the right from the proximized

region SL and a flow of electron-like QPs [whose disper-
sion is represented by the solid blue curve in Fig. 2(c)]
to move to the left from the proximized region SR. Un-
der the application of a small temperature bias between
the superconductors, the unbalance between the flow of
cold electron-like QPs from the right and hot hole-like
QPs from the left leads to a net thermoelectric current
flowing through the probe44.

Figure 4. Nonlocal thermoelectrical coefficient LN
12, expressed

in units of
√
G0GTT 3, as a function of εDS(Φ)/∆0,L for r = 2

and different temperatures. We see that also in the subgap
region LN

12 6= 0 when temperature increase. Parameters are
as in Fig. 3.

The true novel feature of the asymmetric case is repre-
sented by the appearance of a finite thermoelectric con-
tribution (LN12 6= 0) in region (ii) [see Fig. 3(b)], where the
right superconductor is still gapped. In such a case the
situation resembles the Andreev interferometric mecha-
nism, which appears at finite φ also with gapped bands.45

Indeed, even if in this case φ = 0, the flux Φ does not
only generate a bands shifting due to DS but also af-
fects the Andreev interference. This effect, in principle,
is also present in the subgap region (i) even if it is expo-
nentially suppressed as ∼ e−(|εDS(Φ)|−∆L)/kBT . Indeed,
only the supragap states contribute to thermoelectricity
as long as they are thermally activated. This behavior is
clarified by investigating the evolution of LN12 for differ-
ent temperatures. Figure 4 represents a horizontal cut of
Fig. 3(b) at r = 2 for four different values of the temper-
ature T [the blue curve corresponds to the data plotted
in Fig. 3(b)]. When the temperature increases, LN12 also
increases even in the subgap region (i). Furthermore, for
higher temperatures all the resonances are smoothened
due to the averaging between different energies.

At the lowest temperature LN12 presents changes of sign
which disappear for higher values of T . This can be un-
derstood by noting that the sign of LN12 directly reflects
the nature of carriers in the junction. For kBT � ∆0,L

and for |εDS | . ∆0,R, only one type of carries, coming
from the superconductor with the smaller gap, are al-
lowed for the transport within the energy window 0 ≤
ε . kBT (see Fig. 2): namely hole-like QPs (electron-like
QPs) for εDS > 0 (εDS < 0). This flux of hole-like QPs
(electron-like QPs) is contrasted by an opposite flux of
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electron-like QPs (hole-like QPs) originated due to An-
dreev reflections occurring at the interface with the other
superconductor which is still gapped in that energy win-
dow. The (nontrivial) unbalance between these positive
and negative charged carries determines the sign of the
charge current flowing inside the probe and thus the sign
of LN12.

As a final remark, it is important to notice that, dif-
ferently from the results discussed in Ref. 44 for iden-
tical gaps where LN12 was an odd function of Φ (namely
LN12(Φ) = −LN12(−Φ)), in the asymmetric case (i. e. ∆L 6=
∆R) LN12(Φ) does not manifest any particular symmetry
under the inversion Φ → −Φ (as clearly emerges from
Fig. 4). This is due to the fact that in the symmetric
case there are extra symmetries in the scattering coeffi-
cients, as discussed in Appendix B.

C. Asymmetric case for Φ = 0: interference effects
on local thermoelectricity

Let us first recall that in Ref. 45 we have shown that
a finite φ alone, i.e. even in the absence of the DS, is
sufficient to establish a nonlocal thermoelectric response
due to an Andreev interferometric effect. Here we demon-
strate that Andreev interferometry generates another pe-
culiar effect that contributes to LN12, which emerges only
by increasing the left/right asymmetry. We consider the
extreme situation in which ∆0,R →∞ (i. e. r →∞), so
that we can neglect all the contributions from the QPs on
the right side, allowing us to obtain a simple analytical
result for the charge current at probe J−N . In other words
we are focusing on the regime where kBTL,∆L � ∆R.
As a consequence of that choice, the temperature TR will
not even enter in the discussion. Therefore, the only
thermal bias capable to drive a thermoelectric current
through the probe is the local one present between the
left superconductor SL and the probe N itself. Interest-
ingly, the right superconductor SR, even if it does not
directly contribute to the energy transport (being fully
gapped), still influences the exchange of charge between
the N and SL through the Andreev reflection processes
occurring at the interface with SR. The resulting depen-
dence of the current J−N on the phase difference φ, see
below, is due to the Josephson coupling established be-
tween the two superconducting leads. Notice that this
interference (coherent) effect on the local thermoelectric-
ity between N and SL can be controlled by the application
of a dissipationless current between the two superconduc-
tors, which changes the phase difference φ.

The charge current at the probe takes the form

J−N =
2e

h

ˆ ∆L

0

dε F+−
NN (ε) [A(ε, φ) +A(ε,−φ)] + (12)

2e

h

ˆ ∞
∆L

dε
∑

σ,σ′=±
σ |r||σ−σ

′| Fσ,σ
′

NL (ε) Q(ε,−σ′φ),

where the first term is the subgap energy contribution

and the function

A(ε, φ) =
2|t|4 ·Θ(∆L − ε)

1 + |r|4 + 2|r|2 cos
(

2π Lε
~vF + φ+ arcsin

(
ε

∆L

)) ,
with |r|2 = 1− |t|2. Such first term vanishes when VN =
0, since F+−

NN = 0 in that case (see Eq. (5)). The second
term, instead, collects all the contribution for energies
above the left gap and the function

Q(ε, φ) =

(
g(ε)2 − 1

)
·Θ(ε−∆L)

g(ε)2 + |r|4 − 2g(ε)|r|2 sin (2π Lε
~vF + φ)

, (13)

with g(ε) = earcCosh(ε/∆). Note that in Eq. (12) the func-

tion FαβNL = fαN (ε)− fβL(ε) involves only the electrodes N
and SL. From Eq. (12) it is possible to derive the analyt-
ical expressions of the Onsager coefficients LN11 and LN12

of Eq. (9) in the case VN , δT → 0:

LN11 = −2e2

h

ˆ ∆L

0

dε 2Tf ′0(ε) [A(ε, φ) +A(ε,−φ)] + (14)

− 2e2

h

ˆ ∞
∆L

dε Tf ′0(ε)(1 + |r|2) [Q(ε, φ) +Q(ε,−φ)]

LN12 = −2e

h

ˆ ∞
∆L

dε ε Tf ′0(ε)|t|2 [Q(ε, φ)−Q(ε,−φ)] (15)

where f ′0(ε) =
[
4kBT cosh (ε/2kBT )

2
]−1

, is the deriva-

tive of the Fermi function f0(ε) =
[
1 + eε/kBT

]−1
. From

Eqs. (14) and (15) clearly emerges the even and odd par-
ity in φ of LN11 and LN12, respectively. In Fig. 5 we plot

Figure 5. Charge current J−N linear coefficients LN
11 and LN

12

in the extreme asymmetric limit r → ∞ as a function of the
phase bias φ and junction length L. Other parameters are
T/TC,L = 0.2, |t|2 = 0.5

those two quantities with respect to the phase bias φ
and the junction length L. The main difference with re-
spect to the purely nonlocal thermoelectric coefficient of
Ref. 45 is that the thermoelectric coefficient LN12 of Eq.
(15) depends on sin (2π Lε

~vF + φ) (see Eq. (13)) instead

of cos (2π Lε
~vF + φ) (see Appendix C). For long junctions
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(i. e. L→∞) the contributions for different energies av-
erage to zero recovering the expected result of a standard
NS junction. This clearly shows that when the super-
conducting leads are far from each other, the Andreev
interferometric mechanism on the local thermoelectrical
transport is suppressed.

We conclude this section by observing that the local
thermoelectric effect in the probe, which emerges with
gap asymmetry, represents one of the main source of dis-
turbance to the measurement of the nonlocal thermoelec-
tric effect discussed in the sections above. This implies
that, in order to clearly see the nonlocal thermoelectri-
cal effect, it is convenient to be in a situation with weak
asymmetry. However, we estimated that this local ther-
moelectric effect is of the order of few µV/K, to be com-
pared with the nonlocal thermoelectric effect determined
by DS, discussed before, which could reach values of the
order of many tenths µV/K (see below). So we do not
expect that spurious local thermoelectrical effects would
substantially affect the nonlocal measurements at least
for moderate gap asymmetry.

D. Linear-response heat current at the probe

In the asymmetric case (∆R 6= ∆L) it is interesting to
discuss the behavior of the heat current flowing in the
probe J+

N . Similarly to Eq. (9), in the linear-response
regime we can write

J+
N = LN21

VN
T

+ LN22

δT

T 2
, (16)

The coefficient LN21 accounts for the local Peltier effect at
the probe (describing how the heat current at the probe is
influenced by the voltage bias VN ). While LN22 represents
the transverse heat response at the probe, i.e. the heat
current induced in the probe as determined by a trasver-
sal temperature gradient between the superconductors.
In contrast to the symmetric case in which J+

N = 0 in
the linear response regime (see Appendix C and Refs. 44
and 45), in the asymmetric configuration J+

N can be finite
even in linear response. This can be interpreted as the
consequence of the contributions of the different heat cur-
rents deriving from the two superconducting leads kept at
different temperatures. In Fig. 6 we plot LN21, panel (a),
and LN22, panel (b), as functions of εDS and r; both quan-
tities are significantly different from zero only in region
(ii). Indeed in region (i), J+

N vanishes since the system it
is not able to activate enough supragap states.121 On the
other hand, in region (iii) the two gaps are both closed
and there is almost no difference in the thermal coupling
between right and left leads. Since the probe is at the
average temperature T = (TR + TL)/2, the system be-
haves very similarly to the symmetric case (r = 1 bottom
border of the figures) where the thermal flux from hotter
lead is compensated with the thermal losses in the colder
lead giving a null net thermal current in the probe.

Figure 6. Heat current J+
N Onsager coefficients LN

21 (a), LN
22

(b) as functions of εDS(Φ)/∆0,L and r = ∆0,R/∆0,L, for
φ = φR − φL = 0, T/TC,L = 0.1, L/ξL = 3 and |t|2 = 0.5.
Such quantities are normalized as follows: LN

21/(
√
G0GTT 3),

LS
22/(GTT

2).

Furthermore, we notice the behavior of the transverse
thermal coefficient LN22 of the system can be described
in terms of a thermal divider, i.e. a device that controls
the sign of the heat current in an intermediate third ter-
minal (the probe) assuming that there is a main heat
flow generated from the thermal gradient δT (between
the superconductors).122 In particular the three terminal
setup can be described as a series of two thermal con-
ductances with the probe in the middle. In such a case,
the heat flux in the probe would depend essentially on
the ratio of thermal resistances. Indeed, in region (ii) for
r > 1 the thermal coupling of the probe with right lead is
very opaque with respect to the left lead. Since the probe
temperature is fixed at T = (TR + TL)/2 there is more
heat flowing from the left lead than into the right one, de-
termining the negative sign of LN22 (since positive thermal
current of the probe is defined exiting from the probe).123

We verified that the sign of LN22 changes globally for the
opposite case r < 1 (not shown). This behavior qualita-
tively resembles the concept of the thermal router116 in
superconducting hybrid systems.

In region (ii), we notice that both linear coefficients
are also oscillating (see the vertical stripes). In particu-
lar, the sign changing of LN21 with Φ reflects the change
of the main carrier (electron-like or hole-like QP) as de-
termined by Andreev interference discussed in Sec. III B.
It is indeed important to remind that LN21 being a lo-
cal Peltier-like coefficient its sign will be directly depen-
dent to the sign of the dominant carrier. Instead LN22 has
not similar sign changes being associated to a transver-
sal thermal response that cannot distinguish on the main
carrier charge sign.
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Figure 7. Electrical power P in units of GTCTC as a function of eVN/∆0 versus εDS(Φ)/∆0 in the case of short (a) L/ξ = 0.1,
medium (b) L/ξ = 1 and long (c) L/ξ = 3 junction. In blue is depicted the generated power Pgen = P > 0. The white dashed
line corresponds to the stopping voltage curve, while the red dashed line indicates the maximum generated power Pmax. Here
we chosen |t|2 = 0.5 (an intermediate coupling parameter representing a not fully Ohmic contact with the probe), δT/TC ≈ 0.4
(large enough to guarantee the highest possible electrical power by keeping constant and equal the gaps of the superconductors)
with T/TC = 0.2 and φ = 0.

IV. NON-LINEAR RESPONSE REGIME

In this section we investigate the behavior of the non-
local thermoelectricity from the perspective of a thermo-
dynamic engine within the nonlinear regime. The laws
of thermodynamics set very general constraints on the
currents of Eq. (4). In particular, the first law of ther-
modynamics, which guarantees energy conservation, can
be written as ∑

i

J+
i = P, (17)

where P is the electrical power

P = −
∑
i

J−i Vi. (18)

With this definition, P is positive when the current flows
against the applied bias, i. e. there is a thermopower
generated in the system that can be dissipated on an
external load (P ≡ Pgen). The device thus works as a
thermoelectrical engine.49,50,91,107,113 Notice that, since
we set VL = VR = 0, Eq. (18) reduces only to P =
−J−NVN , which means that the power is dissipated in
the probe circuit only. Another important performance
quantifier is the efficiency defined as

η =
Pgen∑+
i J

+
i

, (19)

where the numerator corresponds to the electrical power
generated Pgen, while the denominator corresponds to
the total heat current entering the system (the apex +
in the sum means that we are summing only positive heat
currents). In the remaining part of the paper we discuss
the symmetric case (r = 1), with ∆0 ≡ ∆0,L = ∆0,R

and TC ≡ TC,L = TC,R. However, when the tempera-
ture difference between the two superconductors becomes

comparable with the critical temperatures, the supercon-
ducting gaps on the two sides of the junction will take
different values. In what follows we take into account this
fact by including self-consistent temperature dependence
of the two gaps.

A. Electrical Power and maximum Power

The electrical power P of Eq. (18) is presented in
Fig. 7 and expressed in units of GTCTC (with GTC =
(π2/3h)k2

BTC the thermal conductance quantum at TC),
as a function of eVN/∆0 and εDS(Φ)/∆0 in the case
of short L/ξ = 0.1 (Fig. 7 (a)), medium L/ξ = 1
(Fig. 7 (b)) and long L/ξ = 3 (Fig. 7 (c)) junctions,

with ξ = ~vF /π∆0. Here we set |t|2 = 0.5, represent-
ing a intermediate Ohmic contact with the probe, and a
phase difference φ = 0. It is important to notice that
here we set T = 0.2TC and δT/TC ≈ 0.4, which is the
largest thermal bias for which TL, TR . 0.4TC , such that
the superconducting gaps can be safely considered still
constant [∆L(TL) ≈ ∆R(TR) ≈ ∆0].

In Fig. 7 the white dashed lines represent the stopping
voltage Vstop defined through the equality Pgen(Vstop) =
J−N (Vstop) = 0, while the red dashed lines locate the maxi-
mum generated power Pmax = maxVN [Pgen]. By compar-
ing Figs. 7 (a), (b) and (c), we can see that the behavior
of the electrical power for different lengths of the junction
remains roughly the same. In particular, when the gap
closes due to the flux bias Φ, i.e. when |εDS(Φ)/∆0| ≈ 1,
the electrical generated power Pgen is maximized irre-
spective of the length L. For long junctions, the only
additional feature is the presence of ripples in the gen-
erated power due to the proliferation of resonant states
inside the junction [see Fig. 7 (c)] which in turn affects
also the supragap states. No oscillations occur at any
lengths when |t|2 ≈ 1 (not shown). Furthermore, an-
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other important feature which emerges from Fig. 7, is
that the sign of the stopping voltage Vstop changes when
Φ → −Φ as a consequence of the antisymmetry of the
thermoelectricity under the magnetic field inversion.

Figure 8. Maximum generated power Pmax in units of GTCTC

as a function of εDS(Φ)/∆0 versus φ/π. Here we considered
L/ξ = 1, |t|2 = 0.5 and δT/TC ≈ 0.4 (large enough to guaran-
tee the highest possible electrical power by keeping constant
and equal the gaps of the superconductors) with T/TC = 0.2.

A study of the dependence of the maximum generated
power on the phase difference φ is presented in Fig. 8.
Here, Pmax is plotted in units of GTCTC , as a function
of the two external tuneable knobs, i. e. εDS(Φ)/∆0 and
φ/π, setting L = ξ. This length is realistic assuming a
scanning tunneling microscopy (STM) tip with a state-of-
the-art width of 100 nm and a coherence length ξ in the
proximized TI of the order of 600 nm.114 Furthermore,

Figure 9. Maximum generated power Pmax in units of GTCTC

as a function of δT/TC for different values of the coupling
parameter |t|2 (solid lines) in comparison with the maximum
power in the linear regime (dashed lines). Other parameters in
the heading. Here we chosen T/TC = 0.5 in order to maximize
the range of the thermal gradient δT/TC so that the gap of
the hotter superconductor does not close (i. e. TL/TC . 1).

over a length L ∼ ξ no backscattering events are expected
to occur at the operating temperatures for our setup, typ-

ically of a few kelvin. Also in this case we consider an in-
termediate coupling parameter |t|2 = 0.5 with the probe
and a thermal gradient δT/TC ≈ 0.4 with T/TC = 0.2.
Importantly, Fig. 8 shows that the following symmetry

holds: Pmax(~θ) = Pmax(−~θ). The same holds, in general

for the electrical power, i. e. P (~θ, VN ) = P (−~θ,−VN ).
In Fig. 9 we present the results of the maximum gen-

erated power Pmax as a function of δT/TC for different

values of the coupling parameter |t|2. In this case, we
explicitly consider the temperature dependence of the
superconducting gaps by using the approximated for-

mula ∆i = ∆0 tanh
(

1.74
√
TC/Ti − 1

)
(with i = L,R)

which is accurate better than 2% with respect to the self-
consistent BCS result.84,92 We compare it with the maxi-
mum power in the linear response regime given by the re-

lation Pmax = GS2

4 δT 2 =
L2

12

L11

δT 2

4T 3 (dashed lines).91 In the

figure we consider T/TC = 0.5 in order to maximize the
excursion of the thermal gradient δT/TC ∈ [0, 1] by pre-
serving the superconducting state of the leads (namely,
such that the gap of the hotter superconductor does not
close, i. e. TL/TC . 1). Here we set L/ξ = 1, φ = 0 and
εDS(Φ)/∆0 = 1. From an analysis of the result of Fig. 9
emerges that all the curves match the trend of the linear
regime for small δT as expected. Nonlinearities emerge
only for δT/TC & 0.4 due to the closure of the gap of the
hotter superconductor.

It is important to notice that the red curves of Fig. 9,
corresponding to the case of perfect coupling with the
probe (|t|2 = 1), do not depend on neither the phase
difference φ nor the length of the junction L. This curve
clearly maximizes the performance with respect to all the
other cases |t|2 < 1.

B. Efficiency and Lasso diagram

We now present in Fig. 10, the results for the effi-
ciency, defined in Eq. (19), by assuming perfect cou-

pling with the probe |t|2 = 1 and εDS(Φ)/∆0 = 1, for
which we have maximum power (according to the dis-
cussion of the previous section). In this situation, both
the efficiency η and Pmax do not depend on the phase
difference φ and the junction length L. Here, we con-
sider different values of the temperature of the probe,
namely T = 0.25 TC , 0.5 TC and 0.75 TC , correspond-
ing to different colors in Fig. 10. For each value of
T , we take three different values of the thermal bias
δT = 0.1 δTmax, 0.5 δTmax, δTmax (corresponding to the
different style of the lines: solid, dashed, dotdashed).
δTmax take the following value

δTmax = min {2T, 2(TC − T )} (20)

in order to always fulfill the condition 0 < TL, TR < TC
for any operating temperature of the superconductors.
All the curves in Fig. 10(a) present the same “reversed-
parabola” behavior, passing through VN = 0 when the



11

(a)

(b)

Figure 10. (a) - Efficiency η normalized with respect the
Carnot efficiency ηC = δT/T as a function of eVN/∆0. (b)
- So-called lasso diagrams showing the normalized efficiency
η/ηC at every power output expressed in units of GTCTC .
Different colors correspond to different probe’s temperature
T/TC = 0.25 (blue line), T/TC = 0.5 (yellow line), T/TC =
0.75 (red line). Different style of lines correspond to different
values of the thermal gradient (normalized with respect to
δTmax of Eq. (20): δT/δTmax = 0.1 (solid line), δT/δTmax =
0.5 (dashed line), δT/δTmax = 1 (dot-dashed line).

themocurrent becomes null again, similarly to what is ex-
pected for a linear thermoelectrical engine91. The nonlo-
cal thermoelectrical engine has a quite small maximum
value for the efficiency, i. e. η/ηC . 3.5%. This low effi-
ciency can be attributed to the large flux of heat entering
the system [thus increasing the denominator of Eq. (19)]
which occurs when gaps close as a consequence of the DS.

A convenient way to present the efficiency at a given
power output, and vice versa, is in the form of lasso di-
agrams as depicted in Fig. 10(b). The parameter that is
changed along the lasso-line is the applied voltage VN .
As we can notice, the lasso-curves in Fig. 10(b) are long
and narrow loops for all values of the controlling param-
eters (T and δT ). This implies that maximum efficiency

and maximum output power occur at the same value of
parameters. This is advantageous for the operation of a
thermoelectric device, where one typically must decide
whether to optimize the engine operation with respect to
efficiency or power output and constitute a major differ-
ence between this nonlocal thermoelectrical engine and
standard linear thermoelectrical engines.91

C. Nonlinear Seebeck coefficient

In this section we present the result of the nonlinear
Seebeck coefficient as a function of δT/TC for different

values of the coupling parameter |t|2. In Fig. 11 we plot
the nonlinear nonlocal Seebeck coefficient defined as

S = −Vstop
δT

(21)

expressed in units of µV/K, where Vstop is the stopping
voltage for which J−N (Vstop) = Pgen(Vstop) = 0 (see white
dashed lines of Fig. 7). We observe that the nonlinear
Seebeck coefficient is quite big, considering that the op-
erating temperature for these devices is of the order of
few kelvin. Moreover, we see that S weakly depends on
the temperature difference as long as the gap remains
unaffected. Furthermore, we see that S increases going
toward the tunnelling limit |t|2 → 0. We can conclude
that nonlocal thermoelectricity is a strong effect.

Figure 11. Seebeck coefficient in units of µV/K as a function
of δT/TC for different values of the coupling parameter |t|2.
The other parameters are the same of Fig. 9 (see the heading).

V. CONCLUSIONS

We have discussed the nonlocal thermoelectricity gen-
erated in a three terminal topological Josephson engine
where one edge of a 2D TI is coupled to a normal metal
probe. The nonlocal thermoelectricity is associated to
the helical nature of the edge states and it is triggered
by the application of the Doppler shift εDS(Φ) (flux bias
Φ) and/or by the phase difference φ between the super-
conductors. In the paper we have discussed in detail
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the case of asymmetric gaps which generalize previous
studies of the same device to a more realistic situation
where the right and left leads are not exactly identical.
This is also necessary in order to investigate strong non-
linear conditions which typically occur in experiments.
We have found that nonlocal thermoelectricity is present
also in the asymmetric case. The nonlocal Onsager coef-
ficients satisfy the standard symmetry between Seebeck
and Peltier coefficients if the heat current between the
two superconductors is properly defined to take into ac-
count the nonlocality. We have found that, in the asym-
metric gap case, the Doppler shift develops a strong non-
local thermoelectric effect when the two gaps close. We
have discussed how the gap asymmetry gives rise to a new
intermediate regime (for ∆L < |εDS(Φ)| < ∆R) where
Andreev interference determines a weak nonlocal thermo-
electrical effect without applying a phase bias. We have
investigated how this Andreev mechanism influences also
the local thermoelectric effect. Furthermore, we have an-
alyzed the heat current in the probe finding that it can be
finite and the system can be viewed as a thermal router
depending on the difference between the superconducting
gaps.

Finally, we have discussed the nonlinear performance
of the nonlocal thermoelectric machine. In particular, we
have studied the symmetry of the Seebeck coefficient, the
power generated and the efficiency. The latter turns out
to be quite low (with a maximum value η/ηc ≈ 3.5%).
Notably, efficiency and power are maximized simultane-
ously for a wide range of parameters. We have finally
estimated that the Seebeck coefficient for large nonlinear
temperature differences reaches a few tenths of µV/K,
which is an impressive value given the operating tem-
perature of few kelvin required by the BCS supercon-
ductors. We hope that this research will trigger further
experimental investigations, since we expect that the sta-
bility against the possible gap asymmetries and the in-
tensity of the effect would be detectable with nowadays
low-temperature technologies.
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Appendix A: Scattering matrix

We analyze the setup assuming the absence of inelastic
scattering since it may appear for junctions longer than
coherence length L � ξ = ~vF /π∆ and/or high tem-
peratures where standard low temperature BCS super-
conductivity cannot survive. In such case dc transport
is determined by the quantum mechanical scattering ma-
trix S99, which yields scattering properties at energy ε, of
a phase-coherent, non-interacting system described by a
Hamiltonian H such as Eq. (1) . The scattering problem,
in terms of scattering matrix, can be formulated as

Ψα
(i,σ)|out = Sαβ(i,σ)(j,σ′)Ψ

β
(j,σ′)|in (A1)

It relates incoming/outgoing states (j, σ′)/(i, σ) with
{σ, σ′} = {↑, ↓} labeling the spin-channel at the respec-
tive lead i, j = N,L,R. In Eq. (A1), {α, β} = {e, h} may
indicate qps and qhs in the normal probeN , or eventually
{α, β} = {ẽ, h̃} label QPs and QHs in the superconduc-
tors. In order to compute the full scattering matrix S
of the system, we proceed by writing first the scattering
matrix SN describing the coupling of the metallic probe
with the TI edge

c↓N
b↓N
c↑N
b↑N
c↓L+

b↓L+

c↑R−
b↑R−


=



0 0
0 0

r 0
0 r∗

r 0
0 r∗

0 0
0 0

0 0
0 0

t 0
0 t∗

t 0
0 t∗

0 0
0 0

0 0
0 0

t 0
0 t∗

t 0
0 t∗

0 0
0 0

0 0
0 0

r 0
0 r∗

r 0
0 r∗

0 0
0 0


SN



c↑N
b↑N
c↓N
b↓N
c↑L+

b↑L+

c↓R−
b↓R−


(A2)

where we have indicated with c↑↓i /c̃
↑↓
i and b↑↓i /b̃

↑↓
i the

incoming and outgoing electrons/qps and holes/qhs re-
spectively with i = L±, R±, N labeling the correspond-
ing lead (with −(+) indicating the left(right) side of
the S-TI interface). In particular, for the previous
formula SN , we assumed a symmetric beam splitter
which effectively describes the contact interface between
the normal lead N and the TI where r = cos(η) and
t = i sin(η) with η ∈

[
0, π2

]
such that unitarity is

satisfied, i.e. |r|2 + |t|2 = 1. In the matrix the com-
plex conjugate r∗ and t∗ are the amplitudes for the
holes. Indeed SeeN (i,σ)(j,σ′)(ε) acts in the particle sec-

tor, and the scattering (sub-)matrix for the holes satisfies

ShhN (i,σ)(j,σ′)(ε) =
[
SeeN (i,σ)(j,σ′)(−ε)

]∗
as requested by

the particle-hole symmetry of the system)63. Obviously
the elements SαᾱN (i,σ)(j,σ′)(ε) (with α = e, h), coupling

incoming electrons(holes) with outgoing holes(electrons)
are necessarily zero since only ordinary scattering pro-
cesses are involved, no Andreev reflections occur for nor-
mal metal probe. The scattering matrix SN describing
the contact between the normal-metal probe and the TI
edge, can be also recasted in the more compact fashion
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SN (η) = i sin (η)ζ1 ⊗ σ1 ⊗ τ3 + cos (η)ζ0 ⊗ σ1 ⊗ τ0, ex-
pressed in terms of the Pauli matrices ζ, σ and τ respec-
tively acting in the N -TI channels space, spin space and
PH space. Then we introduce the scattering matrices Si
with i = L/R describing respectively left/right interfaces
of the TI with the superconductors. For the left interface
we find


c̃↓L−
b̃↓L−
c↑L+

b↑L+

 =


0 rL

ẽh̃
rL
h̃ẽ

0
tLẽe 0
0 tL

h̃h

tLeẽ 0
0 tL

hh̃

0 rLeh
rLhe 0


SL


c̃↑L−
b̃↑L−
c↓L+

b↓L+

 (A3)

that have been obtained solving the wave function
matching problem at the specific interface between su-
perconducting leads L and the upper edge state of the
TI. The obtained coefficients rLαβ and tLαβ represent re-
spectively the reflection and transmission amplitudes of
an incoming particle of type β to a particle of type α at
the interface. Those coefficients can be compactly writ-
ten as

rLγγ̄ = γ
vLγ̄
uLγ̄

eiαγ̄eiγφL

rLγ̃ ˜̄γ = − vLγ
uLγ

e−iβ
L
γ ·ΞLγ (ε)

tLγγ̃ =

√
u2
Lγ̄ − v2

Lγ̄

uLγ̄
e
i
2 (αγ̄−βLγ̄ )e−iγ

φL
2 eiγ̄λ · ΞLγ̄ (ε)

tLγ̃γ = γ̄

√
u2
Lγ − v2

Lγ

uLγ
e
i
2 (αγ−βLγ )eiγ̄

φL
2 eiγ̄λ · ΞLγ (ε) (A4)

where the qp/qh index (γ = e/h) in the l.h.s. is converted
in a simple sign (γ = +/−) in the r.h.s. to match with
the notation used in Eq. (3). We also introduced the sym-
bol ΞLγ (ε) = 1 when |εDS | > ∆L ∧ 0 < ε < |∆L − |εDS ||
and ΞLγ (ε) = Θ(|εγ | − ∆L) otherwise. The exponents

take the values αγ = εγ/εc and βiγ =
√
ε2γ −∆2

i /εc with

εc = ~vF
L the Thouless energy of the junction. The phase

λ = 2 arg
(

1 + i ΛL
2~vF

)
accounts of the contact potential

ΛL(x) in the BdG Hamiltonian of Eq. (1). A similar re-
sult for the scattering matrix at the right interface SR
can be computed. The scattering coefficients can be ob-
tained from Eq. (A4) by replacing (rLαβ , t

L
αβ)→ (rRβα, t

R
βα)

in the l.h.s. and, in the r.h.s., making the substitution
L→ R and φL → −φR.

In conclusion, following the standard procedure pre-
sented in Ref. 115, the full scattering matrix of the sys-
tem is obtained by combining the three scattering matri-

ces such as

S = SL ◦ SN ◦ SR (A5)

which determines the fundamental scattering between
the three terminals.

Appendix B: Symmetries

It is known45,99,112 that the scattering coefficients

satisfy relations due to microreversibility Pα,βi,j (ε, ~θ) =

P β,αj,i (ε,−~θ), particle-hole symmetry Pα,βi,j (ε, ~θ) =

P−α,−βi,j (−ε, ~θ) and unitarity∑
αi

Pα,βi,j (ε, ~θ) = Nβ
j (ε, ~θ))∑

βj

Pα,βi,j (ε, ~θ) = Nα
i (ε, ~θ),

where Nα
i (ε, ~θ) is the number of open channels for α-

like QPs at energy ε in lead i. Moreover, when ∆L = ∆R

(namely, the system is left/right symmetric), the scatter-
ing coefficients show also the following additional symme-
tries

Pα,βN,N (ε, ~θ) = P−α,−βN,N (ε, ~θ),

Pα,βN,L(ε, ~θ) = P−α,−βN,R (ε, ~θ),

Pα,βN,L/R(ε, ~θ) = P−α,−βN,L/R (ε,−~θ). (B1)

Interestingly, again in the left/right symmetric case, one

finds that the scattering coefficients Pα,βi,j do not depend
on the position x0 of the probe, but simply on the total
length L of the junction. The reason for this relies on
the symmetry exhibited by the different paths that take
a QP of type β from lead j to a QP of type α in lead
i. More specifically, due to the helicity of the edge state
and the spin-independence of the transmission amplitude
t, each of these paths comes in pair with its symmetric
one (obtained by exchanging left and right), in such a way

that their contribution to Pα,βi,j only depends on L. On
the contrary, in the asymmetric case, i. e. when ∆L 6=
∆R, the position of the probe x0 along the edge does
matter. When we discuss the asymmetric case usually
we assume to fix the probe tip just in the middle of the
junction, i.e. x0 = L/2.

Appendix C: Analytical results of the probe’s
currents in the symmetric case ∆L = ∆R

Here we discuss some analytical results for the symmet-
ric case (i. e. ∆L = ∆R = ∆) exploiting the symmetry
expressed in the relations of Eqs. (B1). We concentrate
mainly on the quasi-particle charge (γ = −) and heat
(γ = +) current at the probe N that can be written as
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Figure 12. Regions of validity in Eq. (C4) for εDS > 0: εDS < ∆ (left panel), εDS = ∆ (middle panel), εDS > ∆ (right panel).

JγN =
2

h

ˆ ∞
0

dε eδγ,−(ε− eVN )δγ,+
{
F γN (ε)

[
Aγ(ε, ~θ) +Aγ(ε,−~θ)

]
− F γLR(ε)

[
Qγ(ε, ~θ) + γQγ(ε,−~θ)

]}
(C1)

in which we defined the Fermi function
sums/differences (γ = +/−) at the probe F γN = f+

N+γf−N
or among the two superconductors F γLR = f±L + γf∓R .
The quantity

Aγ(ε, ~θ) =
(
N+
N − P

++
NN + γP−+

NN

)
/2

=
(
N−N − P

−−
NN + γP+−

NN

)
/2 (C2)

represents the strength of the qp charge (with γ = −) or
the heat flux (with γ = +) transferred from the probe

into the edge at given energy ε and ~θ. The scattering
probabilities P±±NN describe normal reflections, P±∓NN the

Andreev ones and N
+(−)
N the number of open channels

for electrons (holes) at the probe. The quantity

Qγ(ε, ~θ) =
(
P++
NSL

+ γP−+
NSL

)
= (−1)δγ,−

(
P+−
NSR

+ γP−−NSR
)
. (C3)

describes the strength of the charge (heat) γ = − (γ = +)
transferred into the probe N when a qp is injected from
the superconductor L. For γ = −, due to the gap symme-
try and Eq. (B1), it coincides with amount of qh (with
opposite sign) transferred into the probe when a qh is
injected from R. Similarly, when γ = +, Eq. (C3) rep-
resents the amount of energy transferred into the probe
when a qp(qh) is injected from L(R).

These quantities have been discussed in Ref. 45 in the
case of the charge current (i. e. γ = −) and without
the Doppler shift Φ = 0. Here we generalized them also

to the presence of the Doppler shift (namely ~θ 6= 0), in
which case their analytical expressions read as:

Aγ(ε, ~θ) =



2|t|4 · δγ,−
1 + |r|4 + 2|r|2 cos (2πLε+ξ∆ + φu − 2 arccos ( ε+∆ ))

(g(ε)2 − γ)(g(ε)2 + γ|r|2)|t|2 ·Θ(εDS)

g(ε)4 + |r|4 − 2g(ε)2|r|2 cos (2πLε+ξ∆ + φu)
+

2|t|4 ·Θ(εDS) δγ,−

1 + |r|4 + 2|r|2 cos (2πLε+ξ∆ − φu − 2 arccos ( ε+∆ ))

(g(ε)2 − γ)(g(ε)2 + γ|r|2)|t|2

g(ε)4 + |r|4 − 2g(ε)2|r|2 cos (2πLε+ξ∆ + φu)

for ε ∈ I

for ε ∈ II

for ε ∈ III



15

Qγ(ε, ~θ) =



0

(g(ε)2 − 1)(g(ε)2 + γ|r|2)|t|2

g(ε)4 + |r|4 − 2g(ε)2|r|2 cos (2πLε+ξ∆ + φu)
·Θ(εDS)

(g(ε)2 − 1)(g(ε)2 + γ|r|2)|t|2

g(ε)4 + |r|4 − 2g(ε)2|r|2 cos (2πLε+ξ∆ + φu)

for ε ∈ I

for ε ∈ II

for ε ∈ III

(C4)

where g(ε) = earcCosh(ε+/∆), ε+ = ε+ εDS , |r|2 = 1− |t|2
and φu = φ+ 2LεDS

πξ∆ is the phase difference along the edge

which includes the contribution of the external magnetic
flux. In the expressions of Eq. (C4), we indicated the
energy regions I, II and III, depicted in Fig. 12, which
represent, respectively, the contributions deriving from
the sub-gap (region I), the semi-continuum (region II)
and the full continuum (regions III). We notice that in

Eq. (C4) the sub-gap contribution of the function Aγ(ε, ~θ)
is nonzero only in the case of charge current (for γ =
−), while it is zero for the heat current (for γ = +).
This is because the Andreev bound states cannot allow
any thermal transport, while mediating only the charge
transport.

From the previous analytical formulas we can deduce
some general consequences for the probe’s currents of
Eq. (C1). Let us consider first the case of the charge
current with γ = −. When VN = 0, the function F−N = 0

(since f+
N = f−N ), so from formula Eq. (C1) one can easily

conclude that J−N is independent of the temperature TN .
This shows that no local thermoelectrical effect can be
induced by means of a thermal bias between the TI and
the probe. The only thermoelectric response in the probe
is the nonlocal one when a thermal bias between the two
superconductors δT is applied, i.e. F−LR = f±L − f

∓
R 6= 0.

This is particularly important at experimental level since
the temperature of the probe does not need to be con-
trolled during the measurement of nonlocal thermoelec-

tricity. The strength of such nonlocal thermoelectric re-
sponse (see Eq. (C1)) is determined by the integral over

the energies of the odd parity component in ~θ of the func-

tion Q−(ε, ~θ), i. e. Q−(ε, ~θ) − Q−(ε,−~θ), from which it
follows that the Onsager nonlocal thermoelectrical linear

coefficient L12 is an odd function of ~θ. Instead, when
δT = 0, the function F−LR = 0 (since f±L = f∓R ), so
from formula Eq. (C1) it turns out that the charge cur-
rent J−N is determined by the integral over the energies of

the even parity component in ~θ of the function A−(ε, ~θ),

i. e. A−(ε, ~θ) +A−(ε,−~θ), from which it follows that the
Onsager local electrical coefficient L11 is an even function

of ~θ

Furthermore, regarding the heat component of Eq.(C1)
with γ = +, it turns out that J+

N is an even function of
~θ since it depends only on the even components of the

functions A+(ε, ~θ) and Q+(ε, ~θ). In the linear regime one
can find that, for TL/R = T±δT/2 and TN = T , the heat
current in the probe is proportional to the energy integral

of the term
∑
σ=±

[
A+(ε, σ~θ)−Q+(ε, σ~θ)

]
, which - using

the expressions of Eq.(C4) - turns out to be zero. As a
consequence, in the linear regime, the heat current at
the probe J+

N = 0. This is a direct consequence of the
energy conservation computed in the linear regime and
for symmetric gaps.
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