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ABSTRACT: We report the synthesis and biochemical evaluation
of a series of substituted 4-(4-aroylpiperazine-1-carbonyl)benzene-
sulfonamides (5a−s) developed as inhibitors of druggable carbonic
anhydrase (CA) isoforms, as tools for the identification of new
therapeutics. X-ray crystallography confirmed that this class of
benzenesulfonamides binds CAs through the canonical anchoring
of the benzenesulfonamide moiety to the metal ion and a tail-
mediated recognition of the middle/top area of the active site
cavity. Compound 5e (R = 2-Cl) demonstrated relevant selectivity
toward brain-expressed hCA VII. The best balancing in binding
affinity and selectivity toward tumor-expressed hCA IX/hCA XII over ubiquitous hCA I/hCA II was found for inhibitor 5o (R = 3-
NO2). Notably 5b (R = 2-F) proved to be the most efficacious inhibitor of hCA XII for which computational studies elucidated the
CA recognition process.

KEYWORDS: Carbonic anhydrases, CA inhibitors, benzenesulfonamides, tumor-associated CA isoforms, docking studies,
X-ray crystallography

Carbonic anhydrases (CAs, EC 4.2.1.1) catalyze the
reversible hydration of carbon dioxide in bicarbonate

and proton.1 The 12 catalytically active human (h) α-CAs are
zinc-containing isoforms differing in catalytic properties,
oligomeric structure, tissue and cellular distribution.2 Some
of them are known to play a relevant role in different
pathological processes related to cancer, epilepsy, obesity,
glaucoma, etc.3 Therefore, several hCAs have become well-
established targets for designing hCA inhibitors (hCAIs)
endowed with biomedical applications (see Figure 1).1,4−11

Particularly, acetazolamide (AAZ) and topiramate (TPM) are
well-known CAIs targeting hCA VII isoform so that they are
considered useful for the treatment of epilepsy and others
neurological disorders,12−14 whereas the 4-ureidobenzene-
sulfonamide derivative SLC-0111 (WBI-5111) entered clinical
trials for the treatment of hypoxic tumors in the metastatic
pancreatic ductal cancer.9,15−22 Indeed, SLC-0111 is a selective
inhibitor of hCA IX and hCA XII, which are crucial in
controlling tumor growth, invasiveness, proliferation, meta-
stasis, and resistance to radio- and chemotherapy.18,23

These CAIs (Figure 1) are capable of binding the catalytic
metal ion through a zinc binder group (ZBG), namely, the
sulfonamide/sulfamate moiety in the deprotonated form. In
this context, the benzenesulfonamide moiety has been
extensively explored as a crucial binding motif for the CA
active site cavity close to the zinc ion.23 To improve the
isoform selectivity of CAIs, efforts have been generally
addressed to introduce an additional fragment linked to
benzenesulfonamide as a “tail” for enhancing the interaction
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Figure 1. Chemical structures of well-known hCA inhibitors: AAZ,
TPM, SLC-0111, and 4-(4-benzylpiperazine-1-carbonyl)benzene-
sulfonamides (1 and 2).
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with hydrophobic/hydrophilic residues paving the middle and/
or top region of the active site cavity.2,12,13,24−35

On the basis of this approach, we have previously developed
a small library of 4-(4-benzylpiperazine-1-carbonyl)benzene-
sulfonamides (e.g., 1 and 2, Figure 1) as a class of potent
inhibitors of several druggable CA isoforms (e.g., hCA VII,
hCA IX, hCA XII, and hCA XIV).
This series of compounds was studied in depth by means of

X-ray crystallography highlighting the network of relevant
interactions within the hCA active site.25 In particular, the
high-resolution crystal structure of compound 2 in complex
with hCA II showed that the inhibitor was bound to the
enzyme establishing the canonical interactions of the
benzenesulfonamide moiety with the CA active pocket.
Moreover, polar and hydrophobic interactions between the
carbonyl-piperazine moiety and residues delimiting the middle
region of the cavity were detectable. Finally, the 4-fluorobenzyl
substituent was oriented toward a rather unexplored region of
the active site located at the border of its hydrophobic region.
Due to this unusual feature, in this paper we decided to further
investigate these piperazine derivatives, substituting the N-
benzyl moiety with the N-benzoyl one. Our idea was to explore
the effect of converting the amine moiety in an amide one
which, differing in terms of geometrical and chemical
properties, could affect the interaction with the residues
located on the rim of the active site cavity characterized by the
highest diversity.36 For instance, hCA IX and hCA XII
isoforms bear in this region smaller residues (V131 and A131
in hCA IX and XII, respectively) when compared to hCA II
(F131), thus forming a more accessible active site. Searching
for isoform selectivity over hCA II, we further decorated the
benzoyl tail by incorporating hydrophobic/hydrophilic sub-
stituents in order to find additional interactions with the top
area of catalytic site.36 The inhibitory activity/selectivity of all
obtained benzenesulfonamide derivatives was assayed against
selected isoforms (hCA VII, hCA IX, hCA XII, and hCA XIV)
over the ubiquitous hCA I and hCA II. Furthermore,
crystallographic data and docking experiments helped us to
analyze in-depth the main interactions of these new
compounds with the CA catalytic site.
The synthesis of designed 4-(4-aroylpiperazine-1-carbonyl)-

benzenesulfonamide derivatives was carried out through the
procedure described in Scheme 1.
Initially, a one-pot procedure involved the coupling of

suitable benzoyl chlorides 3a−p with 1-Boc-piperazine

followed by removal of protecting group without purification
of intermediates, thus giving amides 4a−p in good yields. In
turn, the intermediates 4a−p reacted with the 4-sulfamoyl-
benzoic acid to give the desired 4-(4-aroylpiperazine-1-
carbonyl)benzenesulfonamides 5a−p. Finally, the nitroreduc-
tion of compounds 5n−p gave the corresponding amine
derivatives 5q−s. The chemical characterization of the
synthesized compounds was supported by spectroscopic
measurements (see Supporting Information).
The CA inhibitory effects of synthesized 4-(4-aroylpiper-

azine-1-carbonyl)benzenesulfonamides (5a−s) were then
measured toward selected CA isoforms by means of a
stopped-flow carbon dioxide hydration assay. The obtained
results are summarized in Table 1 and compared with Ki values

of the structurally related compounds 1 and 2, AAZ, and SLC-
0111. By analysis of Table 1, some structure−activity
relationships (SARs) can be drawn for this new class of
CAIs. Most of the synthesized 4-(4-aroylpiperazine-1-
carbonyl)benzenesulfonamides displayed inhibitory effects at
low nanomolar concentration against druggable CA isoforms;
however, no clear correlation was found between Ki inhibition
values and the nature/position of hydrophilic/hydrophobic
substituents on the phenyl ring. In more detail, this new series
of compounds generally exhibited medium inhibitory effects
toward physiologically dominant hCA I isoform except for
compounds 5c, 5d, and 5q for which the Ki values fell in the
low nanomolar range. Moreover, tested compounds inhibited
hCA II with Ki values ranging from 0.41 to 78.8 nM; the best
inhibitors were compounds 5c (Ki = 0.41 nM) and 5i (Ki = 0.6

Scheme 1a

aReagents and conditions: (i) (a) N-Boc-piperazine, DCM, EDIPA,
rt, 3 h; (i) (b) TFA, 0 °C to rt, 4 h; (ii) DMF, HBTU, 4-
sulfamoylbenzoic acid, DIPEA, rt, overnight; (iii) EtOH, NH2−NH2·
H2O, Pd/C, rt to reflux, 1 h.

Table 1. Ki Values (nM) against hCA I, hCA II, hCA VII,
hCA IX, hCA XII, and hCA XIV Isoforms Shown by New
Benzenesulfonamide Derivatives 5a−s and Reference
Compounds 1 and 2, AAZ, and SLC-0111

Ki (nM)a

hCA I hCA II hCA VII hCA IX hCA XII hCA XIV

1 6.8 3.0 10.4 33.1 3.8 34.6
2 0.69 0.5 7.8 45.1 5.6 15.2
5a 69.1 3.7 70.7 37.1 8.5 85.5
5b 22.4 28.4 6.8 68.7 3.1 6.9
5c 0.84 0.41 66.1 3.8 29.1 35.7
5d 7.7 32.4 39.5 332.4 26.4 69.6
5e 94.4 5.6 2.9 62.2 63.1 86.1
5f 72.5 22.5 7.5 54.4 66.9 58.3
5g 87.5 7.2 61.7 29.2 6.3 63.4
5h 58.0 3.0 45.3 60.4 48.7 73.9
5i 460 0.6 3.5 16.2 8.5 85.3
5j 85.1 4.4 9.1 8.0 37.4 86.0
5k 81.9 19.8 27.7 250.0 39.6 78.1
5l 87.6 36.3 46.7 360.3 26.5 48.0
5m 81.9 5.5 9.3 223.0 86.3 9.7
5n 81.2 42.4 39.2 9.8 6.9 61.6
5o 93.8 28.6 41.7 2.2 8.2 66.5
5p 60.8 23.9 64.2 11.2 6.2 46.1
5q 9.4 4.1 9.0 19.1 27.4 86.4
5r 404.9 51.1 65.0 15.2 7.7 91.7
5s 173.5 78.8 69.3 14.3 8.2 66.5
AAZ 250 12.5 2.5 25.8 5.7 41.0
SLC-0111 5080 960.0 8550 45.0 4.5 ND

aErrors are in the range of ±10% of the reported value, from three
different assays. ND: not determined.
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nM) bearing fluorine or bromine substituent at the meta-
position of the benzoyl moiety.
Concerning the brain-expressed hCA VII isoform, it can be

observed that all compounds displayed significant inhibitory
activity with Ki values ranging from 6.8 to 70.7 nM.
Interestingly, the enzymatic activities of two tumor-associated
isoforms, hCA IX and hCA XII, were affected by all tested
compounds with Ki values spanning from the low-nanomolar
to the medium-nanomolar range (3.1−360 nM). The
methoxy-substituted compounds 5k, 5l, and 5m were found
to be less active hCA IX inhibitors when compared to
unsubstituted compound 5a; a significant reduction of hCA IX
affinity resulted also for the 4-fluorine substituted compound
5d. Conversely, no relevant impact on hCA XIV binding
affinity was generally observed for the different pattern of
aromatic substituents of tested compounds 5a−s. The main
features of the binding of this new series of inhibitors to the
CA active site were elucidated by means of a detailed
crystallographic study. In particular, the crystal structure of
hCA II in complex with unsubstituted compound 5a was
determined at 1.0 Å (Table S1 in Supporting Information).
hCA II was chosen as a model isoform for crystallization, since
it readily forms crystals and many studies have been reported
on its adducts with different classes of inhibitors.37 From the
first steps of the crystallographic refinement, inspection of (Fo
− Fc) and (2Fo − Fc) electron density maps revealed the
presence of inhibitor 5a within the hCA II active site. Two
different conformations of the inhibitor were modeled differing
only for the orientation of the carbonyl group between
benzenesulfonamide and the piperazine ring (Figure 2A).
Electron density maps were well-defined for the entire

inhibitor molecule with the exception of phenyl tail that
showed a greater conformational variability. Inhibitor binding
did not alter hCA II three-dimensional structure. Indeed, the
rmsd values calculated by superposition of all the Cα atoms of
the hCA II/5a complex with those of the native protein38 were
very low (rmsd value of 0.3 Å). Similar to other
benzenesulfonamide-based hCAIs,37 compound 5a was anch-
ored to the active site by means of the sulfonamide moiety,
which coordinated the catalytic zinc ion and formed two
hydrogen bonds with residue Thr199, and of the inner phenyl
ring which established strong hydrophobic interactions
(distance of <4.0 Å) with residues Q92, V121, L198, and
T199. The carbonyl group of one conformer formed a weak
hydrogen bond with a Q92NE2 atom, whereas in the case of
the other conformer the oxygen atom was involved in a polar
interaction with a glycerol molecule. Moreover, in both
conformers the 4-carbonylpiperazine moiety was stabilized by
van der Waals interactions with F131, V135, P202, and L204
residues. Finally, the phenyl tail was located as expected on the
border of the active site cavity establishing only few and weak
hydrophobic interactions (distance of <4.2 Å) with F131 and
G132 (Figure 2A and Figure 2B). These structural findings
were in good agreement with previous achievements for an
analogue bearing the 2-benzylpiperazine core.39

Apart from clarifying the inhibitory mechanism of this class
of substituted 4-(4-aroylpiperazine-1-carbonyl)benzene-
sulfonamides (5a−s), our interest was focused on their
selectivity over ubiquitous hCA I/hCA II isoforms. Interest-
ingly, a careful analysis of the data collected in Table 1 reveals
that some compounds show a certain selectivity. As an
example, compound 5f (R = 3-Cl) prefers the brain-expressed
hCA VII isoform and compounds 5n (R = 2-NO2), 5o (R = 3-

NO2), 5p (R = 4-NO2), 5r (R = 3-NH2), and 5s (R = 4-NH2)
display the best selectivity toward the tumor-expressed hCA
IX/hCA XII. By comparing the Ki values measured for amides
5a and 5d with corresponding previously synthesized amine-
derivatives 1 and 2, it is also evident that the introduced
structural modification significantly affects the affinity for
selected druggable hCAs. Specifically, the binding affinities of
compound 5d (R = 4-F) toward hCA VII and hCA IX were
about 7-fold lower than those of compound 2. Furthermore,
the introduction of a 3-nitro substituent on the phenyl ring
significantly improved hCA IX affinity so that the inhibitor 5o
(Ki = 2.2 nM) was more active than SLC-0111 (Ki = 45.0 nM).
Interestingly, the 2-fluorosubstituted derivative 5b was very
active inhibitor of hCA XII isoform (Ki = 3.1 nM) displaying
an inhibitory activity similar to that of the promising antitumor

Figure 2. (A) hCA II/5a (PDB code 6XXT) active site showing the
σA-weighted |2Fo − Fc| electron density map (contoured at 1.0σ)
relative to the inhibitor with the conformer A colored in cyan and the
conformer B in magenta. The zinc ion coordination and residues
involved in polar and hydrophobic interactions with the 5a molecule
are also depicted. (B) Representation of hCA II surface showing the
inhibitor 5a located in the enzyme active site. The Zn2+ ion within the
catalytic cavity is represented as a yellow sphere. The phenyl tail of
the inhibitor is positioned on the rim of the cavity forming weak
hydrophobic interactions with F131 and G132 (colored in blue). The
figure was made using PyMol.
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agent SLC-0111 (Ki = 4.5 nM). Compound 5b demonstrated
also an improved selectivity over off-target isoforms hCA I/
hCA II with respect to amine parent compounds 1 and 2.
Therefore, to decipher the structural requirements for
optimized hCA XII affinity, we carried out docking calculations
between hCA XII and compounds 5b and SLC-0111. In detail,
the crystallographic structure of hCA XII in complex with the
inhibitor AAZ (PDB code 1JD0) was used for docking
simulation by Gold Suite 5.7.1, and the results are displayed in
Figure 3.

Docking studies suggested that some similarities are present
between the binding mode of SLC-0111 (colored in magenta)
and compound 5b (colored in purple) to the CA XII active
site. Indeed, in both cases, the benzenesulfonamide moiety
engages canonical H-bond contacts with T199 and T200
residues and interacts with V121, L141, and L198 residues of
the active site, whereas the fluoro-substituted tail is oriented
toward two specific residues S132 and S135 at the entrance of
catalytic cavity, confirming the important role of this region in
the design of selective CAIs.37,40

In conclusion, we designed a series of benzenesulfonamides
as CAIs. Crystallography and docking studies revealed that the
aromatic tail is generally directed toward the rim and makes
few key contacts with the enzyme. Compound 5o represents a
potent inhibitor that combines excellent hCA IX/hCA XII
inhibitory effects and isoform selectivity.
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